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Constructing equivariant spectra via
categorical Mackey functors

ANNA MARIE BOHMANN

ANGÉLICA OSORNO

We give a functorial construction of equivariant spectra from a generalized version
of Mackey functors in categories. This construction relies on the recent description
of the category of equivariant spectra due to Guillou and May. The key element of
our construction is a spectrally enriched functor from a spectrally enriched version
of permutative categories to the category of spectra that is built using an appropriate
version of K–theory. As applications of our general construction, we produce a
new functorial construction of equivariant Eilenberg–Mac Lane spectra for Mackey
functors and for suspension spectra for finite G –sets.

55P42, 55P91; 18D20

1 Introduction

Spectra are the main objects of study in stable homotopy theory and Eilenberg–Mac Lane
spectra are arguably the simplest kind of spectra. These are the spectra that represent
ordinary cohomology with coefficients in abelian groups; they have precisely one
nonzero homotopy group. Their basic role in the field has led topologists to a variety of
constructions of Eilenberg–Mac Lane spectra for abelian groups. In particular, abelian
groups are one of the simplest forms of input for all known ways of building spectra
from algebraic or categorical data. For example, classical infinite loop space theory
builds infinite loop spaces, and hence spectra, from symmetric monoidal categories.
An abelian group can be regarded as a “discrete” symmetric monoidal category, with
the elements of the group as objects and only identity morphisms. Applying an infinite
loop space machine to this simple input produces the Eilenberg–Mac Lane spectrum
for the abelian group in question.

The natural equivariant version of ordinary cohomology is Bredon cohomology, whose
coefficients are given by Mackey functors. These cohomology theories also have
representing Eilenberg–Mac Lane spectra which are again particularly simple examples
of spectra. These spectra can be constructed via obstruction theory techniques or via the
abelianization method of dos Santos and Nie [16]. However, these constructions are all
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particular to Eilenberg–Mac Lane spectra. Furthermore, while machines for constructing
general equivariant infinite loop spaces exist [2; 10; 17], Mackey functors cannot
transparently be regarded as input for these machines as they can in the nonequivariant
case. In this paper, we provide a construction of equivariant spectra that bridges this gap:
we produce a genuine equivariant spectrum from a natural categorical generalization of
Mackey functors, of which the simplest examples are Mackey functors themselves.

Our construction emphasizes the view that equivariant objects should be understood
via their “fixed points.” This idea has its roots in the study of group actions on spaces,
where one of the most frequently used constructions is that of the fixed point space. If
X is a space with a G –action, the G –fixed points of X is the space X G consisting of
points of X fixed by all elements of G . In general, the space X G forgets a significant
amount of information about X . However, by considering the collection of fixed point
spaces X H for all subgroups H of G , we can recover X as the fixed points under the
identity subgroup. Moreover, there are natural inclusion and conjugation maps relating
the fixed point spaces X H as H varies, which mean that the collection of fixed point
spaces has the structure of a presheaf on the orbit category of G . Up to homotopy, any
such presheaf can be realized as the fixed points of a space X . This is the content of
Elmendorf’s theorem [3] and its extension to model categories by Piacenza [15]. Thus,
up to homotopy, it suffices to work with the category of these presheaves, and we may
thus consider a G –space solely in terms of its presheaf of fixed point spaces.

In the stable world, the idea of viewing equivariant objects in terms of their fixed points
is at the heart of one of the two main approaches to genuine G–spectra. Genuine
G–spectra are more than just spectra with an action of a group G : they are required
to have extra structure which allows for characteristic classes for equivariant vector
bundles. The most common way of encoding this structure is by requiring a genuine
G–spectrum to have deloopings by G–representation spheres in addition to spheres
with a trivial G–action. However, one can instead require transfers or “wrong-way”
maps between fixed point spectra. These maps naturally endow the homotopy groups
of a G –spectrum with the structure of a Mackey functor, and Mackey functors are thus
the key structure that arises when considering equivariant spectra in terms of their fixed
points, as explained in May [13]. Thus, a general construction of G –spectra in a way
that extends a construction equivariant Eilenberg–Mac Lane spectra is a fundamental
part of a complete understanding of G –spectra from the fixed-point perspective. Our
main theorem is designed to supply such a construction.

In this paper, we give a machine for producing a genuine equivariant spectrum from
an appropriate “Mackey functor” of categorical data, defined in terms of an enriched
functor out of a permutative category enriched version of the Burnside category. Our
main theorem can be loosely stated as follows. We make this precise in Section 7.
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Theorem 1.1 (Main theorem) Let G be a finite group. A “Mackey functor of
permutative categories” determines a spectral Mackey functor GBop! Spec, which
by Guillou and May [7] represents a genuine G –spectrum.

Moreover, because the structure of fixed points is inherent in this construction, the
Mackey functor of homotopy groups of the resulting spectrum is easily accessible. In
particular, this makes it easy to build Eilenberg–Mac Lane spectra for Mackey functors.

Corollary 1.2 Theorem 1.1 provides a functorial construction of Eilenberg–Mac Lane
spectra for Mackey functors.

Our construction is more than just a method for constructing Eilenberg–Mac Lane
spectra: it also produces the sphere spectrum and other suspension spectra of finite G –
sets. This result is an equivariant analogue of the Barratt–Priddy–Quillen theorem [1],
which is an inherent part of any good construction of spectra from algebraic data.

Corollary 1.3 Theorem 1.1 produces suspension spectra for finite G –sets from input
built solely from the category of finite G –sets.

While other methods of constructing equivariant suspension spectra and Eilenberg–
Mac Lane spectra exist, Theorem 1.1 transparently unites these examples as special
cases of the same general construction.

An essential tool in proving Theorem 1.1 is a good nonequivariant K–theory machine for
constructing spectra from permutative categories, which will be denoted K. We require
our K–theory machine to be a multifunctor, as explained in Section 3. Multifunctoriality
can be thought of as an extension of a theory of pairings for K. Pairings originally
arose as a way to control multiplicative-type structure on spectra. A K–theory machine
with pairings was first described in May [12], although not all of the details we require
here appear there. A complete account will appear in May, Merling and Osorno [14].
An explicitly multifunctorial K–theory machine is given by the multicategory version
of Elmendorf and Mandell [4]. However, to date there has been no comparison of the
multiplicative or pairing structure for the two K–theory machines. In order to apply the
equivariant foundations of [7], we choose to use their K–theory machine, which is an
updated version of the one in [12]. Nevertheless, the categorical constructions that follow
work equally well with either K–theory machine. In particular, our primary technical
construction is the following theorem, which can be proved using any sufficiently nice
nonequivariant multiplicative K–theory machine.

Theorem 1.4 There is a spectrally enriched functor ˆW K�.Perm/! Spec, which
sends a permutative category A 2 Perm to its K–theory spectrum K.A/.
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Here K�.Perm/ is a spectrally enriched category of permutative categories, which will
be defined explicitly in Section 6.

To orient the reader familiar with this area, we relate Theorem 1.4 to other K–theory
constructions relating permutative categories and spectra. Elmendorf and Mandell [4]
construct a simplicially enriched functor from the multicategory of permutative cate-
gories to the multicategory of symmetric spectra. Guillou [6] discusses the construction
of spectrally enriched versions of categories “enriched in symmetric monoidal cate-
gories” using the work of [4]; a similar construction using May’s K–theory machine is
given in [7]. We expand and combine these results to produce our spectrally enriched
functor from the category of permutative categories to the category of spectra.

The first several sections of this paper are devoted to establishing the categorical
constructions needed to define the input of our construction. We then carry out the
construction and discuss examples of its application. In Section 2, we remind the
reader of the definitions and tools needed for enrichment in a multicategory. This
language provides the basic framework for our categorical constructions. In Section 3,
we discuss the multicategory of permutative categories and state our requirements
for the K–theory machine. We are explicitly interested in categories enriched in
the multicategory of permutative categories, which are discussed in greater detail in
Section 4, and in Section 5 we discuss our main example, which is a self-enrichment of
the category of permutative categories. In Section 6, we prove our main technical result,
Theorem 1.4. Section 7 assembles this data to prove the main theorem, Theorem 1.1.
In Section 8, we apply our main theorem to produce an especially nice construction
of Eilenberg–Mac Lane spectra for Mackey functors. Finally, in Section 9, we use
this construction to build suspension spectra for finite G–sets, including the sphere
spectrum.
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2 Notation and categorical background

One of the primary structures we use to define the categories and functors used in
Theorem 1.1 is the structure of enrichment in a multicategory. This notion generalizes
the more familiar notion of enrichment in a monoidal category. In this section we
will recall the basic categorical definitions involved in multicategory enrichments and
establish the notation used in the rest of the paper.

We will first recall the definition of a multicategory. For a full account, see Leinster [9,
Section 2.1].

Definition 2.1 A multicategory M consists of a collection of objects, denoted obM,
and for each k � 0 and objects a1; : : : ; ak ; b , a set M.a1; : : : ; ak I b/ of k–morphisms
.a1; : : : ; ak/! b . The morphism sets are related by composition functions:

M.b1; : : : bnI c/�M.a1
1
; : : : ; a

k1

1
I b1/� � � � �M.a1

n; : : : ; a
kn
n I bn/

��
M.a1

1
; : : : ; a

k1

1
; : : : ; a1

n; : : : ; a
kn
n I c/

These functions are denoted by .gIf1; : : : fn/ 7! g ı .f1; : : : ; fn/. For each object a,
there is an identity morphism 1a 2M.aI a/. All of this data is subject to associativity
and identity conditions, which can be found in [9, Section 2.1].

When working diagrammatically, we depict composition in M as

.a1
1; : : : ; a

k1

1
; : : : ; a1

n; : : : ; a
kn
n /

.f1;:::;fn/
�������! .b1; : : : bn/

g
! c:

This allows us to express equalities among composite morphisms in terms of commuta-
tive diagrams in M.

There is also a notion of symmetric multicategory in which there is an action of the
symmetric group †k on the collection of all k–morphisms, compatible with the action
on the inputs and with composition. In particular, there is a twist action on 2–morphisms.
All of our examples are in fact symmetric.

Example 2.2 The main example for this paper will be Perm, the multicategory of
permutative categories and multilinear maps. This multicategory is the subject of
Section 3.

Example 2.3 A monoidal category .V;˝/ has an underlying multicategory structure.
The objects of the multicategory are the objects of V , and the k–morphisms are given
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by morphisms a1˝ � � �˝ ak ! b in V . If V is symmetric as a monoidal category, it
is also symmetric as a multicategory. Many of the multicategories used in this paper
arise in this way. In this case, we use the same notation for the monoidal category and
the multicategory.

Given multicategories M and N , a multifunctor F WM!N consists of an assignment
of objects F W obM ! obN , and for objects a1; : : : ; ak ; b of M, a function on
morphism sets

F WM.a1; : : : ; ak I b/!N .F.a1/; : : : ;F.ak/IF.b//;

compatible with identity and composition.

Example 2.4 If C and D are monoidal categories, a lax monoidal functor F W C! D
canonically gives rise to a multifunctor of the corresponding multicategories.

We next define the notion of enrichment in a multicategory. Let M be a multicategory.

Definition 2.5 An M–enriched category C consists of a collection of objects, ob C ,
and for objects a; b in C , a morphism object C.a; b/ 2M. For objects a; b; c of C ,
composition is given by a 2–morphism in M,

compW .C.b; c/; C.a; b//! C.a; c/;

and the identity is given by a 0–morphism in M with the empty sequence as source,

idaW ./! C.a; a/:

These morphisms are subject to the usual associativity and identity constraints, ex-
pressed as follows. Given objects a; b; c; d in C , this diagram in M commutes:

(2-6)

.C.c; d/; C.b; c/; C.a; b//
.comp;1C.a;b// //

.1C.c;d/;comp/
��

.C.b; d/; C.a; b//

comp
��

.C.c; d/; C.a; c// comp
// C.a; d/

For objects a and b , the diagram

(2-7)

.C.a; b//
.idb;1C.a;b// //

.1C.a;b/;ida/
��

1C.a;b/

**

.C.b; b/; C.a; b//

comp
��

.C.a; b/; C.a; a// comp
// C.a; b/

commutes.
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Remark 2.8 If the enriching multicategory M is symmetric, any M–enriched cate-
gory C has a well-defined opposite category Cop . The objects of Cop are the same as the
objects of C ; morphism objects in Cop are defined by setting Cop.a; b/ equal to C.b; a/.
The definition of composition in Cop requires use of the twist action on 2–morphisms
in M. This is a generalization of what happens in the case of enrichments in monoidal
categories: here again, the existence of opposite categories follows from a symmetric
monoidal structure on the enriching category.

Definition 2.9 Let C and D be M–enriched categories. An M–enriched functor
F W C! D consists of an assignment F W ob C! obD , and for each pair of objects a

and b in C , a morphism in M,

F W C.a; b/! D.Fa;Fb/;

compatible with composition and identity, as expressed by the commutativity of the
following diagrams:

.C.b; c/; C.a; b//
comp //

.F;F /

��

C.a; c/

F
��

.D.Fb;Fc/;D.Fa;Fb// comp
// D.Fa;Fc/

./
ida //

idF a $$

C.a; a/

F
��

D.Fa;Fa/

We can similarly define M–enriched natural transformations. The collection of M–
enriched categories, M–enriched functors and M–enriched natural transformations
forms a 2–category, denoted M–Cat .

Remark 2.10 Note that for a monoidal category V , the notions of enrichment over
V as a monoidal category and as a multicategory coincide, so that the term V –Cat is
unambiguous.

A basic construction in the sequel is changing enrichments along a multifunctor.

Proposition 2.11 A multifunctor F WM!N induces a 2–functor

F�W M–Cat ! N–Cat ;

which sends an M–enriched category C to the N–enriched category F�C with the
same collection of objects as C , and for which .F�C/.a; b/ is given by F.C.a; b//.
Again, this generalizes the situation of enrichment over a monoidal category.
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3 The multicategory of permutative categories

In this section we introduce the multicategory of permutative categories. Recall that
a permutative category is a symmetric monoidal category for which the associativity
and unit constraints are the identity. For all permutative categories, we will denote the
monoidal product by ˚, the unit element by 0, and the symmetry isomorphism by 
 .
We assume permutative categories, functors between them, and natural transformations
are topologically enriched.

The definitions in this section are taken from those in [4, Section 3]. The definitions
are also closely related to [8, Definition 10].

Definition 3.1 Let A and B be permutative categories. A strictly unital lax symmet-
ric monoidal functor .f; ı/W A! B consists of a functor f W A! B of underlying
categories, together with a natural transformation

ıW f .a/˚f .a0/! f .a˚ a0/;

called the structure morphism. This data must satisfy the following conditions:

(1) f .0/D 0.

(2) If either a or a0 is 0, then ı is the identity morphism.

(3) For all a; a0; a00 2A, the following diagram commutes:

f .a/˚f .a0/˚f .a00/
id˚ı //

ı˚id
��

f .a/˚f .a0˚ a00/

ı
��

f .a˚ a0/˚f .a00/
ı

// f .a˚ a0˚ a00/

(4) For all a; a0 2A, the following diagram commutes:

f .a/˚f .a0/
ı //




��

f .a˚ a0/

f .
/
��

f .a0/˚f .a/
ı

// f .a0˚ a/

Remark 3.2 The structure morphism ı should be thought of as requiring a “linearity”
condition on f : the conditions above generalize the definition of a linear map between
abelian groups to the context of symmetric monoidal categories. Requiring our functors
to be strictly unital is analogous to working with based maps in the context of spaces.
This is not a serious restriction; any lax symmetric monoidal functor that preserves the
unit up to isomorphism is suitably equivalent to one that is strictly unital.
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Definition 3.3 Let A1; : : : ;Ak and B be permutative categories. A multilinear functor

.f I ı1; : : : ık/W .A1; : : : ;Ak/! B

consists of a functor f W A1 � � � � �Ak ! B of underlying categories, together with
natural transformations

ıi W f .a1; : : : ; ai ; : : : ; ak/˚f .a1; : : : ; a
0
i ; : : : ; ak/! f .a1; : : : ; ai ˚ a0i ; : : : ; ak/

called linearity constraints. These constraints must satisfy conditions given in [4,
Definition 3.2]. In particular, f .a1; : : : ; ak/ D 0 if any aj D 0. Additionally, the
transformation ıi is the identity map if either ai , a0i or any other aj is 0.

The natural transformations ıi should be thought of as saying that the functor f is
linear in each variable, up to a constraint given by ıi . The required conditions encode
an associativity of this constraint and a compatibility with the symmetry. These are
similar to conditions (3) and (4) of Definition 3.1. There is one further condition that
relates the constraints for different variables. We will denote the multilinear functor
.f I ı1; : : : ; ın/ simply by f when there is no risk of confusion.

Remark 3.4 When k D 1, Definition 3.3 coincides with Definition 3.1. For k D 2,
Definition 3.3 is a slight generalization of the notion of pairing defined in [12] and
used implicitly in [6].

Definition 3.5 Let Perm be the multicategory whose objects are small permutative
categories and whose multimorphisms are given by multilinear functors between them.
A 0–morphism aW ./! A is given by a choice of object a in A. Given multilinear
functors

.gI fı
g
j g

n
jD1/W .B1; : : : ;Bn/! C and .fj I fı

fj

i g
kj

iD1
/W .A1

j ; : : : ;A
kj

j /! Bj

for j D 1; : : : ; n, we define their composite by

.gI fı
g
j g

n
jD1/ ı

�
.f1I fı

f1

i g
k1

iD1
/; : : : ; .fnI fı

fn

i g
kn

iD1
/
�
D
�
g ı .f1 � � � � �fn/I .ıs/

P
kj

sD1

�
;

where ıs is given by the appropriate composite of ıg
j with g.ı

fj

i /. See [4, Defini-
tion 3.2] for details.

This definition of composition generalizes that of composition of lax monoidal functors,
which we recall here to orient the reader. Let .gI ıg/W B! C and .f I ıf /W A! B be
strictly unital lax monoidal functors. Their composite is given by .g ıf I ı/, where ı
is the natural transformation given by the composite

g.f .a//˚g.f .a0//
ıg

�! g.f .a/˚f .a0//
g.ıf /
���! g.f .a˚ a0//:
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Our work requires a K–theory machine that respects the multicategory structure on
permutative categories. The following theorem makes this requirement precise.

Theorem 3.6 (cf [12, Theorem 1.6, Theorem 2.1; 4, Theorem 1.1]) There is a
K–theory functor K from permutative categories to spectra has the structure of a
multifunctor

KW Perm! Spec:

Here we are viewing the monoidal category of spectra under smash product as a
multicategory as in Example 2.3.

We will explicitly use two important consequences of the multifunctoriality of K.

Corollary 3.7 A multilinear functor of permutative categories f W .A1; : : : ;Ak/! B
induces a map of spectra K.A1/^ � � � ^K.Ak/!K.B/, which we denote by K.f /.
Furthermore, this assignment is compatible with composition of multilinear maps.

Recall that a 0–morphism bW ./! B in Perm is given by a choice of an object b 2 B .
The inclusion of the object b into B extends to a strict symmetric monoidal functor

ibW F ! B;

where F is the free permutative category on a single object. The category F is a skeletal
version of the category of finite sets and isomorphisms, and the Barratt–Priddy–Quillen
theorem thus identifies K.F/ as the sphere spectrum S . The following lemma follows
from the proof of Theorem 3.6 that is given by Elmendorf and Mandell [4].

Lemma 3.8 Let bW ./! B be a 0–morphism in Perm. Then K.b/W S !K.B/ is the
0–morphism in Spec given by K.ib/W S !K.B/

Remark 3.9 Theorem 3.6 originates in [12]. However, the exposition in [12] is tailored
for understanding the multiplicative structures on ring spectra, rather than the more
general multilinear maps we use here. Together with modern advances in constructing
categories of spectra with good monoidal structures, this makes [12] somewhat difficult
to read. As mentioned in the introduction, Elmendorf and Mandell [4] also produce
a K–theory machine with the multifunctoriality of Theorem 3.6; their work is the
origin of the multifunctor perspective on the subject. Currently there is no comparison
between the multiplicative-type structure produced by [4] and [12]; since we rely on
the main theorem of [7], which is proved using the pairings of [12], we must also use
the theory of [12]. This theory has been modernized and expanded in the forthcoming
[14], which will provide a more accessible resource, but the fundamental constructions
are those of [12].
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4 PC–categories

Our construction makes heavy use of categories enriched in the multicategory Perm,
which we call PC–categories after Guillou [6]. In this section, we describe their
structure in a more explicit way.

Definition 4.1 A PC–category is a category enriched in the multicategory Perm.
Similarly, a PC–functor is an enriched functor, and a PC–natural transformation is an
enriched natural transformation.

We now unpack some of these definitions for the reader. A PC–category consists of
the following data:

(1) A collection of objects, denoted by ob C .

(2) For each pair of objects X;Y , a permutative category C.X;Y /.

(3) For every triple of objects X;Y;Z , a bilinear map

ı W .C.Y;Z/;C.X;Y //! C.X;Z/:

(4) For every object X in ob C , an object idX of C.X;X /

We further require that the diagrams (2-6) and (2-7) commute.

Note that if we forget the permutative structure on the categories of morphisms, a
PC–category has an underlying 2–category.

Remark 4.2 Our definition of a PC–category is slightly more general than the one in
[6, Section 3], in which one of the distributivity isomorphisms of the bilinear map ı in
(3) is chosen to be the identity. By [6, Theorem 1.2], any PC–category in our sense is
appropriately equivalent to a PC–category in Guillou’s sense.

Composition in C gives rise to precomposition and postcomposition maps. More ex-
plicitly, given objects X , Y and Z in the PC–category C , and an object f of the per-
mutative category C.X;Y /, there exist strictly unital lax symmetric monoidal functors

f �W C.Y;Z/! C.X;Z/ and f�W C.Z;X /! C.Z;Y /

given by precomposition and postcomposition by f respectively. The monoidal con-
straints are defined by using the distributivity constraints of ı.

A PC–functor F W C!D consists of an assignment of objects F W ob C!ob D together
with strictly unital lax symmetric monoidal functors

FX ;Y W C.X;Y /! D.FX;FY /

such that the diagrams in Definition 2.9 commute.
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Given PC–functors F and G from C to D, a PC–natural transformation ˛W F !G

consists of a collection of morphisms in D,

˛X W F.X /!G.X /;

such that the following diagram in Perm commutes:

C.X;Y / G //

F
��

D.GX;GY /

.˛X /
�

��
D.FX;FY /

.˛Y /�

// D.FX;GY /

The following theorem follows directly from Proposition 2.11 and Theorem 3.6.

Theorem 4.3 (cf [6, Theorem 1.1]) There is a 2–functor

K�W PC–Cat ! Spec–Cat

that sends a PC–category C to a spectrally enriched category with the same collection
of objects and with morphism spectra from X to Y given by KC.X;Y /.

5 The PC–category Perm

Let Perm denote the 2–category of small permutative categories, strictly unital lax
symmetric monoidal functors and monoidal natural transformations. As noted by
Guillou [6, Example 3.4], this 2–category has the structure of a PC–category. In
particular, the morphism category Perm.A;B/ between any two permutative categories
is itself a permutative category.

Concretely, the monoidal structure on Perm.A;B/ is given by pointwise addition so
that .f ˚g/.a/ is defined to be f .a/˚g.a/. The structure morphism for f ˚g is
given by the composite

f .a/˚g.a/˚f .a0/˚g.a0/
1˚
˚1
�����! f .a/˚f .a0/˚g.a/˚g.a0/

ıf˚ıg

����! f .a˚ a0/˚g.a˚ a0/:

One easily checks that this gives Perm.A;B/ the structure of a permutative category.

Given permutative categories A, B and C , the usual composition functor extends to
a map

ı W .Perm.B; C/;Perm.A;B//! Perm.A; C/
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which is bilinear in the sense of Definition 3.3. The first linearity constraint ı1 is the
identity, since it follows from the definitions that .g ı f /˚ .g0 ı f /D .g˚ g0/ ı f .
The second linearity constraint

ı2W .g ıf /˚ .g ıf
0/! g ı .f ˚f 0/

is given by the structure morphism of g . It is routine to check that the necessary
diagrams commute.

Remark 5.1 We require the objects in Perm.A;B/ to be strictly unital functors so that
the composition bilinear map is also strictly unital, which is required in Definition 3.3.
The reason for this requirement is that the available K–theory machines are only
multifunctorial with respect to strictly unital multilinear maps.

The PC–category Perm has a bilinear evaluation map. This structure is important in
the construction of the functor of Theorem 1.4.

Proposition 5.2 Given permutative categories A and B , there exists an evaluation
map

evW .Perm.A;B/;A/! B

which is a bilinear functor in the sense of Definition 3.3.

The underlying functor is defined in the usual way on objects and morphisms, so
that ev.f; a/ D f .a/; the key point is to note that strict unitality and the natural
transformations witnessing the lax monoidality of f determine a bilinear structure on
ev. More explicitly, the first linearity constraint is the identity, since the equality

ı1W ev.f; a/˚ ev.f 0; a/D ev.f ˚f 0; a/

follows immediately from the definition of f ˚f 0 , and the second linearity constraint,

ı2W ev.f; a/˚ ev.f; a0/! ev.f; a˚ a0/;

is given by the structure morphism of f . Similarly, ev.0; a/ D 0 and ev.f; 0/ D 0;
note the second equality expresses the strict unitality of f . We leave it to the reader to
check that the appropriate diagrams commute.

These evaluations are compatible, in the sense that the following diagram commutes in
the multicategory Perm:

(5-3)

.Perm.B; C/;Perm.A;B/;A/

.id;ev/
��

.ı;id/ // .Perm.A; C/;A/

ev
��

.Perm.B; C/B/ ev
// C
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That this diagram commutes follows from the underlying definition of evaluation; it is
straightforward to check that the required diagrams for compatibility of the linearity
transformations commute.

Furthermore, evaluation satisfies the following universal property.

Lemma 5.4 Let A, B and C be permutative categories. Let .f; ı1; ı2/W .A;B/! C
be a bilinear map. Then there exists a unique strictly unital lax monoidal functor

gW A! Perm.B; C/

such that the following diagram commutes:

.A;B/
.g;1B/ //

f
**

.Perm.B; C/;B/
ev
��
C

Proof On objects, we let g send a in A to the strictly unital lax monoidal functor
given by the composite

B
.a;1B/
����! .A;B/

f
�! C:

In particular, as an underlying functor, g.a/.b/D f .a; b/. A morphism l W a! a0 in
A determines a monoidal natural transformation

g.l/W g.a/! g.a0/

whose component at b 2 B is given by f .l; idb/. It is routine to check that g is strictly
unital and lax monoidal, with constraint given by ı1 . It is also easy to check that such
a g is unique.

Remark 5.5 Heuristically, Proposition 5.2 and Lemma 5.4 should be thought of as part
of a closed structure on the multicategory Perm. This idea is made precise in [11]. The
closed structure may also be viewed as arising from an embedding of the multicategory
Perm into the closed symmetric monoidal category of based multicategories, which is
discussed by Elmendorf–Mandell in [5]. In order to make this paper more self-contained,
we chose to give explicit constructions of the structures needed for our results.

6 A spectrally enriched functor ˆW K�.Perm/! Spec

Let K�.Perm/ denote the spectral category constructed from Perm by Theorem 4.3.
That is, K�.Perm/ is the category enriched over spectra whose objects are the same as
the objects of Perm, and for which given permutative categories A and B , the spectrum
of morphisms is given by the K–theory spectrum K�.Perm.A;B//.
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We define a spectrally enriched functor ˆW K�.Perm/! Spec, thus proving Theorem
1.4. For a permutative category A, ˆ.A/ is the spectrum KA. The map of spectra

ˆW K.Perm.A;B//! F.KA;KB/

is defined as the adjoint of the map

K.ev/W K.Perm.A;B//^KA!KB

whose existence follows from Proposition 5.2 and multilinearity of K as in Corollary 3.7
of Theorem 3.6.

By definition of the adjoint we thus have that the following diagram commutes:

(6-1)

K.Perm.A;B//^KA

ˆ^id
��

K.ev/

''
F.KA;KB/^KA ev

// KB

Theorem 6.2 The map ˆ defines a spectrally enriched functor.

Proof We must check that our definition of ˆ respects composition and units. We
turn first to composition. We must show that the following diagram commutes:

K.Perm.B; C//^K.Perm.A;B//
K.ı/ //

ˆ^ˆ
��

K.Perm.A; C//

ˆ
��

F.KB;KC/^F.KA;KB/
ı

// F.KA;KC/

Note that the existence of the top map K.ı/ follows from the fact that composition in
a PC–category is a bilinear map.

We show this diagram commutes by proving commutativity of its adjoint diagram

(6-3)

K.Perm.B; C//^K.Perm.A;B//^KA
K.ı/^id //

ˆ^ˆ^id
��

K.Perm.A; C//^KA

K.ev/
��

F.KB;KC/^F.KA;KB/^KA
zı

// KC

where zı denotes the adjoint of ı, that is, zı is defined as the composite

F.KB;KC/^F.KA;KB/^KA
ı^id
���! F.KA;KC/^KA

ev
�!KC:
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Diagram (6-3) decomposes into the following pieces.

K.Perm.B;C//^K.Perm.A;B//^KA K.Perm.A;C//^KA

F.KB;KC/^F.KA;KB/^KA

K.Perm.B;C//^KBK.Perm.B;C//^F.KA;KB/^KA

F.KB;KC/^KB KC

F.KA;KC/^KA

K.ı/^id //

��

ˆ^ˆ^id

id^K.ev/

**

id^ˆ^id

��
K.ev/

��

ˆ^id^id

��

id^ev //

��

ˆ^id K.ev/

��ev //id^ev //

ı^id

''

ev

77

1
 2
 3


4
 5


6


Subdiagrams 1
 and 4
 commute by the functoriality of the smash product. Sub-
diagrams 2
 and 5
 commute because they are instances of diagram (6-1), which
commutes. Subdiagram 3
 comes from applying K to the commuting diagram (5-3)
displaying the compatible multilinear structure of composition, and thus commutes.
Finally, the commutativity of subdiagram 6
 follows from standard properties of closed
monoidal categories.

Next we show that ˆ respects the units in the spectral categories K�.Perm/ and Spec.
We must show that the diagram

S //

%%

K Perm.A;A/

ˆ
��

F.KA;KA/

commutes, where the top map is the map given by applying Lemma 3.8 to the object
idA in Perm.A;A/ and the diagonal map is the usual unit map for Spec. This diagram
commutes because its adjoint diagram

(6-4)

S ^KA //

((

K Perm.A;A/^KA

K.ev/
��

KA

commutes. To see this, consider the left diagonal map S ^KA!KA, which is the
unit isomorphism in Spec.
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Recall that S D KF and that this unit morphism is given by applying K to the
bilinear map

.F ;A/!A

which is determined by sending .�; a/ 2 F �A to a 2A, where � is the generating
object of F . We obtain diagram (6-4) by applying K to the following commutative
diagram in Perm:

.F ;A/
.i1A ;1A/ //

))

.Perm.A;A/;A/

ev
��
A

Here i1A W F ! Perm.A;A/ is the strictly unital lax monoidal functor induced by
sending � 2 F to 1A 2 Perm.A;A/, as is used in Lemma 3.8.

In order to better understand how the functor ˆ works, we now analyze what it does
after passing to �0 .

Since �0W Spec ! Ab is a lax monoidal functor, by Proposition 2.11 it induces a
change-of-enrichments functor

.�0/�W Spec–Cat ! Ab–Cat

which is given by applying �0 at the level of morphisms. Thus we obtain an additive
functor .�0/�ˆW .�0/�K� Perm! .�0/�Spec from our spectral functor ˆ. On objects,
the functor .�0/�ˆ is the same as ˆ — it sends a permutative category A to the
spectrum KA. On morphisms, the behavior of .�0/� is summarized in the following
proposition.

Recall that for any permutative category P , it is a fundamental property of K–theory
that �0KP is the group completion of the abelian monoid of connected components of
objects of P . Thus the morphism group .�0/�K� Perm.A;B/ is the group completion
of the set connected components of strictly unital lax monoidal functors f W A! B .
As such, a map out of this group is determined by where it sends such functors.

Proposition 6.5 Let A and B be permutative categories. The map on morphism
groups

�0K Perm.A;B/! �0F.KA;KB/

given by .�0/�ˆ sends the connected component of a strictly unital lax monoidal
functor f W A! B to the homotopy class ŒKf �, where Kf is the image of f under
the K–theory functor K.
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Proof We must show that the following diagram commutes in the homotopy category
of spectra:

S
K.if / //

�Kf ''

K Perm.A;B/

ˆ
��

F.KA;KB/:

Here K.if / is the 0–morphism in Spec associated to the object f 2 Perm.A;B/ in
Lemma 3.8 and �Kf is the morphism S ! F.KA;KB/ that is adjoint to the map
Kf W KA!KB . Thus the desired commutative diagram has adjoint

S ^KA
K.if /^id

//

Š ,,

K Perm.A;B/^KA

K.ev/
��

KA
Kf ,, KB

The isomorphism S ^KA! KA is the adjoint of the unit map and is displayed in
diagram (6-4). Thus, recalling that S DKF , this diagram is obtained by applying K
to the following diagram:

.F ;A/
.if ;id/ //

.iid;id/
++

.Perm.A;B/;A/

ev
��

.Perm.A;A/;A/
ev ** A

f // B

The left diagonal composite sends .�; a/ 2 F � A to a 2 A. It follows from the
definition of evaluation that this is a commutative diagram of bilinear maps in Perm.

As a consequence of this proposition, we obtain the following.

Corollary 6.6 The functor ˆ induces a commutative diagram of abelian groups

�0K Perm.A;B/ //

))

�0F.KA;KB/

��
Ab.�0KA; �0KB/

where the lower left map is determined by sending the class of strictly unital lax
monoidal functor f to the induced map on group completions arising from the restric-
tion of f to object sets.
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7 Constructing genuine equivariant spectra

The construction of the functor ˆ of Section 6, when combined with the recent work
of Guillou and May, yields a new method for constructing genuine G –spectra for finite
groups of equivariance. We will apply this method in the specific case of Eilenberg–
Mac Lane spectra in Section 8 and suspension spectra of finite G–sets in Section 9.
The basic idea behind [7] is that genuine G –spectra are given by spectrally enriched
presheaves of spectra on a particularly accessible spectrally enriched version of the
Burnside category. Our functor ˆ allows us to construct such presheaves from the
algebraic data of a PC–functor from a PC–category version of the Burnside category
to Perm.

The PC–category in question is defined using an explicit small version of the category of
G –sets. We regard a G –set as a finite set of the form .n; ˛/, where nDf1; : : : ; ng and ˛
is a homomorphism G ˛

!†n endowing n with a G –action. A G –map .n; ˛/! .m; ˇ/

is a function f W n!m such that f ı ˛.g/D ˇ.g/ ı f for all g 2 G . The disjoint
union of AD .n; ˛/ and BD .m; ˇ/ is given by AqBD .nCm; ˛Cˇ/ where ˛Cˇ
indicates the usual block sum homomorphism G ! †nCm . This model of disjoint
union is strictly associative and unital.

Definition 7.1 The Burnside category BG is a category whose objects are finite G–
sets and whose morphisms arise from spans of finite G –sets: Given G –sets A and B ,
a span from A to B is a diagram of the form

A C ! B;

where C is also a finite G –set and both maps are equivariant. Note that such a diagram
is equivalent to a map C ! B �A as well. An isomorphism of spans is a diagram of
the form:

C

ww ''
Š

��
A B

D

gg 77

Spans from A to B have a monoidal product given by disjoint union in the source
of the two maps of the span, and the morphisms in BG are defined to be the group
completion of the abelian monoid of isomorphism classes of spans. Composition is
given by pullback of spans. These morphisms make BG into an additive category.

It is evident from the above definition that BG can be thought of as a group-completed
quotient of a 2–category in which the one-morphisms are actual spans and the two-
morphisms are the isomorphisms of spans. In fact, using the skeletal version of G –sets
above, it is not difficult to define a PC–category version.
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Definition 7.2 The PC–category GE has finite G–sets as objects. If A and B are
finite G–sets, the permutative category of morphisms GE.A;B/ is the category of
spans of finite G–sets from A to B and isomorphisms of spans. The permutative
structure is given by disjoint union. Composition is given by pullback, where we make
the following explicit choices. Let

A
f
�! B

f 0

 � C

be a diagram of G–maps. If f is the identity, choose the pullback B �B C D C ,
and if f 0 is the identity, choose the pullback A�B B DA. These specific choices of
pullbacks along identity maps make composition strictly unital. If neither f nor f 0 is
the identity, choose the pullback A�B C to be the subset of A�C picked out by the
pullback condition, where the set A�C is given lexicographical ordering. Together
these choices ensure that composition in GE is strictly associative.

Thus BG is produced from GE by first taking the quotient by the 2–morphisms and then
taking the group completion of the resulting abelian monoids of morphisms between
objects.

Since GE is a PC–category, Theorem 4.3 allows us to produce a spectrally enriched
version K�GE by applying K–theory to the morphism permutative categories.

Definition 7.3 Let GB denote the spectrally enriched Burnside category K�GE .

This category is the spectrally enriched category used to model genuine G –spectra in
the work of Guillou and May.

Theorem 7.4 [7] Let G be a finite group. The category of genuine G–spectra is
Quillen equivalent to the category of spectrally enriched functors GBop! Spec.

We can now state Theorem 1.1 precisely.

Theorem 7.5 Let G be a finite group. There is a functor

KG W FunPC.GEop;Perm/! FunSpec.GBop;Spec/

from the category of PC–functors GEop! Perm and PC–natural transformations to
the category of spectral functors GBop! Spec and spectral natural transformations
with the following property. For every PC–functor X W GEop! Perm and every finite
G –set A, the spectral functor KG.X / takes A 2GB to the spectrum K.X.A//.

Since FunSpec.GBop;Spec/ is Quillen equivalent to the category of genuine G –spectra,
Theorem 7.5 should be regarded as a functorial construction of G –spectra from cate-
gorical data.
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Our construction provides control over the Mackey functor homotopy groups of an
output G –spectrum in terms of the categories used to build it. Recall that �0W Spec!
Ab is a lax monoidal functor and thus induces a change of enrichment functor

.�0/�W Spec–Cat ! Ab–Cat

which replaces function spectra with their 0th homotopy groups.

From the proof of the main theorem of Guillou and May, one can readily show the
following.

Proposition 7.6 Let Y be a spectral functor GBop! Spec, thought of as a genuine
G –spectrum. Then the Mackey functor �n.Y / is the composite functor

Bop
G
Š .�0/�GBop .�0/�Y

�����! HoSpec
�n
��!Ab:

Here we are using the facts that applying .�0/� to GB produces the usual Burnside
category and that .�0/�Spec is the homotopy category of spectra.

Together with Corollary 6.6, this proposition allows us to identify the homotopy Mackey
functors of G –spectra produced by our construction.

Proposition 7.7 Let X W GEop! Perm be a PC–functor. Let KGX be the spectral
functor GBop! Spec produced from X by Theorem 7.5. Then the Mackey functor
homotopy group �n.KGX / is given by the composite

Bop
G
Š .�0/�.K�.GEop//

.�0/�K�X
�������! .�0/�.K� Perm/

.�0/�ˆ
�����! HoSpec

�n
��!Ab:

In particular, �0.KGX / is given by

�0.KGX /.G=H /D Gr.Œob X.G=H /�/

where for a permutative category A, the notation Gr.ŒobA�/ denotes the group comple-
tion of the connected components of objects of A.

Proof of Theorem 7.5 Let X W GEop! Perm be a PC–functor. The spectral functor
KG.X / is defined as follows. We apply the functor K� of Theorem 4.3, to produce a
spectrally enriched functor

K�X W GBop
!K�.Perm/:

Composition with the spectrally enriched functor ˆW K Perm! Spec then yields a
spectrally enriched functor GBop! Spec. By Theorem 7.4, such a functor may be
viewed as a genuine G –spectrum.

This process is by definition functorial in natural transformations of PC–functors.
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Proof of Proposition 7.7 The statement about �n.Y / follows directly from applying
Proposition 7.6 to the functor Y D ˆ ıK�X constructed in Theorem 7.5. The 0th

homotopy groups behave as stated because the composite �0 ıK is given by group
completion.

8 Eilenberg–Mac Lane spectra

Our motivating example is the construction of equivariant Eilenberg–Mac Lane spectra
for Mackey functors. These can be constructed in a particularly straightforward fashion,
as we discuss below. This construction of Eilenberg–Mac Lane spectra for Mackey
functors enjoys several nice properties. Unlike a naive approach via killing homotopy
groups, our construction is functorial in natural transformations of Mackey functors. It
also treats the transfer and restriction maps in precisely the same way. Constructions
via an equivariant Dold–Thom theorem, such as those of dos Santos and Nie [16], build
transfer maps in a more complicated way from those of restriction. This breaks the
self-duality symmetry that Mackey functors naturally have. Our infinite loop space
machine inherently preserves this self-duality.

Recall that a Mackey functor is an additive contravariant functor from the Burnside
category BG to abelian groups. Any such functor in fact determines a PC–functor
from GEop! Perm, and thus produces a genuine G –spectrum via the construction of
Section 7.

Theorem 8.1 The construction of Theorem 7.5 produces Eilenberg–Mac Lane spectra
for Mackey functors.

There are two steps involved in proving this claim. First, we must show that a Mackey
functor produces the correct input for our construction and then we must show that the
machine outputs an Eilenberg–Mac Lane spectrum.

Lemma 8.2 A Mackey functor M W Bop
G
!Ab determines a PC–functor

M W GEop
! Perm :

Proof Let M W Bop
G
!Ab be a Mackey functor. As discussed in Section 7, BG is the

quotient of the 2–category GE . We can regard Ab as a 2–category with only identity
2–cells. Hence M determines a 2–functor

GEop quot
��! Bop

G

M
��!Ab;

which, by abuse of notation, we also call M .
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Since Ab is an abelian category, all hom-sets in Ab are actually abelian groups. We can
regard each hom-abelian group as a permutative category whose objects are the elements
of the abelian group and whose monoidal product is given by addition. This makes
Ab into a PC–category. In fact, by regarding the object abelian groups as permutative
categories as well, we may regard Ab as a subcategory of the PC–category Perm.
Since any Mackey functor is required to be additive, M extends to a PC–functor
M W GEop!Ab � Perm.

Remark 8.3 Because Ab is a PC–category with no non-identity 2–cells, any PC–
functor from GEop to Ab must factor through the quotient Bop

G
.

Lemma 8.2 puts us in the situation of Section 7 and we apply Theorem 7.5 to produce
a G–spectrum KGM W GBop ! Spec. We now need only check that KGM is an
Eilenberg–Mac Lane spectrum for M .

Proof of Theorem 8.1 As in the previous lemma, a Mackey functor M determines
a PC–functor M W GEop ! Perm. Theorem 7.5 produces a genuine G–spectrum
KGM W GBop! Spec from this data. In order to show that this is indeed an Eilenberg–
Mac Lane spectrum for M , we must check that its homotopy groups are correct using
Proposition 7.6. This proposition asserts that �n.KGM / is the Mackey functor

Bop
G
Š .�0/�K�GE

.�0/�ıK�M
��������! .�0/�K� Perm

.�0/�ˆ
�����! HoSpec

�n
��!Ab:

On objects, the functor KGM W GBop! Spec is easy to understand: the image of a
finite G–set A 2 GB is the K–theory spectrum of the abelian group M.A/, which
is a nonequivariant Eilenberg–Mac Lane spectrum H.M.A//. This implies that its
homotopy groups are

�n.KGM /.A/D �n.H.M.A///D

�
M.A/ if nD 0,
0 otherwise.

Thus �n.KGM / is the zero Mackey functor for n¤ 0.

We need only show that �0.KGM / is the original Mackey functor M . We have just
identified the group �0.KGM /.A/ as M.A/ and so we need only show that the maps
relating these groups are those of the Mackey functor M . Let

f D B C !A

be a span. The morphisms in BG.B;A/ are the group completion of isomorphism
classes of such spans, and thus their image under the composite above is determined
by understanding the image of spans. By the construction of M W GEop! Perm, the
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span f goes to the strictly unital monoidal functor given on objects by the group
homomorphism M.f /W M.A/ ! M.B/; all morphisms in the source and target
categories are the identity. Proposition 6.5 implies that this functor is mapped under
.�0/�ˆ to the homotopy class of the induced map of K–theory spectra. In this case,
the K–theory spectra are the Eilenberg–Mac Lane spectra H.M.A// and H.M.B//

and thus the homotopy class of the map KM.f / is determined by its image on �0 .
By Corollary 6.6, we conclude that �0ŒKM.f /�W �0H.M.A//! �0H.M.B// is the
desired group homomorphism M.f /.

9 Suspension spectra of finite G–sets

Using the main construction of Section 7, we also produce equivariant suspension
spectra for finite G –sets, and in particular, the G –equivariant sphere spectrum. These
suspension spectra are the results of applying our machine to the representable functors
GEop! Perm given by the finite G –sets X 2GE . In their paper [7], Guillou and May
identify suspension spectra of finite G–sets as representable functors GBop! Spec,
and so our construction of these suspension spectra is not a surprising result. Rather,
it may be thought of as a sort of consistency check which demonstrates that our
construction agrees with pre-existing understandings of equivariant spectra in terms of
fixed points.

Definition 9.1 Let SX W GEop! Perm be the representable functor given by the finite
G –set X 2GE . That is, for any A 2GE ,

SX .A/DGEop.X;A/DGE.A;X /

which is a permutative category since GE is a PC–category. On morphisms, this
functor is given by the unique strictly unital symmetric monoidal functor

SX W GEop.A;B/! Perm.GEop.X;A/;GEop.X;B//

which Lemma 5.4 produces from the bilinear composition map

compW .GEop.A;B/;GEop.X;A//!GEop.X;B/:

Proposition 9.2 The functor SX W GEop! Perm is a well-defined PC–functor.

Proof This fact follows from the universal property of evaluation given in Lemma 5.4
via a direct analogue of the standard proof of the existence of representable functors for
categories enriched in a monoidal category V . Alternately, the authors have checked
that the diagrams of Definition 2.9 commute using the explicit definition of composition
and units in the category GE . Either way, the key to the proof is that composition in
GE is associative.
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Remark 9.3 Proposition 9.2 is the multicategorical version of the standard fact that
representable functors exist for categories enriched in closed symmetric monoidal
categories. As mentioned in Remark 5.5, this type of closure property can be viewed
as arising from the embedding of Perm into the closed symmetric monoidal category
of based multicategories of [5].

We can apply our construction to the functor SX .�/.

Theorem 9.4 Suppose X is a finite G –set. Let KGSX W GBop! Spec be the functor
ˆıK�SX produced from SX by Theorem 7.5. Then KGSX represents the suspension
spectrum †1

G
.XC/.

As mentioned at the beginning of this section, we prove this theorem by comparing
KGSX to the suspension spectrum †1

G
.XC/ as characterized by Guillou and May.

Proposition 9.5 [7, Section 2.5] The suspension spectrum †1
G
.XC/ corresponds to

the presheaf of spectra
GBop

! Spec

represented by X 2GB .

Proof of Theorem 9.4 By Proposition 9.5, we need only compare our spectral functor
KGSX to the spectral functor GBop.X;�/ represented by X . By definition these
functors are the same on objects: they both take an object A 2GBop to the spectrum
KGEop.X;A/DKGE.A;X /. We must show that the maps

(9-6)
KGSX WGBop.A;B/! F.GBop.X;A/;GBop.X;B//

GBop.X;�/WGBop.A;B/! F.GBop.X;A/;GBop.X;B//

which these functors induce on morphisms are also the same.

By definition, the map KGSX is the composite

KGEop.A;B/
K�SX
����!K Perm.GEop.X;A/;GEop.X;B//

ˆ
�! F.GBop.X;A/;GBop.X;B//:

Recall that ˆ is defined in terms of its adjoint. The map

GBop.X;�/W GBop.A;B/! F.GBop.X;A/;GBop.X;B//

is defined to be the adjoint of

GBop.A;B/^GBop.X;A/
comp
���!GBop.X;B/
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Thus the maps on morphisms of (9-6) agree if the diagram

KGEop.A;B/^KGEop.X;A/

comp
++

K�SX^id // K Perm.GEop.X;A/;GEop.X;B//^KGEop.X;A/

K.ev/

��
KGEop.X;B/

commutes. Here we have replaced GBop.� ;�/ by KGEop.� ;�/ since the latter
spectrum is the definition of the former. The arrow labeled comp is composition in
the spectrally enriched category GBop . Since GB D K�GE , this arrow is given by
applying the multifunctor K to the composition morphism in the PC–category GEop .
Hence, the previous diagram is the image under K of the following diagram of bilinear
functors of permutative categories:

.GEop.A;B/;GEop.X;A//
.SX ;id/ //

comp
,,

.Perm.GEop.X;A/;GEop.X;B//;GEop.X;A//

ev

��
GEop.X;B/

This diagram commutes by definition: it is an instance of the universal property of
evaluation of Lemma 5.4 which is used to define SX .

Therefore, the functor SX W GEop! Perm produces the suspension spectra †1
G
.XC/

under application of the construction of Theorem 7.5.
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