Translator Disclaimer
2012 A rank inequality for the knot Floer homology of double branched covers
Kristen Hendricks
Algebr. Geom. Topol. 12(4): 2127-2178 (2012). DOI: 10.2140/agt.2012.12.2127

Abstract

Given a knot K in S3, let Σ(K) be the double branched cover of S3 over K. We show there is a spectral sequence whose E1 page is (HFK̂(Σ(K),K)V(n1))2((q)), for V a 2–vector space of dimension two, and whose E page is isomorphic to (HFK̂(S3,K)V(n1))2((q)), as 2((q))–modules. As a consequence, we deduce a rank inequality between the knot Floer homologies HFK̂(Σ(K),K) and HFK̂(S3,K).

Citation

Download Citation

Kristen Hendricks. "A rank inequality for the knot Floer homology of double branched covers." Algebr. Geom. Topol. 12 (4) 2127 - 2178, 2012. https://doi.org/10.2140/agt.2012.12.2127

Information

Received: 11 July 2011; Revised: 18 June 2012; Accepted: 12 July 2012; Published: 2012
First available in Project Euclid: 19 December 2017

zbMATH: 1277.53093
MathSciNet: MR3020203
Digital Object Identifier: 10.2140/agt.2012.12.2127

Subjects:
Primary: 53D40, 57M25, 57M27, 57R58

Rights: Copyright © 2012 Mathematical Sciences Publishers

JOURNAL ARTICLE
52 PAGES


SHARE
Vol.12 • No. 4 • 2012
MSP
Back to Top