Translator Disclaimer
2012 A homological characterization of topological amenability
Jacek Brodzki, Graham Niblo, Piotr Nowak, Nick Wright
Algebr. Geom. Topol. 12(3): 1763-1776 (2012). DOI: 10.2140/agt.2012.12.1763

Abstract

Generalizing Block and Weinberger’s characterization of amenability we introduce the notion of uniformly finite homology for a group action on a compact space and use it to give a homological characterization of topological amenability for actions. By considering the case of the natural action of G on its Stone–Čech compactification we obtain a homological characterization of exactness of the group.

Citation

Download Citation

Jacek Brodzki. Graham Niblo. Piotr Nowak. Nick Wright. "A homological characterization of topological amenability." Algebr. Geom. Topol. 12 (3) 1763 - 1776, 2012. https://doi.org/10.2140/agt.2012.12.1763

Information

Received: 14 July 2011; Revised: 20 April 2012; Accepted: 7 May 2012; Published: 2012
First available in Project Euclid: 19 December 2017

zbMATH: 1251.43001
MathSciNet: MR2966703
Digital Object Identifier: 10.2140/agt.2012.12.1763

Subjects:
Primary: ‎43A07‎
Secondary: 37A15, 46L55, 58E40

Rights: Copyright © 2012 Mathematical Sciences Publishers

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.12 • No. 3 • 2012
MSP
Back to Top