Translator Disclaimer
2012 Dyer–Lashof operations on Tate cohomology of finite groups
Martin Langer
Algebr. Geom. Topol. 12(2): 829-865 (2012). DOI: 10.2140/agt.2012.12.829

Abstract

Let k=Fp be the field with p>0 elements, and let G be a finite group. By exhibiting an E–operad action on Hom(P,k) for a complete projective resolution P of the trivial kG–module k, we obtain power operations of Dyer–Lashof type on Tate cohomology Ĥ(G;k). Our operations agree with the usual Steenrod operations on ordinary cohomology H(G). We show that they are compatible (in a suitable sense) with products of groups, and (in certain cases) with the Evens norm map. These theorems provide tools for explicit computations of the operations for small groups G. We also show that the operations in negative degree are nontrivial.

As an application, we prove that at the prime 2 these operations can be used to determine whether a Tate cohomology class is productive (in the sense of Carlson) or not.

Citation

Download Citation

Martin Langer. "Dyer–Lashof operations on Tate cohomology of finite groups." Algebr. Geom. Topol. 12 (2) 829 - 865, 2012. https://doi.org/10.2140/agt.2012.12.829

Information

Received: 18 June 2011; Revised: 22 November 2011; Accepted: 6 January 2012; Published: 2012
First available in Project Euclid: 19 December 2017

zbMATH: 1278.20071
MathSciNet: MR2914620
Digital Object Identifier: 10.2140/agt.2012.12.829

Subjects:
Primary: 20J06, 55S12

Rights: Copyright © 2012 Mathematical Sciences Publishers

JOURNAL ARTICLE
37 PAGES


SHARE
Vol.12 • No. 2 • 2012
MSP
Back to Top