Translator Disclaimer
2012 Locally symmetric spaces and $K$–theory of number fields
Thilo Kuessner
Algebr. Geom. Topol. 12(1): 155-213 (2012). DOI: 10.2140/agt.2012.12.155

Abstract

For a closed locally symmetric space M=ΓGK and a representation ρ:G GL(N,) we consider the pushforward of the fundamental class in H(BGL(¯)) and a related invariant in K(¯). We discuss the nontriviality of this invariant and we generalize the construction to cusped locally symmetric spaces of –rank one.

Citation

Download Citation

Thilo Kuessner. "Locally symmetric spaces and $K$–theory of number fields." Algebr. Geom. Topol. 12 (1) 155 - 213, 2012. https://doi.org/10.2140/agt.2012.12.155

Information

Received: 15 November 2010; Revised: 18 November 2011; Accepted: 18 November 2011; Published: 2012
First available in Project Euclid: 19 December 2017

zbMATH: 1271.57062
MathSciNet: MR2916273
Digital Object Identifier: 10.2140/agt.2012.12.155

Subjects:
Primary: 53C35, 57M50, 57R19
Secondary: 11R70, 22E46

Rights: Copyright © 2012 Mathematical Sciences Publishers

JOURNAL ARTICLE
59 PAGES


SHARE
Vol.12 • No. 1 • 2012
MSP
Back to Top