Translator Disclaimer
2012 A lower bound for the number of group actions on a compact Riemann surface
James W Anderson, Aaron Wootton
Algebr. Geom. Topol. 12(1): 19-35 (2012). DOI: 10.2140/agt.2012.12.19

Abstract

We prove that the number of distinct group actions on compact Riemann surfaces of a fixed genus σ2 is at least quadratic in σ. We do this through the introduction of a coarse signature space, the space Kσ of skeletal signatures of group actions on compact Riemann surfaces of genus σ. We discuss the basic properties of Kσ and present a full conjectural description.

Citation

Download Citation

James W Anderson. Aaron Wootton. "A lower bound for the number of group actions on a compact Riemann surface." Algebr. Geom. Topol. 12 (1) 19 - 35, 2012. https://doi.org/10.2140/agt.2012.12.19

Information

Received: 18 July 2011; Accepted: 11 October 2011; Published: 2012
First available in Project Euclid: 19 December 2017

zbMATH: 1246.14042
MathSciNet: MR2889543
Digital Object Identifier: 10.2140/agt.2012.12.19

Subjects:
Primary: 14H37
Secondary: 30F20, 57M60

Rights: Copyright © 2012 Mathematical Sciences Publishers

JOURNAL ARTICLE
17 PAGES


SHARE
Vol.12 • No. 1 • 2012
MSP
Back to Top