Translator Disclaimer
2011 Configuration-like spaces and coincidences of maps on orbits
Roman Karasev, Alexey Volovikov
Algebr. Geom. Topol. 11(2): 1033-1052 (2011). DOI: 10.2140/agt.2011.11.1033

Abstract

In this paper we study the spaces of q–tuples of points in a Euclidean space, without k–wise coincidences (configuration-like spaces). A transitive group action by permuting these points is considered, and some new upper bounds on the genus (in the sense of Krasnosel’skii–Schwarz and Clapp–Puppe) for this action are given. Some theorems of Cohen–Lusk type for coincidence points of continuous maps to Euclidean spaces are deduced.

Citation

Download Citation

Roman Karasev. Alexey Volovikov. "Configuration-like spaces and coincidences of maps on orbits." Algebr. Geom. Topol. 11 (2) 1033 - 1052, 2011. https://doi.org/10.2140/agt.2011.11.1033

Information

Received: 30 September 2009; Revised: 4 September 2010; Accepted: 5 October 2010; Published: 2011
First available in Project Euclid: 19 December 2017

zbMATH: 1220.55007
MathSciNet: MR2792372
Digital Object Identifier: 10.2140/agt.2011.11.1033

Subjects:
Primary: 55R80
Secondary: ‎55M20, 55M30, 55M35, 57S17

Rights: Copyright © 2011 Mathematical Sciences Publishers

JOURNAL ARTICLE
20 PAGES


SHARE
Vol.11 • No. 2 • 2011
MSP
Back to Top