Translator Disclaimer
2001 The Homflypt skein module of a connected sum of 3–manifolds
Patrick M Gilmer, Jianyuan K Zhong
Algebr. Geom. Topol. 1(1): 605-625 (2001). DOI: 10.2140/agt.2001.1.605

Abstract

If M is an oriented 3–manifold, let S(M) denote the Homflypt skein module of M. We show that S(M1#M2) is isomorphic to S(M1)S(M2) modulo torsion. In fact, we show that S(M1#M2) is isomorphic to S(M1)S(M2) if we are working over a certain localized ring. We show the similar result holds for relative skein modules. If M contains a separating 2–sphere, we give conditions under which certain relative skein modules of M vanish over specified localized rings.

Citation

Download Citation

Patrick M Gilmer. Jianyuan K Zhong. "The Homflypt skein module of a connected sum of 3–manifolds." Algebr. Geom. Topol. 1 (1) 605 - 625, 2001. https://doi.org/10.2140/agt.2001.1.605

Information

Received: 18 December 2000; Revised: 23 October 2001; Accepted: 24 October 2001; Published: 2001
First available in Project Euclid: 21 December 2017

zbMATH: 0986.57007
MathSciNet: MR1875610
Digital Object Identifier: 10.2140/agt.2001.1.605

Subjects:
Primary: 57M25

Rights: Copyright © 2001 Mathematical Sciences Publishers

JOURNAL ARTICLE
21 PAGES


SHARE
Vol.1 • No. 1 • 2001
MSP
Back to Top