Translator Disclaimer
2015 Secant spaces and syzygies of special line bundles on curves
Marian Aprodu, Edoardo Sernesi
Algebra Number Theory 9(3): 585-600 (2015). DOI: 10.2140/ant.2015.9.585

Abstract

On a special line bundle L on a projective curve C we introduce a geometric condition called (Δq). When L = KC, this condition implies gon(C) q + 2. For an arbitrary special L, we show that (Δ3) implies that L has the well-known property (M3), generalising a similar result proved by Voisin in the case L = KC.

Citation

Download Citation

Marian Aprodu. Edoardo Sernesi. "Secant spaces and syzygies of special line bundles on curves." Algebra Number Theory 9 (3) 585 - 600, 2015. https://doi.org/10.2140/ant.2015.9.585

Information

Received: 25 April 2014; Revised: 27 January 2015; Accepted: 2 March 2015; Published: 2015
First available in Project Euclid: 16 November 2017

zbMATH: 1320.14067
MathSciNet: MR3340545
Digital Object Identifier: 10.2140/ant.2015.9.585

Subjects:
Primary: 14N05
Secondary: 14M12, 14N25

Rights: Copyright © 2015 Mathematical Sciences Publishers

JOURNAL ARTICLE
16 PAGES


SHARE
Vol.9 • No. 3 • 2015
MSP
Back to Top