Open Access
Translator Disclaimer
2012 Resonance equals reducibility for $A$-hypergeometric systems
Mathias Schulze, Uli Walther
Algebra Number Theory 6(3): 527-537 (2012). DOI: 10.2140/ant.2012.6.527

Abstract

Classical theorems of Gel’fand et al. and recent results of Beukers show that nonconfluent Cohen–Macaulay A-hypergeometric systems have reducible monodromy representation if and only if the continuous parameter is A-resonant.

We remove both the confluence and Cohen–Macaulayness conditions while simplifying the proof.

Citation

Download Citation

Mathias Schulze. Uli Walther. "Resonance equals reducibility for $A$-hypergeometric systems." Algebra Number Theory 6 (3) 527 - 537, 2012. https://doi.org/10.2140/ant.2012.6.527

Information

Received: 1 October 2010; Revised: 4 January 2011; Accepted: 22 February 2011; Published: 2012
First available in Project Euclid: 20 December 2017

zbMATH: 1251.13023
MathSciNet: MR2966708
Digital Object Identifier: 10.2140/ant.2012.6.527

Subjects:
Primary: 13N10
Secondary: 14M25 , 32S40

Keywords: $D$-module , Euler–Koszul , hypergeometric , Monodromy , resonance , toric

Rights: Copyright © 2012 Mathematical Sciences Publishers

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.6 • No. 3 • 2012
MSP
Back to Top