Translator Disclaimer
2020 The Prasad conjectures for $\mathrm{GSp}_4$ and $\mathrm{PGSp}_4$
Hengfei Lu
Algebra Number Theory 14(9): 2417-2480 (2020). DOI: 10.2140/ant.2020.14.2417

Abstract

We use the theta correspondence between GSp4(E) and GO(V) to study the GSp4-distinction problems over a quadratic extension EF of nonarchimedean local fields of characteristic 0. With a similar strategy, we investigate the distinction problem for the pair (GSp4(E),GSp1,1(F)), where GSp1,1 is the unique inner form of GSp4 defined over F. Then we verify the Prasad conjecture for a discrete series representation τ̄ of PGSp4(E).

Citation

Download Citation

Hengfei Lu. "The Prasad conjectures for $\mathrm{GSp}_4$ and $\mathrm{PGSp}_4$." Algebra Number Theory 14 (9) 2417 - 2480, 2020. https://doi.org/10.2140/ant.2020.14.2417

Information

Received: 7 May 2019; Revised: 8 February 2020; Accepted: 4 May 2020; Published: 2020
First available in Project Euclid: 12 November 2020

MathSciNet: MR4172712
Digital Object Identifier: 10.2140/ant.2020.14.2417

Subjects:
Primary: 22E50
Secondary: 11F27

Rights: Copyright © 2020 Mathematical Sciences Publishers

JOURNAL ARTICLE
64 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.14 • No. 9 • 2020
MSP
Back to Top