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The structure of correlations of multiplicative
functions at almost all scales, with applications to

the Chowla and Elliott conjectures
Terence Tao and Joni Teräväinen

We study the asymptotic behaviour of higher order correlations

En≤X/d g1(n+ ah1) · · · gk(n+ ahk)

as a function of the parameters a and d , where g1, . . . , gk are bounded multiplicative functions, h1, . . . , hk

are integer shifts, and X is large. Our main structural result asserts, roughly speaking, that such correlations
asymptotically vanish for almost all X if g1 · · · gk does not (weakly) pretend to be a twisted Dirichlet
character n 7→ χ(n)nit, and behave asymptotically like a multiple of d− itχ(a) otherwise. This extends
our earlier work on the structure of logarithmically averaged correlations, in which the d parameter is
averaged out and one can set t = 0. Among other things, the result enables us to establish special cases
of the Chowla and Elliott conjectures for (unweighted) averages at almost all scales; for instance, we
establish the k-point Chowla conjecture En≤Xλ(n+ h1) · · · λ(n+ hk)= o(1) for k odd or equal to 2 for
all scales X outside of a set of zero logarithmic density.

1. Introduction

The Chowla and Elliott conjectures. Define a 1-bounded multiplicative function to be a function g :
N→ D from the natural numbers N := {1, 2, . . .} to the unit disk D := {z ∈ C : |z| ≤ 1} satisfying
g(nm)= g(n)g(m) whenever n,m are coprime. If in addition g(nm)= g(n)g(m) for all n,m ∈ N, we
say that g is completely multiplicative. In addition, we adopt the convention that g(n)= 0 when n is zero
or a negative integer.

This paper is concerned with the structure of higher order correlations of such functions. To describe
our results, we need some notation for a number of averages.

Definition 1.1 (averaging notation). Let f : A→ C be a function defined on a nonempty finite set A:

(i) (Unweighted averages) We define

En∈A f (n) :=
∑

n∈A f (n)∑
n∈A 1

.
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(ii) (Logarithmic averages) If A is a subset of the natural numbers N, we define

E
log
n∈A f (n) :=

∑
n∈A f (n)/n∑

n∈A 1/n
.

(iii) (Doubly logarithmic averages) If A is a subset of the natural numbers N, we define

E
log log
n∈A f (n) :=

∑
n∈A f (n)/(n log(1+ n))∑

n∈A 1/(n log(1+ n))
.

Of course, the symbol n can be replaced here by any other free variable. For any real number X ≥1, we use
En≤X f (n) as a synonym for En∈N∩[1,X ] f (n), and similarly for E

log
n≤X f (n) and E

log log
n≤X f (n). If we use the

symbol p (or p1, p2, etc.) instead of n, we implicitly restrict p to the set of primes P := {2, 3, 5, 7, . . .},
thus for instance for X ≥ 2, Ep≤X f (p) is a synonym for Ep∈P∩[2,X ] f (p), and similarly for E

log
p≤X f (p).

Remark 1.2. The use of log(1+ n) in the Elog log notation instead of log n is only in order to avoid
irrelevant divergences at n= 1, and the shift by 1 may otherwise be ignored. Because of the prime number
theorem, prime averages such as Ep≤X f (p) are often of “comparable strength” to logarithmic averages
E

log
n≤X f (n), and similarly logarithmic prime averages such as E

log
p≤X f (p) are of comparable strength to

E
log log
n≤X f (n). See Lemma 2.6 for a more precise statement.

Following Granville and Soundararajan [2008], given two 1-bounded multiplicative functions f, g :
N→D, and X ≥ 1, we define the pretentious distance D( f, g; X) between f and g up to scale X by the
formula

D( f, g; X) :=
(∑

p≤X

1−Re( f (p)g(p))
p

)1/2

.

It is conjectured that multiple correlations of 1-bounded multiplicative functions should asymptotically
vanish unless all of the functions involved “pretend” to be twisted Dirichlet characters in the sense of the
pretentious distance. More precisely, the following conjecture is essentially due to Elliott.

Conjecture 1.3 (Elliott conjecture). Let g1, . . . , gk : N→ D be 1-bounded multiplicative functions for
some k ≥ 1. Assume that there exists j ∈ {1, . . . , k} such that for every Dirichlet character χ one has

inf
|t |≤X

D(g j , n 7→ χ(n)nit
; X)→∞ (1)

as X→∞.

(i) (Unweighted Elliott conjecture) If h1, . . . , hk ∈ Z are distinct integers, then

lim
X→∞

En≤X g1(n+ h1) · · · gk(n+ hk)= 0.

(ii) (Logarithmically averaged Elliott conjecture) If h1, . . . , hk ∈ Z are distinct integers, then

lim
X→∞

E
log
n≤X g1(n+ h1) · · · gk(n+ hk)= 0.
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Conjecture 1.3(i) was first stated by Elliott [1992; 1994], with condition (1) weakened to the assertion
that D(g j , n 7→χ(n)nit

; X)→∞ for each fixed t , with no uniformity in t assumed. However, it was shown
in [Matomäki et al. 2015] that this version of the conjecture fails for a technical reason. By summation
by parts, Conjecture 1.3(i) implies Conjecture 1.3(ii). At present, both forms of the Elliott conjecture
are known for k = 1 (thanks to Halász’s theorem [1971]), while the k = 2 case of the logarithmic Elliott
conjecture was established in [Tao 2016]. Specialising the above conjecture to the case of the Liouville
function λ,1 we recover the following conjecture of Chowla [1965], together with its logarithmically
averaged form.

Conjecture 1.4 (Chowla conjecture). Let k ≥ 1 be a natural number:

(i) (Unweighted Chowla conjecture) If h1, . . . , hk ∈ Z are distinct integers, then

lim
X→∞

En≤Xλ(n+ h1) · · · λ(n+ hk)= 0.

(ii) (Logarithmically averaged Chowla conjecture) If h1, . . . , hk ∈ Z are distinct integers, then

lim
X→∞

E
log
n≤Xλ(n+ h1) · · · λ(n+ hk)= 0.

Note that for k = 1, the unweighted Chowla conjecture is equivalent to the prime number theorem,
while the logarithmically averaged 1-point Chowla conjecture has a short elementary proof. No further
cases of the unweighted Chowla conjecture are currently known, but the logarithmically averaged Chowla
conjecture has been established for k = 2 in [Tao 2016] and for all odd values of k in [Tao and Teräväinen
2019] (with a second proof given in [Tao and Teräväinen 2018]). The logarithmically averaged Chowla
conjecture is also known to be equivalent to the logarithmically averaged form of a conjecture of Sarnak
[2010]; see [Tao 2017a]. See also [Matomäki et al. 2015] for a version of Elliott’s conjecture where one
averages over the shifts hi . One can also formulate an analogous version of Chowla’s conjecture for the
Möbius function, for which very similar results are known.2

In [Tao and Teräväinen 2019], we obtained the following special case of the logarithmically averaged
Elliott conjecture (Conjecture 1.4(ii)). We say that a 1-bounded multiplicative function f :N→D weakly
pretends to be another 1-bounded multiplicative function g : N→ D if

lim
X→∞

1
log log X

D( f, g; X)2 = 0

or equivalently ∑
p≤X

1−Re( f (p)g(p))
p

= o(log log X).

1For the definitions of the standard multiplicative functions used in this paper, see page 1.
2If one generalises the Chowla conjecture by using affine forms ai n + hi instead of shifts n + hi , then a simple sieving

argument can be used to show the equivalence of such generalised Chowla conjectures for the Liouville function and their
counterparts for the Möbius function; we leave the details to the interested reader.
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Theorem 1.5 (special case of logarithmically averaged Elliott [Tao and Teräväinen 2019, Corollary 1.6]).
Let k ≥ 1, and let g1, . . . , gk :N→D be 1-bounded multiplicative functions such that the product g1 · · · gk

does not weakly pretend to be any Dirichlet character n 7→ χ(n). Then for any integers h1, . . . , hk , one
has

lim
X→∞

E
log
n≤X g1(n+ h1) · · · gk(n+ hk)= 0.

In particular this establishes the logarithmically averaged Chowla conjecture for odd values of k. This
result was also recently used by Frantzikinakis and Host [2019] to control the Furstenberg measure-
preserving systems associated to 1-bounded multiplicative functions, and to establish a version of the
logarithmic Sarnak conjecture where the Möbius function µ(n) is replaced by a 1-bounded multiplicative
function g(n) and the topological dynamical system involved is assumed to be uniquely ergodic.

Theorem 1.5 was deduced from a more general structural statement about the correlation sequence
a 7→ limX→∞ E

log
n≤X g1(n+ah1) · · · gk(n+ahk) for 1-bounded multiplicative functions g1, . . . , gk , where

one now permits the product g1 · · · gk to weakly pretend to be a Dirichlet character. Here one runs into
the technical difficulty that the asymptotic limits limX→∞ E

log
n≤X are not known a priori to exist. To get

around this difficulty, the device of generalised limit functionals was employed.3 By a generalised limit
functional we mean a bounded linear functional lim∗X→∞ : `

∞(N)→ C which agrees with the ordinary
limit functional limX→∞ on convergent sequences, maps nonnegative sequences to nonnegative numbers,
and which obeys the bound

|
∗

lim
X→∞

f (X)| ≤ lim sup
X→∞

| f (n)|

for all bounded sequences f . As is well known, the existence of such generalised limits follows from the
Hahn–Banach theorem. With these notations, we proved in [Tao and Teräväinen 2019, Theorem 1.1] the
following:

Theorem 1.6 (structure of logarithmically averaged correlation sequences). Let k ≥ 1, and let h1, . . . , hk

be integers and g1, . . . , gk :N→D be 1-bounded multiplicative functions. Let lim∗X→∞ be a generalised
limit functional. Let f : Z→ D denote the function

f (a) :=
∗

lim
X→∞

E
log
n≤X g1(n+ ah1) · · · gk(n+ ahk). (2)

(i) If the product g1 · · · gk does not weakly pretend to be a Dirichlet character, then f is identically zero.

(ii) If instead the product g1 · · · gk weakly pretends to be a Dirichlet character χ , then f is the uniform
limit of periodic functions Fi , each of which is χ-isotypic in the sense that Fi (ab) = Fi (a)χ(b)
whenever a is an integer and b is an integer coprime to the periods of Fi and χ .

Among other things, Theorem 1.6 yields Theorem 1.5 as a direct corollary. Theorem 1.5 in turn can be
used to establish various results about the distribution of consecutive values of 1-bounded multiplicative

3Alternatively, one could employ ultrafilter limits, or pass to subsequences in which all limits of interest exist. The latter
approach is for instance the one adopted in [Frantzikinakis 2017; Frantzikinakis and Host 2018; 2019].
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functions; to give just one example, in [Tao and Teräväinen 2019, Corollary 7.2] it was used to show that
every sign pattern in {−1,+1}3 occurred with logarithmic density 1

8 amongst the Liouville sign patterns
(λ(n), λ(n+ 1), λ(n+ 2)).

From logarithmic averages to almost all ordinary averages. It would be desirable if many of the above
results for logarithmically averaged correlations such as E

log
n≤X g1(n+h1) · · · gk(n+hk) could be extended

to their unweighted counterparts such as En≤X g1(n + h1) · · · gk(n + hk). However, such extensions
cannot be automatic, since for instance the logarithmic averages E

log
n≤X nit converge to 0 for t 6= 0, but the

unweighted averages En≤X nit diverge. Similarly, the statement E
log
n≤Xλ(n)= o(1) has a short and simple

elementary proof,4 whereas the unweighted analogue En≤Xλ(n)= o(1) is equivalent to the prime number
theorem and its proofs are more involved. Moreover, one can show5 that if, for example, the correlation
limit limX→∞ En≤Xλ(n)λ(n+ 1) exists, then it has to be equal to 0, which means that proving the mere
existence of the limit captures the difficulty in the two-point unweighted Chowla conjecture.

Nevertheless, there are some partial results of this type in which control on logarithmic averages can
be converted to control on unweighted averages for a subsequence of scales X . For instance, in [Gomilko
et al. 2018] it is shown using ergodic theory techniques that if the logarithmically averaged Chowla
conjecture holds for all k, then there exists an increasing sequence of scales X i such that the Chowla
conjecture for all k holds for X restricted to these scales. This was refined in a blog post of Tao [2017b],
where it was shown by an application of the second moment method that if the logarithmically averaged
Chowla conjecture held for some even order 2k, then the Chowla conjecture for order k would hold for
all scales X outside of an exceptional set X ⊂ N of logarithmic density zero, by which we mean that

lim
X→∞

E
log
n≤X 1X (n)= 0.

Unfortunately, as the only even number for which the logarithmically averaged Chowla conjecture is
currently known to hold is k= 2, this only recovers (for almost all scales) the k= 1 case of the unweighted
Chowla conjecture, which was already known from the prime number theorem.

At present, the restriction to logarithmic averaging in many of the above results is needed largely
because it supplies (via the “entropy decrement argument”) a certain approximate dilation invariance,
which roughly speaking asserts the approximate identity

g1(p) · · · gk(p)E
log
n≤X g1(n+ h1) · · · gk(n+ hk)≈ E

log
n≤X g1(n+ ph1) · · · gk(n+ phk)

for “most” primes p, and for extremely large values of X ; see for instance [Frantzikinakis and Host
2019, Theorem 3.2] for a precise form of this statement, with a proof essentially provided in [Tao and

4One can for example prove this by writing E
log
n≤Xλ(n)= −Ep≤yE

log
n≤Xλ(n)p1p|n + oy→∞(1), and then using the Turán–

Kubilius inequality to get rid of the p1p|n factor; we leave the details to the interested reader.
5More generally, one can use partial summation to show that, for any bounded real-valued sequence a : N → R, if

limX→∞ E
log
n≤X a(n) = α, then there exists an increasing sequence Xi such that limi→∞ En≤X i a(n) = α. In particular, if the

logarithmic Elliott conjecture holds, then the ordinary Elliott conjecture also holds in the case of real-valued functions along
some subsequence of scales (which may depend on the functions involved).
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Teräväinen 2019, Section 3]. However, an inspection of the entropy decrement argument reveals that it
also provides an analogous identity for unweighted averages, namely that

g1(p) · · · gk(p)En≤X g1(n+ h1) · · · gk(n+ hk)≈ En≤X/pg1(n+ ph1) · · · gk(n+ phk) (3)

for “most” primes p, and “most” extremely large values of X ; see Proposition 2.3 for a precise statement.
By using this form of the entropy decrement argument, we are able to obtain the following analogue of
Theorem 1.6 for unweighted averages, which is the main technical result of our paper and is proven in
Section 2.

Theorem 1.7 (structure of unweighted correlation sequences). Let k ≥ 1, and let h1, . . . , hk be integers
and g1, . . . , gk : N→ D be 1-bounded multiplicative functions. Let lim∗X→∞ be a generalised limit
functional. For each real number d > 0, let fd : Z→ D denote the function

fd(a) :=
∗

lim
X→∞

En≤X/d g1(n+ ah1) · · · gk(n+ ahk). (4)

(i) If the product g1 · · · gk does not weakly pretend to be any twisted Dirichlet character n 7→ χ(n)nit,
then

lim
X→∞

E
log log
d≤X | fd(a)| = 0

for all integers a.

(ii) If instead the product g1 · · · gk weakly pretends to be a twisted Dirichlet character n 7→ χ(n)nit, then
there exists a function f : Z→ D such that

lim
X→∞

E
log log
d≤X | fd(a)− f (a)d− it

| = 0 (5)

for all integers a. Furthermore, f is the uniform limit of χ -isotypic periodic functions Fi .6

We have defined fd for all real numbers d > 0 for technical reasons, but we will primarily be interested
in the behaviour of fd for natural numbers d; for instance, the averages limX→∞ E

log log
d≤X appearing in the

above theorem are restricted to this case.
Roughly speaking, the logarithmic correlation sequence f (a) appearing in Theorem 1.6 is analogous

to the average limX→∞ E
log log
d≤X fd(a) of the sequences appearing here (ignoring for this discussion the

question of whether the limits exist). These averages vanish when t 6= 0 in Theorem 1.7, and one
basically recovers a form of Theorem 1.6; but, as the simple example of averaging the single 1-bounded
multiplicative function n 7→ nit already shows, in the t 6= 0 case it is possible for the fd(a) to be nonzero
while the logarithmically averaged counterpart f (a) vanishes.

By combining Theorem 1.7 with a simple application of the Hardy–Littlewood maximal inequality, we
can obtain several new cases of the unweighted Elliott and Chowla conjectures at almost all scales, as
follows.

6That is, we have Fi (ab)= Fi (a)χ(b) for any integers a and b with b coprime to the periods of Fi and χ .
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Corollary 1.8 (some cases of the unweighted Elliott conjecture at almost all scales). Let k ≥ 1, and let
g1, . . . , gk : N→ D be 1-bounded multiplicative functions. Suppose that the product g1 · · · gk does not
weakly pretend to be any twisted Dirichlet character n 7→ χ(n)nit.

(i) For any h1, . . . , hk ∈ Z and ε > 0, one has

|En≤X g1(n+ h1) · · · gk(n+ hk)| ≤ ε

for all natural numbers X outside of a set Xε of logarithmic Banach density zero, in the sense that

lim
ω→∞

sup
X≥ω

E
log
X/ω≤n≤X 1Xε(n)= 0. (6)

(ii) There is a set X0 of logarithmic density zero, such that

lim
X→∞;X 6∈X0

En≤X g1(n+ h1) · · · gk(n+ hk)= 0

for all h1, . . . , hk ∈ Z.

Remark 1.9. We note that Corollary 1.8 can be generalised to the case of dilated correlations

En≤X g1(q1n+ h1) · · · gk(qkn+ hk),

where q1, . . . , qk ∈ N. To see this, one applies exactly the same trick related to Dirichlet character
expansions as in [Tao and Teräväinen 2019, Appendix A]. Similarly, Corollary 1.13 below generalises to
the dilated case. We leave the details to the interested reader.

Remark 1.10. We see by partial summation that if f : N→ C is any bounded function such that for
every ε > 0 we have |limX→∞;X 6∈Xε En≤X f (n)| ≤ ε for some set Xε ⊂N of logarithmic Banach density 0,
then we also have the logarithmic correlation result lim supX→∞|E

log
X/ω(X)≤n≤X f (n)| � ε for any function

1 ≤ ω(X) ≤ X tending to infinity. Thus Corollary 1.8 is a strengthening of our earlier result [Tao and
Teräväinen 2019, Corollary 1.6] on logarithmic correlation sequences. Similarly, Corollary 1.13 below is
a strengthening of [Tao 2016, Corollary 1.5].

Remark 1.11. The logarithmic density (or logarithmic Banach density) appearing in Corollaries 1.8
and 1.13 is the right density to consider in this problem. Namely, if one could show that the set X0 has
asymptotic density 0, then [1,∞) \X0 would intersect every interval [x, (1+ ε)x] for all large x , which
would easily imply (together with (56) below) that the unweighted correlation converges to zero without
any exceptional scales.

Remark 1.12. The twisted Dirichlet characters χ(n)nit appear both in Conjecture 1.3 and in Theorems 1.6
and 1.7. However, there is an interesting distinction as to how they appear; in Conjecture 1.3, t is allowed
to be quite large (as large as X ) and χ(n)nit is associated to just a single multiplicative function g j , while
in Theorems 1.6 and 1.7, the quantity t is independent of X and is now associated to the product g1 · · · gk .
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The dependence of t on X in Conjecture 1.3(i) is necessary,7 as is shown in [Matomäki et al. 2015];
roughly speaking, the individual g j can oscillate like ni t j for various large t j in such a fashion that these
oscillations largely cancel and produce nontrivial correlations in the product g1(n+ h1) · · · gk(n+ hk).
Meanwhile, Theorem 1.7 asserts in some sense that the shifted product g1(n+h1) · · · gk(n+hk) oscillates
“similarly to” the unshifted product g1(n) · · · gk(n), so in particular if the latter began oscillating like nit

for increasingly large values of t then the former product should exhibit substantial cancellation.

The proof of Corollary 1.8 is found in Section 3. So far, all of our results have concerned correlations
where the product of the multiplicative functions involved is nonpretentious. In the case of two-point
correlations, however, we can prove Corollary 1.8 under the mere assumption that one of the multiplicative
functions involved is nonpretentious, thus upgrading the logarithmic two-point Elliott conjecture in [Tao
2016] to an unweighted version at almost all scales.

Corollary 1.13 (the binary unweighted Elliott conjecture at almost all scales). Let g1, g2 : N→ D be
1-bounded multiplicative functions, such that there exists j ∈ {1, 2} for which (1) holds as X →∞ for
every Dirichlet character χ .

(i) For any distinct h1, h2 ∈ Z and ε > 0, one has

|En≤X g1(n+ h1)g2(n+ h2)| ≤ ε

for all natural numbers X outside of a set Xε of logarithmic Banach density zero (in the sense of (6)).

(ii) There is a set X0 of logarithmic density zero such that

lim
X→∞;X 6∈X0

En≤X g1(n+ h1)g2(n+ h2)= 0

for all distinct h1, h2 ∈ Z.

When specialised to the case of the Liouville function, the previous corollaries produce the following
almost-all result.

Corollary 1.14 (some cases of the unweighted Chowla conjecture at almost all scales). There is an
exceptional set X0 of logarithmic density zero, such that

lim
X→∞;X 6∈X0

En≤Xλ(n+ h1) · · · λ(n+ hk)= 0

for all natural numbers k that are either odd or equal to 2, and for any distinct integers h1, . . . , hk . The
same result holds if one replaces one or more of the copies of the Liouville function λ with the Möbius
function µ.

7In the case of the logarithmically averaged Conjecture 1.3(ii), in contrast, (1) might not be a necessary assumption, since the
sequence of bad scales constructed in [Matomäki et al. 2015, Theorem B.1] is sparse and thus does not influence logarithmic
averages.
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We establish these results in Section 3. One can use these corollaries to extend some previous results
involving the logarithmic density of sign patterns to now cover unweighted densities of sign patterns at
almost all scales. For instance, by inserting Corollary 1.14 into the proof of [Tao and Teräväinen 2019,
Corollary 1.10(i)], one obtains the following.

Corollary 1.15 (Liouville sign patterns of length three). There is an exceptional set X0 of logarithmic
density zero, such that

lim
X→∞;X 6∈X0

En≤X 1(λ(n),λ(n+1),λ(n+2))=(ε0,ε1,ε2) =
1
8

for all sign patterns (ε0, ε1, ε2) ∈ {−1, 1}3.

Similarly several other results in [Tao and Teräväinen 2019] and in [Teräväinen 2018] can be generalised.
For example, the result [Teräväinen 2018, Theorem 1.16] on the largest prime factors of consecutive
integers can be upgraded to the following form.

Corollary 1.16 (the largest prime factors of consecutive integers at almost all scales). Let P+(n) be the
largest prime factor of n with P+(1) := 1. Then there is an exceptional set X0 of logarithmic density 0,
such that

lim
X→∞;X 6∈X0

En≤X 1P+(n)<P+(n+1) =
1
2 . (7)

The same equality with ordinary limit in place of the almost-all limit is an old conjecture formulated
in the correspondence of Erdős and Turán [Sós 2002, pages 100–101; Erdős 1979]. We remark on the
proof of Corollary 1.16 in Remark 3.3. In [Teräväinen 2018, Theorem 1.6] it was proved that (7) holds
for the logarithmic average E

log
n≤X (without any exceptional scales).

It would of course be desirable if we could upgrade “almost all scales” to “all scales” in the above
results. We do not know how to do so in general, however there is one exceptional (though conjecturally
nonexistent) case in which this is possible, namely if there are unusually few sign patterns in the
multiplicative functions of interest. We illustrate this principle with the following example.

Theorem 1.17 (few sign patterns implies binary Chowla conjecture). Suppose that for every ε > 0, there
exist arbitrarily large natural numbers K such that the set {(λ(n+1), . . . , λ(n+K )) :n ∈N}⊂ {−1,+1}K

of sign patterns of length K has cardinality less than exp(εK/log K ). Then, for any natural number h,
one has

lim
X→∞

En≤Xλ(n)λ(n+ h)= 0.

Remark 1.18. The best known lower bounds for the number s(K ) of sign patterns of length K for the
Liouville function are very far from exp(εK/log K ). It was shown by Matomäki, Radziwiłł and Tao
[Matomäki et al. 2016] that s(K )≥ K+5, and Frantzikinakis and Host [2018] showed that s(K )/K→∞
as K → ∞, but the rate of growth is inexplicit in that result. This was very recently improved to
s(K )� K 2 by McNamara [2019]. If one assumes the Chowla conjecture (in either the unweighted or
logarithmically averaged forms), it is not difficult to conclude that in fact s(K )= 2K for all K .
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We prove this result in Section 5. Roughly speaking, the reason for this improvement is that the entropy
decrement argument that is crucially used in the previous arguments becomes significantly stronger under
the hypothesis of few sign patterns. A similar result holds for the odd order cases of the Chowla conjecture
if one assumes the sign pattern control for all large K (rather than for a sequence of arbitrarily large K )
by adapting the arguments in [Tao and Teräväinen 2018], but we do not do so here. It is also possible to
strengthen this theorem in a number of further ways (for instance, restricting attention to sign patterns
that occur with positive upper density, or to extend to other 1-bounded multiplicative functions than the
Liouville function), but we again do not do so here.

One should view Theorem 1.17 as stating that if there is ”too much structure” in the Liouville sequence
(in the sense that it has a small number of sign patterns), then the binary Chowla conjecture holds. This is
somewhat reminiscent of various statements in analytic number theory that rely on the assumption of a
Siegel zero; for example, Heath-Brown [1983] proved that if there are Siegel zeros, then the twin prime
conjecture (which is connected to the two-point Chowla conjecture) holds. Nevertheless, the proof of
Theorem 1.17 does not resemble that in [Heath-Brown 1983].

Isotopy formulae. The conclusion of Theorem 1.7(ii) asserts, roughly speaking, that fd(a) “behaves like”
a multiple of χ(a)d− it in a certain asymptotic sense. The following corollary of that theorem makes this
intuition a bit more precise.

Theorem 1.19 (isotopy formulae). Let k ≥ 1, let h1, . . . , hk be integers and g1, . . . , gk : N→ D be
1-bounded multiplicative functions. Suppose that the product g1 · · · gk weakly pretends to be a twisted
Dirichlet character n 7→ χ(n)nit.

(i) (Archimedean isotopy) There exists an exceptional set X0 of logarithmic density zero, such that

lim
X→∞;X 6∈X0

(En≤X g1(n+ h1) · · · gk(n+ hk)− q itEn≤X/q g1(n+ h1) · · · gk(n+ hk))= 0

for all rational numbers q > 0.

(ii) (Nonarchimedean isotopy) There exists an exceptional set X0 of logarithmic density zero, such that

lim
X→∞;X 6∈X0

(En≤X g1(n− ah1) · · · gk(n− ahk)−χ(−1)En≤X g1(n+ ah1) · · · gk(n+ ahk))= 0

for all integers a.

Remark 1.20. This generalises [Tao and Teräväinen 2019, Theorem 1.2(iii)], which implies f (−a)=
χ(−1) f (a) where f (a) is a generalised limit of a logarithmic correlation defined in (2) (indeed,
Theorem 1.19(ii) implies by partial summation that f (−a) = χ(−1) f (a) in the notation of (2)). In
[Tao and Teräväinen 2019], we only considered logarithmically averaged correlations, and for such
averages Theorem 1.19(i) does not make sense, as logarithmic averages are automatically slowly varying.
However, for unweighted averages Theorem 1.19(i) gives nontrivial information about the behaviour of
the correlation at nearby scales.
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We give the proof of Theorem 1.19 in Section 4. We show in that section that, perhaps surprisingly,
the nonarchimedean isotopy formula (Theorem 1.19(ii)) allows us to evaluate the correlations of some
multiplicative functions whose product does pretend to be a Dirichlet character. Among other things, we
use the isotopy formula to prove a version of the even order logarithmic Chowla conjectures where we
twist one of the copies of the Liouville function by a carefully chosen Dirichlet character and the shifts of
λ are consecutive.

Corollary 1.21 (even order correlations of a twisted Liouville function). Let k ≥ 4 be an even integer,
and let χ be an odd Dirichlet character of period k−1 (there are ϕ(k−1)/2 such characters). Then there
exists an exceptional set X0 of logarithmic density 0, such that

lim
X→∞;X 6∈X0

En≤Xχ(n)λ(n)λ(n+ a) · · · λ(n+ (k− 1)a)= 0 (8)

for all integers a.

By partial summation, we see from (8) that we have the logarithmic correlation result

lim
X→∞

E
log
n≤Xχ(n)λ(n)λ(n+ 1) · · · λ(n+ k− 1)= 0,

which is already new. We stated Corollary 1.21 only for even k, but of course the result also holds for
odd k by Corollary 1.8.

The assumption that χ is an odd character is crucial above, as will be seen in Section 4; the isotopy
formulae are not able to say anything about the untwisted even order correlations of the Liouville function.

We likewise show in Section 4 that the archimedean isotopy formula (Theorem 1.19(i)) gives a rather
satisfactory description of the limit points of the correlations

En≤X g1(n+ h1) · · · gk(n+ hk), (9)

where the product g1 · · · gk weakly pretends to be a twisted Dirichlet character n 7→ χ(n)nit with t 6= 0.
Indeed, our Theorem 4.2 shows that once one continuously excludes the scales at which the correlation
(9) is close to zero, the argument of the quantity in (9) is in a sense uniformly distributed on the unit
circle. This uniform distribution is indeed expected when g j are pretentious; for example, one has
En≤X nit

= X it/(1+ i t)+ o(1), which uniformly distributes on the circle of radius 1/|1+ i t | with respect
to logarithmic density.

Proof ideas. We now briefly describe (in informal terms) the proof strategy for Theorem 1.7, which
follows the ideas in [Tao and Teräväinen 2019], but now contains some “archimedean” arguments (relating
to the archimedean characters n 7→ nit) in addition to the “nonarchimedean” arguments in [loc. cit.]
(that related to the Dirichlet characters n 7→ χ(n)). The new features compared to [loc. cit.] include
extensive use of the fact that the correlations fd(a) are “slowly varying” in terms of d (this is made
precise in formula (16)), and the use of this to derive “approximate quasimorphism properties” for certain
quantities related to these correlations (these are detailed below). We then prove that the approximate
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quasimorphisms are very close to actual quasimorphisms (which in our case are Dirichlet characters or
archimedean characters), which eventually leads to the desired conclusions.

As already noted, one key ingredient is (a rigorous form of) the approximate identity (3) that arises
from the entropy decrement argument. In terms of the correlation functions fd(a), this identity takes the
(heuristic) form

fdp(a)G(p)≈ fd(ap)

for any integers a, d and “most” p, where G := g1 · · · gk ; see Proposition 2.3 for a precise statement.
Compared to [loc. cit.], the main new difficulty is the dependence of fd on the d parameter.

Assuming for simplicity that G has modulus 1 (which is the most difficult case), we thus have

fdp(a)≈ fd(ap)G(p)

for any integers a, d and “most” p. Iterating this leads to

f p1 p2(a)≈ f1(ap1 p2)G(p1)G(p2) (10)

for “most” primes p1, p2 (more precisely, the difference between the two sides of the equation is o(1)
when suitably averaged over p1, p2; see Corollary 2.4). On the other hand, results from ergodic theory
(such as [Leibman 2015; Le 2018]) give control on the function f1(a), describing it (up to negligible
errors) as a nilsequence, which can then be decomposed further into a periodic piece f1,0 and an “irrational”
component. The irrational component was already shown in [Tao and Teräväinen 2019] to give a negligible
contribution to the (10) after performing some averaging in p1, p2, thanks to certain bilinear estimates
for nilsequences. As such, one can effectively replace f1 here by the periodic component f1,0 (see (19)
for a precise statement).

We thus reach the relation

f p1 p2(a)≈ f1,0(ap1 p2)G(p1)G(p2)

for “most” p1, p2. Let q be the period of f1,0. If we pick two large primes p1 ≡ c (mod q) and
p′1 ≡ bc (mod q) for arbitrary b, c ∈ (Z/qZ)× with p1 ≈ p′1 (using the prime number theorem), we get

f1,0(acp2)G(p1)≈ f1,0(abcp2)G(p′1),

for “most” p1, p′1, p2, since the averages fd(a) are slowly varying as a function of d (see (16) for the
precise meaning of this). Choosing p2 ≡ 1 (mod q), we see that the quotient f1,0(ac)/ f1,0(abc) is
independent of a (since p1, p′1 were independent of a). Substituting then a = a1 and a = a2 to the
quotient, we get the approximate identity

f1,0(a1c) f1,0(a2bc)≈ f1,0(a1bc) f1,0(a2c); (11)

see Proposition 2.7 for a precise version of this, where we need to average over c to make the argument
rigorous. We may assume that f (a0) 6= 0 for some a0, as otherwise there is nothing to prove, and this
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leads to f1,0(a0) 6= 0. Taking a1 ≡ a0c−1 (mod q), a2 ≡ a0 (mod q) in (11), we are led to

f1,0(a0) f1,0(a0bc)≈ f1,0(a0b) f1,0(a0c)

Thus, the function ψ(x)= f1,0(a0x)/ f1,0(a0) satisfies the approximate quasimorphism equation

ψ(b1b2)≈ ψ(b1)ψ(b2)

for b1, b2 ∈ (Z/qZ)× ranging in the invertible residue classes in Z/qZ and some unknown function
ψ : (Z/qZ)× → C (to make the above deductions rigorous, we need to take as ψ(x) an averaged
version of x 7→ f1,0(a0x)/ f1,0(a0)). Moreover, the function ψ(x) takes values comparable to 1. Of
course, Dirichlet characters obey the quasimorphism equation exactly; and we can use standard “cocycle
straightening” arguments to show conversely that any solution to the quasimorphism equation must be
very close to a Dirichlet character χ (see Lemma 2.8 for a precise statement). This will be used to show
that f1,0 and fd are essentially χ -isotypic.

Once this isotopy property is established, one can then return to (10) and analyse the dependence of
various components of (10) on the archimedean magnitudes of p1, p2 rather than their residues mod q.
One can eventually transform this equation again to the quasimorphism equation, but this time on the
multiplicative group R+ rather than (Z/qZ)× (also, the functions ψ will be “log-Lipschitz” in a certain
sense). Now it is the archimedean characters n 7→ nit that are the model solutions of this equation, and we
will again be able to show that all other solutions to this equation are close to an archimedean character
(see Lemma 2.10 for a precise statement). Once one has extracted both the Dirichlet character χ and
the archimedean character n 7→ nit in this fashion, the rest of Theorem 1.7 can be established by some
routine calculations.

Notation. We use the usual asymptotic notation X � Y , Y � X , or X = O(Y ) to denote the bound
|X | ≤ CY for some constant C . If C needs to depend on parameters, we will denote this by subscripts,
thus for instance X �k Y denotes the estimate |X | ≤ CkY for some Ck depending on k. We also write
on→∞(Y ) for a quantity bounded in magnitude by c(n)Y for some c(n) that goes to zero as n→∞
(holding all other parameters fixed). For any set X ⊂ N with infinite complement, we define the limit
operator limX→∞;X 6∈X f (X) as limn→∞ f (xn), where x1, x2, . . . are the elements of the complement
N \X in strictly increasing order.

We use a (q) to denote the residue class of a modulo q. If E is a set, we write 1E for its indicator
function, thus 1E(n)= 1 when n ∈ E and 1E(n)= 0 otherwise.

We use the following standard multiplicative functions throughout the paper:

• The Liouville function λ, which is the 1-bounded completely multiplicative function with λ(p)=−1
for all primes p.

• The Möbius function µ, which is equal to λ at square-free numbers and 0 elsewhere.

• Dirichlet characters χ , which are 1-bounded completely multiplicative functions of some period q ,
with χ(n) nonzero precisely when n is coprime to q .
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• Archimedean characters n 7→ nit, where t is a real number.

• Twisted Dirichlet characters n 7→ χ(n)nit, which are the product of a Dirichlet character and an
archimedean character.

In the arguments that follow, asymptotic averages of various types feature frequently, so we introduce
some abbreviations for them.

Definition 1.22 (asymptotic averaging notation). If f : N→ C is a function, we define the asymptotic
average

En∈N f (n) := lim
X→∞

En≤X f (n)

provided that the limit exists. We adopt the convention that assertions such as En∈N f (n) = α are
automatically false if the limit involved does not exist. Similarly define E

log
n∈N f (n) and E

log log
n∈N f (n). If

f : P→ C is a function, we similarly define

Ep∈P f (p) := lim
X→∞

Ep≤X f (p) and E
log
p∈P f (p) := lim

X→∞
E

log
p≤X f (p).

Moreover, given a generalised limit functional lim∗X→∞, we define the corresponding asymptotic limits
E∗n∈N, E

log,∗
n∈N , E

log log,∗
n∈N , E∗p∈P , E

log,∗
p∈P by replacing the ordinary limit functional by the generalised limit, thus

for instance

E
log,∗
n∈N f (n) :=

∗

lim
X→∞

E
log
n≤X f (n).

If an ordinary asymptotic limit such as E
log
n∈N f (n) exists, then E

log,∗
n∈N f (n) will attain the same value; but

the latter limit exists for all bounded sequences f , whereas the ordinary limit need not exist. In later
parts of the paper we will also need an additional generalised limit lim∗∗X→∞, and one can then define
generalised asymptotic averages such as E

log,∗∗
n∈N f (n) accordingly.

Remark 1.23. If f is a bounded sequence and α is a complex number, a standard summation by
parts exercise shows that the statement En∈N f (n) = α implies E

log
n∈N f (n) = α, which in turn implies

E
log log
n∈N f (n)= α, and similarly Ep∈P f (p)= α implies E

log
p∈P f (p)= α; however, the converse implications

can be highly nontrivial or even false. For instance, as mentioned earlier, it is not difficult to show
that E

log
n∈Nnit

= 0 for any t 6= 0, but the limit En∈Nnit does not exist. (On the other hand, from the
prime number theorem and partial summation one has Ep∈P pit

= 0.) In the same spirit, if A is the
set of integers whose decimal expansion has leading digit 1, then one easily computes “Benford’s law”
E

log
n∈N1A(n)= (log 2)/(log 10), whereas En∈N1A(n) fails to exist.

2. Proof of main theorem

In this section we establish Theorem 1.7. We first establish a version of the Furstenberg correspondence
principle.
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Proposition 2.1 (Furstenberg correspondence principle). Let the notation and hypotheses be as in
Theorem 1.7. Then for any real number d > 0, there exist random functions g(d)1 , . . . , g(d)k : Z→ D and a
random profinite integer n(d) ∈ Ẑ,8 all defined on a common probability space �(d), such that

E(d)F(((g(d)i (h))1≤i≤k,−N≤h≤N , n(d) (q)))=
∗

lim
X→∞

En≤X/d F((gi (n+ h))1≤i≤k,−N≤h≤N , n (q))

for any natural numbers N , q and any continuous function F :Dk(2N+1)
×Z/qZ→C, where E(d) denotes

the expectation on the probability space �(d). Furthermore, the random variables g(d)1 , . . . , g(d)k : Z→ D

and n(d) ∈ Ẑ are a stationary process, by which we mean that for any natural number N , the joint
distribution of (g(d)i (n + h))1≤i≤k,−N≤h≤N and n(d) + n does not depend on n as n ranges over the
integers.

Proof. Up to some minor notational changes, this is essentially [Tao and Teräväinen 2019, Proposition 3.1],
applied once for each value of d . The only difference is that the logarithmic averaging E

log
xm/wm≤n≤xm

there
has been replaced by the nonlogarithmic averaging En≤X/d . However, an inspection of the arguments
reveal that the proof of the proposition is essentially unaffected by this change. �

Let G :N→D denote the multiplicative function G := g1 · · · gk . We now adapt the entropy decrement
arguments from [Tao and Teräväinen 2019, Section 3] to establish the approximate relation

fd(ap)≈ fdp(a)G(p) (12)

for integers a, real numbers d > 0, and “most” primes p.
Fix a, d , and let p be a prime. From (4) we have

fdp(a)G(p)=
∗

lim
x→∞

En≤x/dpg1(p)g1(n+ ah1) · · · gk(p)gk(n+ ahk).

From multiplicativity, we can write g j (p)g j (n+ah j ) as g j (pn+aph j ) unless n =−ah j (p). The latter
case contributes O

( 1
p

)
to the above limit (where we allow implied constants to depend on k), thus

fdp(a)G(p)=
∗

lim
x→∞

En≤x/dpg1(pn+ aph1) · · · gk(pn+ aphk)+ O
( 1

p

)
.

If we now make pn rather than n the variable of summation, we conclude that

fdp(a)G(p)=
∗

lim
x→∞

En≤x/d g1(n+ aph1) · · · gk(n+ aphk)p1p | n + O
( 1

p

)
.

Comparing this with (4), we conclude that

fdp(a)G(p)− fd(ap)=
∗

lim
x→∞

En≤x/d g1(n+ aph1) · · · gk(n+ aphk)(p1p | n − 1)+ O
( 1

p

)
and hence by Proposition 2.1

fdp(a)G(p)− fd(ap)= E(d)g(d)1 (aph1) · · · g
(d)
k (aphk)(p1p | n(d) − 1)+ O

( 1
p

)
. (13)

8The profinite integers Ẑ are the inverse limit of the cyclic groups Z/qZ, with the weakest topology that makes the reduction
maps n 7→ n (q) continuous. This is a compact abelian group and therefore it has a well-defined probability Haar measure.
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On the other hand, by repeating the proof of [Tao and Teräväinen 2019, Theorem 3.6] verbatim (see
also [loc. cit., Remark 3.7]), we have the following general estimate:

Proposition 2.2 (entropy decrement argument). Let g1, . . . , gk : Z→ D be random functions and n ∈ Ẑ

be a stationary process, let a, h1, . . . , hk be integers, and let 0< ε < 1
2 be real. Then one has

E2m≤p<2m+1 |Eg1(aph1) · · · gk(aphk)(p1p | n− 1)| ≤ ε

for all natural numbers m outside of an exceptional set M obeying the bound∑
m∈M

1
m �a,h1,...,hk ε

−4 log 1
ε
. (14)

Note that the bound (14) is uniform in the random functions g1, . . . , gk (although the set M may
depend on these functions). Summing the result over different dyadic scales gives us the following version
of (12).

Proposition 2.3 (approximate isotopy). Let the notation and hypotheses be as in Theorem 1.7. Let a be
an integer, and let ε > 0 be real. Then for sufficiently large P , we have

sup
d>0

E
log
p≤P | fdp(a)G(p)− fd(ap)| ≤ ε

where the supremum is over positive reals.

A key technical point for our application is that while P may depend on a, ε, it can be taken to be
uniform in d .

Proof. Let a, ε, P be as in the proposition, and let d > 0. We may assume that ε > 0 is small. By the
prime number theorem, we have

E
log
p≤P | fdp(a)G(p)− fd(ap)| � E

log
m≤(log P)/(log 2)E2m≤p<2m+1 | fdp(a)G(p)− fd(ap)|.

By (13) and Proposition 2.2, we have

E2m≤p<2m+1 | fdp(a)G(p)− fd(ap)| ≤ ε2

for all m outside of an exceptional set Ma,ε,d obeying the bound∑
m∈Ma,ε,d

1
m �a,h1,...,hk ε

−8 log 1
ε
.

In the exceptional set Ma,ε,d , we use the trivial bound

E2m≤p<2m+1 | fdp(a)G(p)− fd(ap)| � 1

to conclude that

E
log
p≤P | fdp(a)G(p)− fd(ap)| � ε2

+ Oa,h1,...,hk

(
ε−8 log 1/ε
log log P

)
,

and the claim follows by choosing P large in terms of a, ε, h1, . . . , hk . �
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As in [Tao and Teräväinen 2019], we iterate this approximate formula to obtain:

Corollary 2.4. For any integer a one has

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)G(p1)G(p2)− f1(ap1 p2)| = 0.

Proof. Let a be an integer, let ε > 0 be real, let P1 be sufficiently large depending on a, ε, and let P2 be
sufficiently large depending on a, ε, P1. From Proposition 2.3 one has

E
log
p1≤P1
| f p1 p2(a)G(p1)− f p2(ap1)| � ε

for all primes p2, and hence

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)G(p1)G(p2)− f p2(ap1)G(p2)| � ε.

On the other hand, from a second application of Proposition 2.3 one has

E
log
p2≤P2
| f p2(ap1)G(p2)− f1(ap1 p2)| � ε

for all p1 ≤ P1, and hence

E
log
p1≤P1

E
log
p2≤P2
| f p2(ap1)G(p2)− f1(ap1 p2)| � ε.

From the triangle inequality we thus have

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)G(p1)G(p2)− f1(ap1 p2)| � ε

under the stated hypotheses on ε, P1, P2. Taking limit superior in P2 and then in P1, we conclude that

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)G(p1)G(p2)− f1(ap1 p2)| � ε

for any ε > 0, and the claim follows. �

Next, we have the following structural description of f1.

Proposition 2.5. Let f1 be as in Theorem 1.7. For any ε > 0, one can write

f1 = f1,0+ g

where f1,0 = f (ε)1,0 is periodic, and the error g = g(ε) obeys the bilinear estimate

Ep1≤x Ep2≤yαp1βp2 g(ap1 p2)� ε (15)

as well as the logarithmic counterpart

E
log
p1≤x E

log
p2≤yαp1βp2 g(ap1 p2)� ε

whenever a is a nonzero integer, x is sufficiently large depending on a, ε; y is sufficiently large depending
on x, a, ε; and αp1, βp2 = O(1) are bounded sequences.
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Proof. We freely use the notation from [Tao and Teräväinen 2019, Sections 4–5]. By summation by parts
it suffices to obtain a decomposition obeying (15). By repeating the proof of [loc. cit., Corollary 4.6]
verbatim,9 we can write

f1 = f1,1+ f1,2

where f1,1 is a nilsequence of some finite degree D, and f1,2 obeys the asymptotic

lim
x→∞

Ep≤x | f1,2(ap)| = 0

for any nonzero integer a. We can now neglect the f1,2 term as it can be absorbed into the g error. Next,
applying [loc. cit., Proposition 5.6], we can decompose

f1,1 = f1,0+

D∑
i=1

Ji∑
j=1

ci, jχi, j

for some periodic function f1,0, some nonnegative integers J1, . . . , JD , some irrational nilcharacters χi, j

of degree i , and some linear functionals ci, j . Using [loc. cit., Lemma 5.8] (noting that if χ is an irrational
nilcharacter, then so is χ(a·)) we see that each of the terms ci, jχi, j can be absorbed into the error term g.
The claim then follows from the triangle inequality. �

Finally, we record a simple log-Lipschitz estimate

| fd1(a)− fd2(a)| ≤ 2|log d1− log d2| (16)

for any integer a and any real d1, d2 > 0; this follows by using (4) and the triangle inequality to estimate
| fd1(a)− fd2(a)| ≤ 2|d1− d2|/max{d1, d2} and then the mean value theorem to x 7→ log x .

We return to the proof of Theorem 1.7. If we have

lim sup
X→∞

E
log log
d≤X | fd(a)| = 0

for all a, then the claim follows by setting f = 0, so we may assume without loss of generality that there
exists an integer a0 such that

lim sup
X→∞

E
log log
d≤X | fd(a0)|> 0.

Thus, by the Hahn–Banach theorem, we may find a generalised limit lim∗∗X→∞ (which may or may not be
equal to the previous generalised limit lim∗X→∞) such that

∗∗

lim
X→∞

E
log log
d≤X | fd(a0)|> 0,

and thus using the generalised limit asymptotic notation associated to lim∗∗X→∞ (see page 1), we have

E
log log,∗∗
d∈N | fd(a0)| � 1. (17)

9In [loc. cit., Corollary 4.6], a was required to be a natural number rather than a nonzero integer, however one can easily
adapt the arguments to the case of negative a with only minor modifications (in particular, one has to modify the definition of
Xm slightly to allow l to be negative).
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For future reference we record the following convenient lemma relating the averaging operator E
log log,∗∗
d∈N

with E
log,∗∗
p∈P :

Lemma 2.6 (comparing averages over integers and primes). Let f : N→ C be a function which is
bounded log-Lipschitz in the sense that there is a constant C such that | f (d)| ≤ C and | f (d)− f (d ′)| ≤
C |log d − log d ′| for all d, d ′ ∈ N. Then for any natural number a, one has

lim sup
X→∞

|E
log log
d≤X f (d)− E

log
p≤X f (ap)| = 0,

so in particular

E
log log,∗∗
d∈N f (d)= E

log,∗∗
p∈P f (ap).

Proof. We allow implied constants to depend on C, a. Let ε > 0, and assume X is sufficiently large
depending on C, ε. Then from the prime number theorem and the bounded log-Lipschitz property we
have

E
log
p≤X f (ap)=

1
log log X

∑
p≤X

f (ap)
p
+ O(ε)

=
1

log log X

∑
d≤X

1
εd

∑
d≤p≤(1+ε)d

f (ap)
p
+ O(ε)

=
1

log log X

∑
d≤X

1
εd

∑
d≤p≤(1+ε)d

f (ad)
d
+ O(ε)

=
1

log log X

∑
d≤X

f (ad)
d log(2+ d)

+ O(ε).

Again by the bounded log-Lipschitz property, we have

f (ad)=
1
a

∑
ad≤d ′<a(d+1)

f (d ′)+ O(1/d),

and inserting this into the preceding computation, we get

E
log
p≤X f (ap)=

1
log log X

∑
d ′≤aX

f (d ′) ·
1
a

∑
d ′/a−1<d≤d ′/a

1
d log(2+ d)

+ O(ε)

=
1

log log X

∑
d ′≤X

f (d ′)
d ′ log(2+ d ′)

+ O(ε).

Taking the absolute value of the difference of the two sides of this equation, applying lim supX→∞ and
then sending ε→ 0, we obtain the claim. �

Now, let ε > 0 be a sufficiently small parameter. If one had∑
p

1− |g j (p)|
p

=∞
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for some 1≤ j ≤ k, then by Wirsing’s theorem [1967] as in [Tao and Teräväinen 2019, Section 6] one
would have fd(a)= 0 for all a, d . Thus we may assume that∑

p

1− |g j (p)|
p

<∞

for all j , which implies in particular that one has

1− ε ≤ |G(p)| ≤ 1 (18)

for all but finitely many p. For any integer a, we see from Corollary 2.4 that

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)G(p1)G(p2)− f1(ap1 p2)| � ε.

By (18) we then have

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)−G(p1)G(p2) f (ap1 p2)| � ε

Applying Proposition 2.5, we conclude that

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)−G(p1)G(p2) f1,0(ap1 p2)| � ε. (19)

In particular we have

E
log,∗∗
p1∈P E

log,∗∗
p2∈P | f p1 p2(a)−G(p1)G(p2) f1,0(ap1 p2)| � ε. (20)

Heuristically, (20) asserts the approximation

f p1 p2(a)≈ G(p1)G(p2) f1,0(ap1 p2) (21)

for “most” a, p1, p2. This turns out to be a remarkably powerful approximate equation, giving a lot of
control on the functions G, fd , and f1,0. Roughly speaking, we will be able to show that the only way
to solve (21) (in a manner compatible with (17) and (16)) is if G(p)≈ χ(p)pit, fd(a)≈ f (a)d− it, and
f1,0 ≈ f for some χ -isotypic q-periodic function f . Conversely, it is easy to see that if G, fd , f1,0 are of
the above form, then they obey (21).

We first use (20) to control f1,0. Let q denote the period of f1,0 (which depends on ε); by abuse of
notation, we view f1,0 as a function on Z/qZ as well as on Z. We then have:

Proposition 2.7 (initial control on f1,0). Let a0 be as in (17). We have

Ec∈(Z/qZ)× | f1,0(a0c)| � 1. (22)

Furthermore, for any integers a1, a2 and any natural number b coprime to q, we have

Ec∈(Z/qZ)× | f1,0(a1c) f1,0(a2bc)− f1,0(a1bc) f1,0(a2c)| � ε. (23)
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Proof. By Lemma 2.6, (17) and (16), we see that

E
log,∗∗
p2∈P | f p1 p2(a0)| = E

log log,∗∗
d | fd(a0)| � 1

for any p1, and hence
E

log,∗∗
p1∈P E

log,∗∗
p2∈P | f p1 p2(a0)| � 1.

On the other hand, from (20) we have

E
log,∗∗
p1∈P E

log,∗∗
p2∈P | f p1 p2(a0)−G(p1)G(p2) f1,0(a0 p1 p2)| � ε. (24)

From the triangle inequality, we have

| f p1 p2(a0)| � | f1,0(a0 p1 p2)| + | f p1 p2(a0)−G(p1)G(p2) f1,0(a0 p1 p2)|,

and hence (since ε is assumed small)

E
log,∗∗
p1∈P E

log,∗∗
p2∈P | f1,0(a0 p1 p2)| � 1.

By the periodicity of f1,0 and the prime number theorem in arithmetic progressions, we conclude (22).
Next, let a1, a2, b be as in the proposition. Applying (20) twice, we see that

E
log,∗∗
p1∈P E

log,∗∗
p2∈P | f p1 p2(a1)−G(p1)G(p2) f1,0(a1 p1 p2)| � ε (25)

and
E

log,∗∗
p1∈P E

log,∗∗
p2∈P | f p1 p2(a2)−G(p1)G(p2) f1,0(a2 p1 p2)| � ε. (26)

We now eliminate the functions f p1 p2 and G from these estimates. As in the proof of Lemma 2.6, we
can use the prime number theorem in arithmetic progressions to rearrange the left-hand side of (25) as

E
log,∗∗
p1∈P Ec∈(Z/qZ)×E

log log,∗∗
d∈N Ed≤p2<(1+ε)d;p2=c (q)| f p1 p2(a1)−G(p1)G(p2) f1,0(a1 p1 p2)| + O(ε)

and hence after a change of variables c 7→ bc (and renaming p2 as p′2)

E
log,∗∗
p1∈P Ec∈(Z/qZ)×E

log log,∗∗
d∈N Ed≤p′2<(1+ε)d;p

′

2=bc (q)| f p1 p′2(a1)−G(p1)G(p′2) f1,0(a1 p1 p′2)| � ε.

From (16), we have f p1 p2(a1), f p1 p′2(a1)= f p1d(a1)+ O(ε); from the periodicity of f1,0 we also have
f1,0(a1 p1 p2)= f1,0(a1cp1) and f1,0(a1 p1 p′2)= f1,0(a1bcp1). We conclude that

E
log,∗∗
p1∈P Ec∈(Z/qZ)×E

log log,∗∗
d∈N Ed≤p2<(1+ε)d;p2=c (q)| f p1d(a1)−G(p1)G(p2) f1,0(a1cp1)| � ε

and

E
log,∗∗
p1∈P Ec∈(Z/qZ)×E

log log,∗∗
d∈N Ed≤p′2<(1+ε)d;p

′

2=bc (q)| f p1d(a1)−G(p1)G(p′2) f1,0(a1bcp1)| � ε

and hence by the triangle inequality and (18) we have

E
log,∗∗
p1∈P Ec∈(Z/qZ)×E

log log,∗∗
d∈N Ed≤p2<(1+ε)d;p2=c (q)

× Ed≤p′2<(1+ε)d;p
′

2=bc (q)|G(p2) f1,0(a1cp1)−G(p′2) f1,0(a1bcp1)| � ε.
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We have thus eliminated f p1 p2 and one factor of G; we still seek to eliminate the other factor of G. To do
this, we replace a1 by a2 in the above analysis to obtain

E
log,∗∗
p1∈P Ec∈(Z/qZ)×E

log log,∗∗
d∈N Ed≤p2<(1+ε)d;p2=c (q)

× Ed≤p′2<(1+ε)d;p
′

2=bc (q)|G(p2) f1,0(a2cp1)−G(p′2) f1,0(a2bcp1)| � ε.

At this point, let us note that | f1,0(a)| � 1 for a ∈ Z. To see this, we use Corollary 2.4 to conclude that

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1;p1≡1 (q)E

log
p2≤P2;p2≡1 (q)| f p1 p2(a)−G(p1)G(p2) f1,0(a)| = 0.

Then from the triangle inequality, (18), and the trivial bound | f p1 p2(a)| � 1 we reach the conclusion
| f1,0(a)| � 1.

Next observe the identity

G(p2)( f1,0(a1cp1) f1,0(a2bcp1)− f1,0(a1bcp1) f1,0(a2cp1))

= f1,0(a2bcp1)(G(p2) f1,0(a1cp1)−G(p′2) f1,0(a1bcp1))

− f1,0(a1bcp1)(G(p2) f1,0(a2cp1)−G(p′2) f1,0(a2bcp1));

we thus have from the triangle inequality, the boundedness of | f1,0(a)|, and (18) that

| f1,0(a1cp1) f1,0(a2bcp1)− f1,0(a1bcp1) f1,0(a2cp1)|

� |G(p2) f1,0(a1cp1)−G(p′2) f1,0(a1bcp1)| + |G(p2) f1,0(a2cp1)−G(p′2) f1,0(a2bcp1)|

for all but finitely many p1, p2, and thus by further application of the triangle inequality

E
log,∗∗
p1∈P Ec∈(Z/qZ)×E

log log,∗∗
d∈N Ed≤p2<(1+ε)d;p2=c (q)

× Ed≤p′2<(1+ε)d;p
′

2=bc (q)| f1,0(a1cp1) f1,0(a2bcp1)− f1,0(a1bcp1) f1,0(a2cp1)| � ε.

As the expression being averaged does not depend on d, p2, p′2, this bound simplifies to

E
log,∗∗
p1∈P Ec∈(Z/qZ)× | f1,0(a1cp1) f1,0(a2bcp1)− f1,0(a1bcp1) f1,0(a2cp1)| � ε

and by the prime number theorem in arithmetic progressions and the periodicity of f1,0, this simplifies
further (see Lemma 2.6) to give the desired bound (23). �

Let a be an integer, and let b be coprime to q . Applying (23) with a1 = a and a2 = a0c′ for c′ coprime
to q , and averaging, we conclude that

Ec′∈(Z/qZ)×Ec∈(Z/qZ)× | f1,0(ac) f1,0(a0bcc′)− f1,0(abc) f1,0(a0cc′)| � ε

and hence

Ec′∈(Z/qZ)×Ec∈(Z/qZ)×
∣∣ f1,0(ac) f1,0(a0bcc′) f1,0(a0cc′)− f1,0(abc)| f1,0(a0cc′)|2

∣∣� ε.



Correlations of multiplicative functions 2125

By the triangle inequality, this implies that

Ec∈(Z/qZ)×
∣∣ f1,0(ac)Ec′∈(Z/qZ)× f1,0(a0bcc′) f1,0(a0cc′)− f1,0(abc)Ec′∈(Z/qZ)× | f1,0(a0cc′)|2

∣∣� ε.

Making the change of variables c′′ = cc′, this is

Ec∈(Z/qZ)×
∣∣ f1,0(ac)Ec′′∈(Z/qZ)× f1,0(a0bc′′) f1,0(a0c′′)− f1,0(abc)Ec′′∈(Z/qZ)× | f1,0(a0c′′)|2

∣∣� ε.

If we define the function ψ : (Z/qZ)×→ C by

ψ(b) :=
Ec′′∈(Z/qZ)× f1,0(a0bc′′) f1,0(a0c′′)

Ec′′∈(Z/qZ)× | f1,0(a0c′′)|2

then by (22) and Cauchy–Schwarz, we have ψ(b)= O(1) for all b ∈ (Z/qZ)×, and

Ec∈(Z/qZ)× | f1,0(ac)ψ(b)− f1,0(abc)| � ε (27)

for all a ∈ Z/qZ and b ∈ (Z/qZ)×.
By definition, ψ(1) = 1. Next, we establish an approximate multiplicativity property of ψ , known

as the quasimorphism property [Kotschick 2004] in the literature. If b1, b2 ∈ (Z/qZ)×, then from three
applications of (27) one has

Ec∈(Z/qZ)× | f1,0(a0c)ψ(b1)− f1,0(a0b1c)| � ε

Ec∈(Z/qZ)× | f1,0(a0b1c)ψ(b2)− f1,0(a0b1b2c)| � ε

Ec∈(Z/qZ)× | f1,0(a0c)ψ(b1b2)− f1,0(a0b1b2c)| � ε.

Applying the triangle inequality (after multiplying the first inequality by |ψ(b2)|, we conclude that

Ec∈(Z/qZ)× | f1,0(a0c)(ψ(b1b2)−ψ(b1)ψ(b2))| � ε

and hence by (22) we have the quasimorphism equation

ψ(b1b2)= ψ(b1)ψ(b2)+ O(ε).

We now apply a stability theorem to replace this quasimorphism on (Z/qZ)× by a homomorphism
(i.e., a Dirichlet character).

Lemma 2.8 (stability of Dirichlet characters). Let ε > 0, and let ψ : (Z/qZ)× → C be a function
obeying the bound ψ(b) = O(1) for all b ∈ Z/qZ, the identity ψ(1) = 1, and the quasimorphism
equation ψ(b1b2)=ψ(b1)ψ(b2)+O(ε) for all b1, b2 ∈ (Z/qZ)×. Then there exists a Dirichlet character
χ : (Z/qZ)×→ S1 of period q such that ψ(b)= χ(b)+ O(ε) for all b ∈ (Z/qZ)×.

This lemma is a special case of Kazhdan [1982],10 and also follows from [Balog et al. 2013, Proposi-
tion 5.3] (which cites [Babai et al. 2003] for a more general result), but for the convenience of the reader
we give a self-contained proof here.

10We thank Assaf Naor for this reference. Ben Green also pointed out to us the closely related fact that the bounded
cohomology of amenable groups is trivial; see for instance [Frigerio 2017, Theorem 3.7].
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Proof. We can assume that ε is smaller than any given positive absolute constant, as the claim is trivial
otherwise. Since 1 = ψ(1) = ψ(b)ψ(b−1)+ O(ε) and ψ(b−1) = O(1), we see that 1� |ψ(b)| � 1
for all b ∈ (Z/qZ)×. We introduce the cocycle ρ : (Z/qZ)×× (Z/qZ)×→ C by defining ρ(b1, b2) for
b1, b2 ∈ (Z/qZ)× to be the unique complex number of size O(ε) such that

ψ(b1b2)= ψ(b1)ψ(b2) exp(ρ(b1, b2)); (28)

this is well-defined for ε small enough. For b1, b2, b3 ∈ (Z/qZ)×, we have

ψ(b1b2b3)= ψ(b1b2)ψ(b3) exp(ρ(b1b2, b3))= ψ(b1)ψ(b2)ψ(b3) exp(ρ(b1, b2)+ ρ(b1b2, b3))

and

ψ(b1b2b3)= ψ(b1)ψ(b2b3) exp(ρ(b2, b3))= ψ(b1)ψ(b2)ψ(b3) exp(ρ(b1, b2b3)+ ρ(b2, b3))

which on taking logarithms yields (for ε small enough) the cocycle equation

ρ(b1, b2)+ ρ(b1b2, b3)= ρ(b1, b2b3)+ ρ(b2, b3).

Averaging in b3, we conclude the coboundary equation

ρ(b1, b2)+φ(b1b2)= φ(b1)+φ(b2)

where φ(b) := Eb3∈(Z/qZ)×ρ(b, b3). If we then define the function χ : Z/qZ→ C by

χ(b) := ψ(b) exp(φ(b)),

then ψ(b)= χ(b)+ O(ε) for all b ∈ (Z/qZ)×, and from (28) we have

χ(b1b2)= χ(b1)χ(b2)

for all b1, b2 ∈ (Z/qZ)×, thus χ : (Z/qZ)×→ C is a homomorphism and therefore a Dirichlet character
of period q. The claim follows. �

Let χ be the Dirichlet character of period q provided by the above lemma, then from (27) and the
triangle inequality we have the approximate isotopy equation

Ec∈(Z/qZ)× | f1,0(ac)χ(b)− f1,0(abc)| � ε

for all a ∈ Z/qZ and b ∈ (Z/qZ)×. We can rearrange this as

Ec∈(Z/qZ)× | f1,0(ac)−χ(b) f1,0(abc)| � ε

and average in b to conclude that

Ec∈(Z/qZ)× | f1,0(ac)− f̃ (ac)| � ε (29)

for all a, where f̃ : Z/qZ→ C is the function

f̃ (a) := Eb∈(Z/qZ)×χ(b) f1,0(ab).
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Observe that f̃ is χ -isotypic in the sense that

f̃ (ab)= χ(b) f̃ (a)

whenever a ∈ Z/qZ and b ∈ (Z/qZ)×.
From (29) and (22), one has

Ec∈(Z/qZ)× | f̃ (a0c)| � 1

and hence by the χ -isotypy of f̃

| f̃ (a0)| � 1. (30)

Now we work to control fd . Let a be an integer. From (29) and the prime number theorem in arithmetic
progressions, we have

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f1,0(ap1 p2)− f̃ (ap1 p2)| � ε

From this, (18), (19), and the triangle inequality, we conclude that

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)−G(p1)G(p2) f̃ (ap1 p2)| � ε.

Using the χ -isotopy of f̃ , we can write this as

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)−Gχ(p1)Gχ(p2) f̃ (a)| � ε. (31)

This has the following useful consequence.

Lemma 2.9 (isotopy). Let the notation be as above. Let a be an integer and let b be an integer coprime
to q. Then we have

lim sup
X→∞

E
log log
d≤X | fd(ab)−χ(b) fd(a)| � ε.

Proof. It suffices to prove the claim with an arbitrary generalised limit lim∗X→∞ in place of lim supX→∞.
From (31) we have

E
log,∗
p1∈P E

log,∗
p2∈P | f p1 p2(a)−Gχ(p1)Gχ(p2) f̃ (a)| � ε

and

E
log,∗
p1∈P E

log,∗
p2∈P | f p1 p2(ab)−Gχ(p1)Gχ(p2) f̃ (ab)| � ε.

As f̃ is isotypic, f̃ (ab)= χ(b) f̃ (a). From the triangle inequality and (18), we conclude that

E
log,∗
p1∈P E

log,∗
p2∈P | f p1 p2(ab)−χ(b) f p1 p2(a)| � ε.

On the other hand, since d 7→ | fd(ab)−χ(b) fd(a)| is bounded log-Lipschitz by (16), by Lemma 2.6 for
any p1 we have

E
log,∗
p2∈P | f p1 p2(ab)−χ(b) f p1 p2(a)| = E

log log,∗
d∈N | fd(ab)−χ(b) fd(a)|,
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and now the claim now follows by taking the average E
log,∗
p1∈P on both sides. �

Now we derive another consequence of (31). Let x > 0 be a positive real, and let a be an integer. From
(31) we have

E
log,∗∗
p′1∈P E

log,∗∗
p2∈P | f p′1 p2(a)−Gχ(p′1)Gχ(p2) f̃ (a)| � ε.

By the prime number theorem, this can also be written as

E
log,∗∗
p1∈P Exp1≤p′1≤(1+ε)xp1E

log,∗∗
p2∈P | f p′1 p2(a)−Gχ(p′1)Gχ(p2) f̃ (a)| � ε.

From (18) we have

1− ε ≤ |Gχ(p1)|, |Gχ(p′1)|, |Gχ(p2)| ≤ 1

for all but finitely many p1, p′1, p2, so that

| f p′1 p2(a)−Gχ(p′1)Gχ(p1) f p1 p2(a)|

� | f p1 p2(a)−Gχ(p1)Gχ(p2) f̃ (a)| + | f p′1 p2(a)−Gχ(p′1)Gχ(p2) f̃ (a)| + O(ε).

Thus by the triangle inequality we have

E
log,∗∗
p1∈P Exp1≤p′1≤(1+ε)xp1E

log,∗∗
p2∈P | f p′1 p2(a)−Gχ(p′1)Gχ(p1) f p1 p2(a)| � ε.

From (16) we have f p′1 p2(a)= fxp1 p2(a)+ O(ε) (recall that fd is defined for any real d > 0), thus

E
log,∗∗
p1∈P Exp1≤p′1≤(1+ε)xp1E

log,∗∗
p2∈P | fxp1 p2(a)−Gχ(p′1)Gχ(p1) f p1 p2(a)| � ε

and thus by the triangle inequality

E
log,∗∗
p1∈P E

log,∗∗
p2∈P | fxp1 p2(a)−αp1(x) f p1 p2(a)| � ε,

where

αp1(x) := Exp1≤p′1<(1+ε)xp1 Gχ − p′1)Gχ(p1).

By Lemma 2.6, this implies that

E
log,∗∗
p1∈P E

log log,∗∗
d∈N | fxd(a)−αp1(x) fd(a)| � ε (32)

which by the triangle inequality implies that

E
log log,∗∗
d∈N | fxd(a)−α(x) fd(a)| � ε (33)

where

α(x) := E
log,∗∗
p1∈P αp1(x).

By construction, we have α(x) = O(1) for all x . Setting a = a0 in (33) and using (16) to write
fxd(a)= fd(a)+ O(ε) for |x − 1| ≤ ε, we deduce from (17) that α(x)= 1+ O(ε) for |x − 1| ≤ ε.
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Next, for x, y > 0, we have the estimates

E
log log,∗∗
d∈N | fxd(a0)−α(x) fd(a0)| � ε

E
log log,∗∗
d∈N | fxyd(a0)−α(y) fxd(a0)| � ε

E
log log,∗∗
d∈N | fxyd(a0)−α(xy) fd(a0)| � ε,

which by the triangle inequality and (17) implies the quasimorphism equation

α(xy)= α(x)α(y)+ O(ε).

We now require the archimedean analogue of Lemma 2.8 (which is also a special case of the results of
[Kazhdan 1982]).

Lemma 2.10 (stability of archimedean characters). Let α : (0,+∞)→ C be any function obeying the
bound α(x)=O(1) for all x>0, such that α(x)=1+O(ε)when |x−1|≤ε, and α(xy)=α(x)α(y)+O(ε)
for all x, y > 0. Then there exists a real number t such that α(x)= x− it

+ O(ε) for all x > 0.

Proof. As before, we can assume ε is smaller than any given positive constant, as the claim is trivial
otherwise. Since α(1)= 1+ O(ε) and α(1)= α(x)α(1/x)+ O(ε), we have the bounds 1� |α(x)| � 1
for all x . By construction, we also have α(xy)= α(x)+ O(ε) whenever 1≤ y ≤ 1+ ε. By replacing α
with the discretised version

α1(x) :=
{
α
(
ε2
⌊ x
ε2

⌋)
x ≥ ε,

α
( 1

n

)
x ∈

( 1
n+1 ,

1
n

]
, 0< x < ε,

we may assume that α is Lebesgue measurable. The function α1 continues to enjoy the same properties
as α, since α1(x)= α(x)+ O(ε) for all x > 0. To simplify notation, we denote α1 by α in what follows.

We introduce the cocycle ρ : (0,+∞)× (0,+∞)→ C by defining ρ(x1, x2) for x1, x2 > 0 to be the
unique complex number of size O(ε) such that

α(x1x2)= α(x1)α(x2) exp(ρ(x1, x2)); (34)

this is well-defined and measurable for ε small enough. Arguing exactly as in the proof of Lemma 2.8,
we obtain the cocycle equation

ρ(x1, x2)+ ρ(x1x2, x3)= ρ(x1, x2x3)+ ρ(x2, x3).

Taking an asymptotic logarithmic average in x3, we conclude the coboundary equation

ρ(x1, x2)+φ(x1x2)= φ(x1)+φ(x2) (35)

where

φ(x) := l̃im
M→∞

1
log M

∫ M

1
ρ(x, x3)

dx3

x3
.

If we then define the function α̃ : (0,+∞)→ C by

α̃(x) := α(x) exp(φ(x))
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then α̃(x)= α(x)+ O(ε) for all x > 0, and from (34) and (35) we have

α̃(xy)= α̃(x)α̃(y)

for all x, y > 0, thus α̃ : (0,+∞)→ C is a homomorphism. Also, by construction one has α̃(x)= O(1)
for all x , so α̃ in fact takes values in the unit circle S1. We have α̃(x)= 1+ O(ε) when |x − 1| ≤ ε, and
we will use this additional information to show that α̃(x)= x it for some real t and all x > 0.

If |x − 1| ≤ ε/n for some natural number n, then α̃(x)n, α̃(x) = 1 + O(ε), which implies that
α̃(x) = 1+ O(ε/n). This implies that α̃(x) = 1+ O(|x − 1|), and so α̃ is continuous at 1 and hence
continuous on all of (0,+∞). Next, if x0 := 1+ ε then we have α̃(x0)= x it

0 for some t = O(1); taking
roots we conclude that α̃(x1/n

0 )= (x1/n
0 )it for all natural numbers n, and hence α̃(xm/n

0 )= (xm/n
0 )it for all

natural numbers n and integers m. By continuity we conclude that α̃(x) = x it for all x ∈ (0,+∞), as
required. �

From the above lemma, we conclude that there is a real number t with the property that for every
integer a and real x > 0, one has

E
log log,∗∗
d∈N | fxd(a)− x− it fd(a)| � ε. (36)

In particular, for every prime p1, one has

E
log log,∗∗
d∈N | f p1d(a0)− p− it

1 fd(a0)| � ε,

and thus

E
log,∗∗
p1∈P E

log log,∗∗
d∈N | f p1d(a0)− p− it

1 fd(a0)| � ε (37)

On the other hand, from Proposition 2.3 one has that if P1 is sufficiently large depending on a0, ε, then

sup
d>0

E
log
p1≤P1
| f p1d(a0)G(p1)− fd(a0 p1)| � ε.

Hence on averaging in d and taking limits in the d average and then in the p1 average, we conclude that

lim sup
P1→∞

E
log
p1≤P1

E
log log,∗∗
d∈N | f p1d(a0)G(p1)− fd(a0 p1)| � ε. (38)

Meanwhile, from Lemma 2.9 we have

E
log log,∗∗
d∈N | fd(a0 p1)−χ(p1) fd(a0)| � ε

for all sufficiently large p1, and thus

lim sup
P1→∞

E
log
p1≤P1

E
log log,∗∗
d∈N | fd(a0 p1)−χ(p1) fd(a0)| � ε. (39)

Applying the triangle inequality to (37), (38), (39), we obtain

lim sup
P1→∞

E
log
p1≤P1

E
log log,∗∗
d∈N |G(p1)−χ(p1)pit

1 || fd(a0)| � ε
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and hence by (17) we have

lim sup
P1→∞

E
log
p1≤P1
|G(p1)−χ(p1)pit

1 | � ε.

To summarise the above analysis, we have shown that for every ε > 0 there exists a Dirichlet character
χ = χε and a real number t = tε such that

lim sup
P1→∞

E
log
p1≤P1
|G(p1)−χε(p1)p

i tε
1 | � ε.

A priori, the character χε and the real number tε depend on ε. But if ε, ε′ > 0 are sufficiently small, we
have from the triangle inequality that

lim sup
P1→∞

E
log
p1≤P1
|χε′(p1)p

i tε′
1 −χε(p1)p

i tε
1 | � ε+ ε′.

But from the prime number theorem in arithmetic progressions and partial summation, we see that the
left-hand side is� 1 unless tε = tε′ and the Dirichlet characters are cotrained in the sense that they are
both induced from the same primitive character χ . We conclude that there exists a primitive character χ
independent of ε, and a real number t0 independent of ε, such that tε = t0 and χε is induced from χ for ε
sufficiently small. In particular, as χε(p1) and χ(p1) agree for all but Oε(1) primes p1, we have for each
ε > 0 that

lim sup
P1→∞

E
log
p1≤P1
|G(p1)−χ(p1)p

i t0
1 | � ε

and thus

E
log
p1∈P |G(p1)−χ(p1)p

i t0
1 | = 0. (40)

Thus G weakly pretends to be the twisted Dirichlet character n 7→ ni t0χ(n). This (vacuously) establishes
part (i) of Theorem 1.7.

Now let ε > 0 be small, and let a be an integer. From (31) (and the fact that χε is induced from χ),
and making the dependence of f̃ε on ε explicit, we have

E
log,∗∗
p1∈P E

log,∗∗
p2∈P | f p1 p2(a)−Gχ(p1)Gχ(p2) f̃ε(a)| � ε

and hence by (40) and the triangle inequality

E
log,∗∗
p1∈P E

log,∗∗
p2∈P | f p1 p2(a)− p−i t0

1 p−i t0
2 f̃ε(a)| � ε

or equivalently

E
log,∗∗
p1∈P E

log,∗∗
p2∈P |(p1 p2)

i t0 f p1 p2(a)− f̃ε(a)| � ε.

Applying (16), Lemma 2.6 and (36) (where we can in fact take ε→ 0, since the deduction succeeding
this formula shows that t = t0 is independent of ε), we have

E
log,∗∗
p2∈P |(p1 p2)

i t0 f p1 p2(a)− f̃ε(a)| = E
log log,∗∗
d∈N |(p1d)i t0 f p1d(a)− f̃ε(a)| = E

log log,∗∗
d∈N |d i t0 fd(a)− f̃ε(a)|
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for any p1, and hence
E

log log,∗∗
d∈N |d i t0 fd(a)− f̃ε(a)| � ε.

We thus see from the triangle inequality that

| f̃ε(a)− f̃ε′(a)| � ε+ ε′

and so f̃ε converges uniformly to a limit f with

| f̃ε(a)− f (a)| � ε (41)

and thus by the triangle inequality, we have

E
log log,∗∗
d∈N |d i t0 fd(a)− f (a)| � ε

whenever ε > 0, which gives
E

log log,∗∗
d∈N |d i t0 fd(a)− f (a)| = 0. (42)

From (17) we see in particular that f (a0) 6= 0. By construction, each f̃ε is χ-isotypic in the sense that
f̃ε(ab)= χ(b) f̃ε(a) whenever a, b are integers with b coprime to the periods of both χ and f̃ε. Hence,

what remains to be shown is that (42) holds also when taking the average with respect to the ordinary
limit.

Now let ε > 0 be arbitrary. Inserting (40) into (31), we see that

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)− (p1 p2)

−i t0 f̃ε(a)| � ε

and hence by (41) and sending ε→ 0 we get

lim sup
P1→∞

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)− (p1 p2)

−i t0 f (a)| = 0.

For any ε > 0 and any P1 large enough in terms of ε, we apply Lemma 2.6, Proposition 2.3, formula (40)
and Lemma 2.9 to write

lim sup
P2→∞

E
log
p1≤P1

E
log
p2≤P2
| f p1 p2(a)− (p1 p2)

−i t0 f (a)|

= lim sup
P2→∞

E
log
p1≤P1

E
log log
d≤P2
| f p1d(a)− (p1d)−i t0 f (a)|

= lim sup
P2→∞

E
log
p1≤P1

E
log log
d≤P2
|G(p1) fd(ap1)− (p1d)−i t0 f (a)| + O(ε)

= lim sup
P2→∞

E
log
p1≤P1

E
log log
d≤P2
|p−i t0

1 χ(p1) fd(ap1)− (p1d)−i t0 f (a)| + O(ε)

= lim sup
P2→∞

E
log log
d≤P2
| fd(a)− d−i t0 f (a)| + O(ε),

and hence, sending ε→ 0, we obtain

E
log log
d∈N | fd(a)− d−i t0 f (a)| = 0.
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This establishes part (ii) of Theorem 1.7 (recalling as before that as G weakly pretends to be a twisted
Dirichlet character n 7→ χ(n)nit, it can only weakly pretend to be another twisted Dirichlet character
n 7→ χ ′(n)ni t ′ if t = t ′ and χ, χ ′ are cotrained).

3. Proofs of corollaries

In this section we use Theorem 1.7 to prove Corollaries 1.8, 1.13, 1.14. We begin with Corollary 1.8.

Proof of Corollary 1.8. Suppose the claim failed, then we can find k, g1, . . . , gk as in that corollary, as
well as h1, . . . , hk ∈ Z and ε > 0, such that the set

X := {X ∈ N : |En≤X g1(n+ h1) · · · gk(n+ hk)|> ε}

does not have logarithmic Banach density zero. In particular, one can find sequences X i ≥ ωi →∞ and
0< δ < 1

2 such that

E
log
X i/ωi≤X≤X i

1X (x)≥ δ (43)

for all i .
Intuitively, if the exceptional set X was big in the sense of (43), there would have to be a lot of “points

of density” of X (in a sense to be specified later). To make this rigorous, we introduce for each i the
function ai : R→ [0, 1] given by

ai (s) :=
∑

X i/ωi≤X≤X i :X 6∈X

1log(X−1)<s≤log X .

Note that ai (s) is the indicator function of the event that there exists an integer X 6∈X with X ∈ [es, es
+1)

and X i/ωi ≤ X ≤ X i .
The function ai is a piecewise constant function supported on an interval of length (1+oi→∞(1)) logωi

and has integral ∫
R

ai (s) ds =
∑

X i/ωi≤X≤X i :X 6∈X

log
X

X − 1

=

( ∑
X i/ωi≤X≤X i :X 6∈X

1
X

)
+ O(1)

= logωi + O(1)−
∑

X i/ωi≤X≤X i :X∈X

1
X

≤ (1− δ+ oi→∞(1)) logωi .

We introduce the one-sided Hardy–Littlewood maximal function

Mai (s) := sup
r>0

1
r

∫ s

s−r
ai (s ′) ds ′.
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It is a well-known consequence of the rising sun lemma [Riesz 1932] that one has the Hardy–Littlewood
maximal inequality

m({s ∈ R : Mai (s)≥ λ})≤
1
λ

∫
R

ai (s) ds

for any λ > 0, where m denotes Lebesgue measure. Applying this with λ := (1− δ)1/2, we conclude that

m({s ∈ R : Mai (s)≥ (1− δ)1/2})≤ ((1− δ)1/2+ oi→∞(1)) logωi .

In particular, one can find a real number si with

log X i − ((1− δ)1/2+ oi→∞(1)) logωi ≤ si ≤ log X i (44)

such that

Mai (si ) < (1− δ)1/2

which implies that ∫ si

si−r
ai (t) dt ≤ (1− δ)1/2r (45)

for all r > 0. Informally, the estimate (45) asserts that the natural number bexp(si )c is a “multiplicative
point of density” for the exceptional set X .

By passing to subsequences, and using a diagonalisation argument, we may assume that the limits

fd(a) := lim
i→∞

En≤bexp(si )c/d g1(n+ ah1) · · · gk(n+ ahk), (46)

exist for every natural number d and integer a. In particular, the limit of the right-hand side of (46) is the
same along any generalised limit lim∗∗. If we now apply Theorem 1.7(i) to a generalised limit of the form

∗

lim
X→∞

f (X) :=
∗∗

lim
i→∞

f (bexp(si )c),

where lim∗∗ is any generalised limit, we conclude that

E
log log
d∈N | fd(1)| = 0.

Thus, if we let µ> 0 denote a small constant (depending on δ, ε) to be chosen later, and D is sufficiently
large depending on µ, we have

E
log log
d≤D | fd(1)| ≤ µ.

Thus by the triangle inequality

lim sup
i→∞

E
log log
d≤D |En≤bexp(si )c/d g1(n+ h1) · · · gk(n+ hk)| ≤ µ,

and hence for all sufficiently large i (depending on δ, ε, µ, D) we find

E
log log
d≤D |En≤bexp(si )c/d g1(n+ h1) · · · gk(n+ hk)| ≤ 2µ.
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This implies ∑
log D≤d≤D

1
d log d

|En≤bexp(si )c/d g1(n+ h1) · · · gk(n+ hk)| � µ log log D,

say. In particular, by Markov’s inequality one has

|En≤bexp(si )c/d g1(n+ h1) · · · gk(n+ hk)| ≤
ε

2
(47)

for all log D ≤ d ≤ D outside of an exceptional set Di with∑
d∈Di

1
d log d

�
µ

ε
log log D. (48)

If log D ≤ d ≤ D lies outside of Di , then one has

|En≤X g1(n+ h1) · · · gk(n+ hk)|< ε

for all X between exp(si )/(d+1)−1 and exp(si )/d+1. In particular, all such X lie outside of X . Using
(44) (which places exp(si )/d below X i and well above X i/ωi ), we conclude that

ai (t)= 1

on the interval [si − log(d + 1), si − log(d)]. In particular,∫ d+1

d
ai (si − log u) du = 1.

For d ∈ Di we use the trivial bound ∫ d+1

d
ai (si − log u) du ≥ 0.

From (48) we conclude that∑
log D≤d≤D

1
d log d

∫ d+1

d
ai (si − log u) du ≥

(
1− O

(
µ

ε

))
log log D. (49)

The left-hand side, up to errors that can be absorbed into the O
(
µ
ε

)
log log D term, can be rewritten as∫ D

log D
ai (si − log u)

du
u log u

which by the change of variables s = si − log u becomes∫ si−log log D

si−log D
ai (s)

ds
si − s

.
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However, from Fubini’s theorem and (45) we have∫ si−log log D

si−log D
ai (s)

ds
si − s

=

∫ si−log log D

si−log D
ai (s)

(∫ s

si−log D

dt
(si − t)2

+
1

log D

)
ds

=

∫ si−log log D

si−log D

(∫ si−log log D

t
ai (s) ds

)
dt

(si − t)2
+

1
log D

∫ si−log log D

si−log D
ai (s) ds

≤

∫ si−log log D

si−log D

(∫ si

t
ai (s) ds

)
dt

(si − t)2
+

1
log D

∫ si

si−log D
ai (s) ds

≤

∫ si−log log D

si−log D
(1− δ)1/2(si − t)

dt
(si − t)2

+
1

log D
(1− δ)1/2 log D

= (1− δ)1/2(log log D− log log log D+ 1)

and the right-hand side is equal to (1 − δ)1/2 log log D up to errors that can be absorbed into the
O
(
µ
ε

)
log log D term. For µ small enough, this gives a contradiction when compared with (49), proving

Corollary 1.8(i).
We are left with proving part (ii) of Corollary 1.8. Since sets of logarithmic Banach density zero

automatically have logarithmic density zero, we already know from Corollary 1.8(i) that for each tuple
(h1, . . . , hk) of integers and every m ≥ 1, there is a set Xh1,...,hk ,m of logarithmic density zero such that

|En≤X g1(n+ h1) · · · gk(n+ hk)| ≤
1
m

for all X outside of Xh1,...,hk ,m . Since the number of tuples (h1, . . . , hk,m) is countable, a standard
diagonalisation construction then gives a further set X0, still of logarithmic density zero, such that for each
h1, . . . , hk,m, all but finitely many of the elements of Xh1,...,hk ,m are contained in X0. For instance, one
could remove finitely many elements from Xh1,...,hk ,m to create a subset X ′h1,...,hk ,m with the property that

E
log
X≤Y 1X ′h1,...,hk ,m

(X)≤ 2−h1−···−hk−m

for all Y ≥ 1, and then take X0 to be the union of all the X ′h1,...,hk ,m , which thus differs from a finite union
of these sets by a set of arbitrarily small logarithmic density (and finite unions of the sets X ′h1,...,hk ,m have
logarithmic density 0). By construction one then has

lim sup
X→∞;X 6∈X0

|En≤X g1(n+ h1) · · · gk(n+ hk)| ≤
1
m

for all h1, . . . , hk,m, and the claim follows. �

Remark 3.1. An inspection of the above argument shows that one could have replaced the sequence
n 7→ g1(n + h1) · · · g1(n + hk) by any other bounded sequence n 7→ F(n) for which the analogue of
Theorem 1.7(i) holds, or more precisely that

E
log log
d∈N |

∗

lim
X→∞

En≤X/d F(n)| = 0

for any generalised limit lim∗X→∞.
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Next we prove Corollary 1.13.

Proof of Corollary 1.13. By Corollary 1.8, we are done unless g1g2 weakly pretends to be a twisted
Dirichlet character n 7→ χ(n)nit, so suppose that this is indeed the case for some χ and t . Then for any
generalised limit lim∗X→∞, the corresponding correlations fd(a) defined by (4) obey the property (5) for
some function f : Z→D. If this function f was vanishing at a = 1 for every choice of the generalised
limit, then one could repeat the proof of Corollary 1.8 to obtain the claim (see Remark 3.1). Thus suppose
instead that we can find a generalised limit lim∗X→∞ such that f (1) 6= 0 for the function f provided by
Theorem 1.7(ii). By (5) and the triangle inequality, this implies that

E
log log
d∈N fd(1)d it

= f (1) 6= 0.

In particular, for D sufficiently large, one has

|E
log log
d≤D fd(1)d it

| � 1

and hence by summation by parts we have

|E
log
d≤D fd(1)d it

| � 1

for a sequence of arbitrarily large D. If D obeys the above estimate, then by (4) we have

|
∗

lim
X→∞

E
log
d≤Dd itEn≤X/d g1(n+ h1)g2(n+ h2)| � 1

and thus there exist arbitrarily large X such that

|E
log
d≤Dd itEn≤X/d g1(n+ h1)g2(n+ h2)| � 1.

This implies that

|E
log
d≤Dd itEcX/d≤n≤X/d g1(n+ h1)g2(n+ h2)| � 1

for some small constant c > 0 (not depending on D and X ). This yields∣∣∣∣ ∑
log D≤d≤D

d it
∑

cX/d≤n≤X/d

g1(n+ h1)g2(n+ h2)

∣∣∣∣� X log D

The left-hand side can be rearranged (discarding negligible errors, assuming D is large enough) as∣∣∣∣ ∑
cX/D≤n≤X/ log D

( ∑
cX/n≤d≤X/n

d it
)

g1(n+ h1)g2(n+ h2)

∣∣∣∣� X log D.

By summation by parts, for cX/D ≤ n ≤ X/ log D we have∑
cX/n≤d≤X/n

d it
= αn− it X

n
+ oD→∞(1), α =

X it
− (cX)it · c
1+ i t

,
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where in particular the quantity α is bounded and is independent of n. For D large enough, we conclude
that ∣∣∣∣ ∑

cX/D≤n≤X/ log D

n− it

n
g1(n+ h1)g2(n+ h2)

∣∣∣∣� log D.

and hence

|E
log
X/D≤n≤X n− itg1(n+ h1)g2(n+ h2)| � 1.

Approximating n− it by (n+ h1)
− it, we conclude that there exist arbitrarily large D such that

|E
log
X/D≤n≤X (n+ h1)

− itg1(n+ h1)g2(n+ h2)| � 1

for arbitrarily large X . But this contradicts the k= 2 case of the logarithmically averaged Elliott conjecture
[Tao 2016, Corollary 1.5] applied to the functions n 7→ n− itg1(n) and n 7→ g2(n) (note that the hypothesis
(1) for g1 implies the same hypothesis for n 7→ n− itg1(n)). This completes the proof of part (i) of
Corollary 1.13.

Part (ii) of Corollary 1.13 is then deduced from Corollary 1.13(i) using precisely the same diagonalisa-
tion argument that was used to deduce Corollary 1.8(ii) from Corollary 1.8(i). �

Remark 3.2. The above argument shows more generally that if the logarithmically averaged Elliott
conjecture11 (resp. Chowla conjecture) is proven for a given value of k, then the unweighted form of the
Elliott conjecture (resp. Chowla conjecture) for that value of k holds at almost all scales. (Note in the
case of the Chowla conjecture that the parameter t will vanish, since λk

= 1 for even k and λk
= λ does

not pretend to be any twisted Dirichlet character for odd k.)

Remark 3.3. With small modifications, we can adapt the above proofs to prove Corollary 1.16. Firstly,
by approximating the indicator function 1P+(n)<P+(n+1) as in [Teräväinen 2018, Section 4] by a linear
combination of indicator functions of the form 1P+(n)<nα,P+(n+1)<nβ , we can reduce the proof to showing

lim
X→∞;X 6∈X0

En≤X 1P+(n)<nα1P+(n+1)<nβ = ρ

(
1
α

)
ρ

(
1
β

)
, (50)

where ρ(·) is the Dickmann function and α, β ∈ (0, 1) are any rational numbers. Since the set of rationals
is countable, by a diagonal argument (as in the proof of Corollary 1.13(ii)) it suffices to prove (50)
with α, β fixed. One starts by proving a version of the structural theorem (Theorem 1.7) in the case
of the functions g1(n)= 1P+(n)<nα , g2(n)= 1P+(n)<nβ ; these are not quite multiplicative functions, but
they can be approximated as 1P+(n)<nα = 1P+(n)<Xα + O(1P+(n)∈[(X/ log X)α,Xα]) for n ∈ [X/ log X, X ].
The O(·) term has negligible contribution in the entropy decrement argument by standard estimates on
smooth numbers, so the proof of Proposition 2.3 goes through for the generalised limits associated to the
correlations of g1 and g2 with G ≡ 1 (so certainly (18) holds). We did not use the specific properties of

11One needs the variant where we sum over X/ω(X)≤ n ≤ X rather than n ≤ X .
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g1, g2 anywhere else in the proof of Theorem 1.7, so that proof goes through, giving

Ed∈N|
∗

lim
X→∞

En≤X/d g1(n)g2(n+ 1)− c∗| = 0 (51)

for all generalised limits lim∗ and some constant c∗ depending on lim∗. From [Teräväinen 2018, proof of
Corollary 1.19], we have a logarithmic version of (50), so following the proof of Corollary 1.13 verbatim,
we see that c∗ = ρ(1/α)ρ(1/β). Then from Remark 3.1 we deduce (50). We leave the details to the
interested reader.

Proof of Corollary 1.14. We observe from Corollary 1.8(i) (for odd k) or Corollary 1.13(ii) (for k = 2)
that for any distinct integers h1, . . . , hk and ε > 0, one has

|En≤Xλ(n+ h1) · · · λ(n+ hk)| ≤ ε

for all X outside of a set Xk,ε of logarithmic Banach density zero, and hence also of logarithmic density
zero. The claim then follows by the same diagonalisation argument used to prove Corollary 1.8(ii) and
Corollary 1.13(ii). �

4. Consequences of the isotopy formulae

Before proving the isotopy formula in the form of Theorem 1.19, let us state a variant of it that involves
the quantities fd(a) present in Theorem 1.7. In what follows, a sequence bn of integers is said to be
asymptotically rough if for any given prime p, one has p -bn for all sufficiently large n. For instance, any
increasing sequence of primes is asymptotically rough, as is the sequence −1,−1,−1, . . ..

Lemma 4.1. Let the notation and hypotheses be as in Theorem 1.7. Let n 7→χ(n)nit be a twisted Dirichlet
character that weakly pretends to be g1 · · · gk , if one exists; otherwise, choose χ and t arbitrarily. Let a
be an arbitrary integer:

(i) (Archimedean isotopy) For any natural number h, one has

lim
X→∞

E
log log
d≤X | fhd(a)− h− it fd(a)| = 0.

(ii) (Nonarchimedean isotopy) For any asymptotically rough sequence bn of natural numbers, one has

lim
n→∞

lim
X→∞

E
log log
d≤X | fd(abn)−χ(bn) fd(a)| = 0.

In particular, since the sequence bn =−1 is asymptotically rough, one has

lim
X→∞

E
log log
d≤X | fd(−a)−χ(−1) fd(a)| = 0. (52)

A variant of Lemma 4.1(ii) (for logarithmic averaging, and with bn specialised to the primes in
an arithmetic progression 1 (q) for q a period of χ) was obtained in [Frantzikinakis and Host 2019,
Corollary 3.7].
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Proof. We may assume without loss of generality that g1 · · · gk weakly pretends to be n 7→ χ(n)nit, as
the claims follow from Theorem 1.7(i) otherwise. Extracting out the contribution to (5) from multiples of
h, we see that

E
log log
d∈N | fhd(a)− f (a)(hd)− it

| = 0,

and also by (5) we have

E
log log
d∈N | fd(a)− f (a)d− it

| = 0.

Now the claim follows from the triangle inequality.
To prove Claim (ii),12 we observe from (5) that

E
log log
d∈N | fd(abn)− f (abn)d− it

| = 0

for all n, and

E
log log
d∈N | fd(a)− f (a)d− it

| = 0.

Putting together the above two equalities we have

E
log log
d∈N | fd(abn)−χ(bn) fd(a)| = | f (abn)−χ(bn) f (a)| (53)

By Theorem 1.7, f is the uniform limit of χ-isotypic periodic functions Fi . For each such Fi , we have
Fi (abn)= χ(bn)Fi (a) for all sufficiently large n, since the sequence bn is asymptotically rough. Thus
also f (abn)= χ(bn) f (a)+ on→∞(1). Combining this with (53), the claim follows. �

We then use Lemma 4.1 to deduce the isotopy formulae (Theorem 1.19).

Proof of Theorem 1.19. We start with the proof of (i). By a diagonalisation argument, similarly as in the
proof of Corollary 1.8(ii), it suffices to show that for any fixed rational q > 0 there exists a set X0,q of
logarithmic density 0 such that the claim holds with X0,q in place of X0. Next, we argue that it suffices to
consider the case q ∈N. Suppose that the case q ∈N has been established, and let q = a/b with a, b ∈N.
Then if X0,q := (1/b)X0,a ∪ (1/b)X0,b (which is still a set of logarithmic density zero), we have

lim
X→∞;X 6∈X0,q

(
En≤X g1(n+ h1) · · · gk(n+ hk)−

(a
b

)it
En≤bX/ag1(n+ h1) · · · gk(n+ hk)

)
= lim

X→∞;X 6∈X0,q

(
b− itEn≤bX g1(n+ h1) · · · gk(n+ hk)−

(a
b

)it
En≤bX/ag1(n+ h1) · · · gk(n+ hk)

)
= 0.

Hence we may assume from now on that q ∈ N. Observe that the statement of Lemma 4.1(i) with a = 1
can be written in the form

E
log log
d∈N |

∗

lim
X→∞

En≤X/d(g1(n+ h1) · · · gk(n+ hk)− q− itEb∈Z/qZg1(qn+ b+ h1) · · · gk(qn+ b+ hk))| = 0

12Note that Lemma 2.9 does not directly imply Claim (ii), since the Dirichlet character present in that lemma depends on the
error ε.
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for every generalised limit lim∗X→∞. By following the proof of Corollary 1.8(i) verbatim (see also
Remark 3.1), this leads to

lim
X→∞;X 6∈X0,q

En≤X (g1(n+h1) · · · gk(n+hk)−q− itEb∈Z/qZg1(qn+b+h1) · · · gk(qn+b+hk))= 0 (54)

for some set X0,q of logarithmic density zero. But rewriting (54), it becomes the identity asserted in
Theorem 1.19(i).

We turn to the proof of part (ii), which is similar. Again by a diagonalisation argument, it suffices to
prove the statement for fixed a rather than all a. From Lemma 4.1(ii) we have

E
log log
d∈N |

∗

lim
X→∞

En≤X/d(g1(n− ah1) · · · gk(n− ahk)−χ(−1)g1(n+ ah1) · · · gk(n+ ahk))| = 0

for every generalised limit lim∗X→∞. Just as in the proof of part (i) of the Theorem, by the proof of
Corollary 1.8(i) (see Remark 3.1) we get

lim
X→∞;X 6∈X0,a

|En≤X (g1(n− ah1) · · · gk(n− ahk)−χ(−1)g1(n+ ah1) · · · gk(n+ ahk))| = 0

for some set X0,a of logarithmic density zero, and this is what we wished to prove. �

Morally speaking, the archimedean isotopy formula implies that the argument of the correlation (9)
becomes equidistributed at large scales whenever t 6= 0. Unfortunately we cannot quite establish this
claim as stated, because of the discontinuous nature of the complex argument function. However, if we
insert a continuous mollifier to remove this discontinuity, we can obtain equidistribution. More precisely,
we have the following result.

Theorem 4.2 (equidistribution of argument away from zero). Let k ≥ 1, let h1, . . . , hk be integers and
g1, . . . , gk : N→ D be 1-bounded multiplicative functions. Suppose that the product g1 · · · gk weakly
pretends to be a twisted Dirichlet character n 7→ χ(n)nit, where t 6= 0. Let us denote

S(X) := En≤X g1(n+ h1) · · · gk(n+ hk).

Let ψ : C→ C be a continuous function that vanishes in a neighbourhood of the origin, and let

ψ(z) := 1
2π

∫ 2π

0
ψ(eiθ z) dθ

be ψ averaged over rotations around the origin. Then we have

E
log
X∈Nψ(S(X))−ψ(S(X))= 0.

Proof. Since S is bounded, we may assume that ψ is compactly supported. By replacing ψ by ψ −ψ we
may assume thatψ=0. Approximatingψ uniformly by partial Fourier series (e.g., using Fejér summation)
in the angular variable, and using linearity, we may assume that ψ takes the form ψ(reiθ )=9(r)eikθ

for some nonzero integer k and some continuous compactly supported function 9 that vanishes in a
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neighbourhood of the origin (cf. the standard proof of the Weyl equidistribution criterion [1916]). In
particular we have the isotopy formula

ψ(ωz)= ωkψ(z) (55)

for all z ∈ C and ω ∈ S1.
Let q > 1 be an integer to be chosen later. From Theorem 1.19(i), outside of an exceptional set X0 of

logarithmic density zero, we have

lim
X→∞;X 6∈X0

S(X)− q itS(X/q)= 0.

From (55) and the uniform continuity of ψ , this implies that

lim
X→∞;X 6∈X0

ψ(S(X))− q iktψ(S(X/q))= 0.

Taking logarithmic averages, we conclude that

E
log
X∈Nψ(S(X))− q iktψ(S(X/q))= 0.

On the other hand, in analogy to (16), we have the log-Lipschitz bound

|S(x)− S(y)| � |log x − log y|. (56)

We can use this and the uniform continuity of ψ to estimate, for X0 large enough,

E
log
X≤X0

ψ(S(X/q))= E
log
X≤X0/qE0≤b<qψ(S(X + b/q))+ o(1)

= E
log
X≤X0/qψ(S(X))+ o(1)

= E
log
X≤X0

ψ(S(X))+ o(1).

Hence
E

log
X∈Nψ(S(X))−ψ(S(X/q))= 0.

By the triangle inequality, we conclude that

(1− q ikt)E
log
X∈Nψ(S(X))= 0.

Since t 6= 0, we can select q so that q ikt
6= 1 for all k ∈ N. The claim follows. �

Suppose that 9 : [0,+∞)→ [0,+∞) is a nonnegative continuous function vanishing near the origin,
and let I ⊂ R/2πZ be an arc in the unit circle R/2πZ. Applying Theorem 4.2 to upper and lower
approximants to the discontinuous function z 7→9(|z|)1I (arg(z)), and taking limits, we conclude that

E
log
X∈N

(
1I (arg(S(X)))−

|I |
2π

)
9(|S(X)|)= 0

where |I | denotes the length of I . Informally, this asserts that the argument arg(S(X)) is uniformly
distributed in the unit circle, so long as one inserts a continuous weight of the form 9(|S(X)|). It would
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be more aesthetically pleasing if we could replace this weight with a discontinuous cutoff such as 1|S(X)|≥ε,
but we were unable to exclude the possibility that |S(X)| lingers very close to ε for very many scales X ,
with the event that |S(X)| ≥ ε being coupled in some arbitrary fashion to the argument of S(X), leading
to essentially no control on the argument of S(X) restricted to the event |S(X)| ≥ ε. On the other hand, if
one was able to show that S(X) did not concentrate at the origin in the sense that

lim sup
X0→∞

E
log
X≤X0

1|S(X)|≤ε→ 0

as ε→ 0, then the above arguments do show that

E
log
X∈N1I (arg(S(X)))=

|I |
2π

for all intervals I , so that arg(S(X)) is indeed asymptotically equidistributed on the unit circle. Alter-
natively, by selecting the cutoff ε using the pigeonhole principle to ensure that |S(X)| does not linger
too often in a neighbourhood of ε, one can prove statements such as the following: If δ > 0, then for
all sufficiently large X0 outside of a set of logarithmic density zero, one can find 0 < ε ≤ δ with the
approximate equidistribution property

E
log
X≤X0

(
1I (arg(S(X)))−

|I |
2π

)
1|S(X)|≥ε ≤ δ

for all intervals I ⊂ R/2πZ. We leave the proof of this assertion to the interested reader.
Now we investigate the consequences of the nonarchimedean isotopy formula (Theorem 1.19(ii)).

Many of these consequences tell us that the correlation (9) tends to 0 along almost all scales also in some
cases that are not covered by Corollary 1.8(i).

Definition 4.3. We say that a tuple (g1, . . . , gk) of functions is reflection symmetric if gi = gk+1−i

for all 1 ≤ i ≤ (k + 1)/2. Similarly, we say that a tuple (h1, . . . , hk) of integers is progression-like if
h1+hk=hi+hk+1−i for all 1≤ i ≤ (k+1)/2. In particular, all arithmetic progressions are progression-like.

Theorem 4.4. Let k ≥ 1 and let h1, . . . , hk be integers. Suppose that χ is an odd Dirichlet character
(i.e., χ(−1) = −1) with χ(n + h1 + hk) = χ(n) for all n. Let g1, . . . , gk : N→ D be multiplicative
functions such that the product g1 · · · gk weakly pretends to be a Dirichlet character ψ with ψ even.
Suppose additionally that the tuple (g1, . . . , gk) is reflection symmetric and that the tuple (h1, . . . , hk) is
progression-like. Then there exists an exceptional set X0 of logarithmic density 0, such that

lim
X→∞;X 6∈X0

En≤Xχ(n)g1(n+ h1)g2(n+ h2) · · · gk(n+ hk)= 0.

Proof. Note that the function g1 · · · gkχ weakly pretends to be ψχ , which is an odd character. Hence by
Theorem 1.19(ii) there exists some set X0 of logarithmic density 0, such that for X 6∈ X0 we have

En≤Xχ(n)g(n)g1(n+ h1) · · · gk(n+ hk)=−En≤Xχ(n)g1(n− h1)g(n− h2) · · · g(n− hk)+ o(1).
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By translation invariance, the periodicity assumption χ(n+h1+hk)= χ(n), and the progression-likeness
of (h1, . . . , hk), the latter expression equals

−En≤Xχ(n+ h1+ hk)g1(n+ hk)g2(n+ h1+ hk − h2) · · · gk(n+ h1)+ o(1)

=−En≤Xχ(n)g1(n+ hk)g2(n+ hk−1) · · · gk(n+ h1)+ o(1).

Since the tuple (g1, . . . , gk) is reflection symmetric, this equals the original correlation with a minus sign,
proving the statement. �

Corollary 1.21 is an immediate consequence of Theorem 4.4.

Proof of Corollary 1.21. Taking g1= · · ·= gk = λ and (h1, . . . , hk)= (0, a, . . . , (k−1)a) in Theorem 4.4,
we readily obtain the claim. �

In other words, the shifted products of the Liouville function can be shown to be orthogonal to some
suitable Dirichlet characters also when there is an even number of shifts. As already mentioned, also the
weaker, logarithmic version of Corollary 1.21 is new.

The next theorem is in the same spirit as Theorem 4.4, but with somewhat different conditions.

Theorem 4.5. Let k ≥ 1 be odd, and let g1, . . . , gk : N→ D be multiplicative functions such that the
product g1 · · · gk weakly pretends to be a Dirichlet character χ with χ odd. Suppose also that the tuple
(g1, . . . , gk) is reflection symmetric and that (h1, . . . , hk) is a progression-like tuple of integers. Then
there exists an exceptional set X0 of logarithmic density 0, such that

lim
X→∞;X 6∈X0

En≤X g1(n+ h1)g2(n+ h2) · · · gk(n+ hk)= 0.

Proof. As with Theorem 4.4, this follows directly from the isotopy formula (Theorem 1.19) and translation
invariance. �

This theorem can for example be applied to the variants

λq(n) := e
(

2π i�(n)
q

)
of the Liouville function that take values in the q-th roots of unity. Here �(n) is the number of prime
factors of n with multiplicities. We obtain the following.

Corollary 4.6. Let k ≥ 1 be odd, q ∈ N, and let χ be an odd Dirichlet character. Then there exists an
exceptional set X0 of logarithmic density 0, such that

lim
X→∞;X 6∈X0

En≤Xλq(n)χ(n)λq(n+ a)χ(n+ a) · · · λq(n+ (k− 1)a)χ(n+ (k− 1)a)= 0.

Proof. We apply Theorem 4.5 with g j (n) = g(n) := χ(n)λq(n) and (h1, . . . , hk) = (0, . . . , (k − 1)a).
Then if q -k, the function gkχ k does not weakly pretend to be any twisted Dirichlet character, since gk

does not do so. In this case, we may appeal to Corollary 1.8(i) to obtain the claim. Suppose then that
q | k. Then gk weakly pretends to be χ k , which is an odd character, so Theorem 4.5 is applicable. �
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Example 4.7. Let χ3 be the odd Dirichlet character of modulus 3 and χ8 any odd Dirichlet character of
modulus 8. Then from Corollary 4.6 and partial summation, for any sequences 1 ≤ ωm ≤ xm of reals
tending to infinity we have

lim
m→∞

E
log
xm/ωm≤n≤xm

χ3(n)λ3(n)λ3(n+ 3)λ3(n+ 6)= 0

and
lim

m→∞
E

log
xm/ωm≤n≤xm

λ3(n)λ3(n+ 2)λ3(n+ 4)χ8(n+ 6)= 0.

This is seen by applying the corollary to the functions g j (n) = λ3(n)χ3(n) with a = 3 and g j (n) =
λ3(n)χ8(n) with a = 2 and using n(n+ 2)(n+ 4)≡ n+ 6 (mod 8) for n odd.

We then turn to bounding more general correlations of multiplicative functions where the shifts involved
no longer form a progression-like tuple. In the case of triple correlations, we obtain savings that are
explicit but nevertheless far from the desired o(1) bound.

Theorem 4.8 (savings in logarithmic three-point Elliott conjecture). Let g : N→ D be a multiplicative
function, and let h1, h2, h3 be distinct integers. Suppose that g is nonpretentious in the sense that

lim inf
X→∞

inf
|t |≤X

D(g, n 7→ χ(n)nit, x)=∞

for every Dirichlet character χ . Then for any sequences 1≤ ωm ≤ xm tending to infinity we have

lim sup
m→∞

|E
log
xm/ωm≤n≤xm

g(n+ h1)g(n+ h2)g(n+ h3)| ≤
1
√

2
. (57)

Remark 4.9. This looks superficially similar to [Klurman and Mangerel 2018, Lemma 5.3] (and also to
[Tao and Teräväinen 2019, Proposition 7.1], which achieves the better upper bound of 1

2 for real-valued
multiplicative functions). However, importantly, the shifts hi are allowed to be arbitrary here, while in
the aforementioned results they had to form an arithmetic progression for the method to work.

Proof. If h1, h2, h3 is an arithmetic progression, we may apply [Klurman and Mangerel 2018, Lemma 5.3],
so we may henceforth suppose that h1, h2, h3 is not an arithmetic progression.

If the function g3 does not weakly pretend to be any Dirichlet character, we get the bound 0 for the
lim sup by [Tao and Teräväinen 2019, Theorem 1.2(ii)]. Suppose then that g3 weakly pretends to be some
character χ . By the isotopy formula (Theorem 1.19), partial summation and translation invariance, we
have

E
log
xm/ωm≤n≤xm

g(n+ h1)g(n+ h2)g(n+ h3)

= χ(−1)Elog
xm/ωm≤n≤xm

g(n+ h1)g(n+ h1+ h3− h2)g(n+ h3)+ om→∞(1). (58)

In particular, the first part of (58) is the average of both parts of the equation. Hence, the average on the
left-hand side of (57) is up to om→∞(1) bounded by

1
2 |E

log
xm/ωm≤n≤xm

g(n+ h1)g(n+ h3)(g(n+ h2)+χ(−1)g(n+ h1+ h3− h2))|

≤
1
2 E

log
xm/ωm≤n≤xm

|g(n+ h2)+χ(−1)g(n+ h1+ h3− h2))|.
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By the Cauchy–Schwarz inequality, this is bounded by

1
2(E

log
xm/ωm≤n≤xm

|g(n+ h2)+χ(−1)g(n+ h1+ h3− h2))|
2)1/2

≤
1
2(E

log
xm/ωm≤n≤xm

(2+ 2χ(−1)Re i(g(n+ h2)g(n+ h1+ h3− h2))))
1/2.

Since h2 6= h1 + h3 − h2 by assumption, we can apply [Tao 2016, Corollary 1.5] to see that the term
involving real parts contributes om→∞(1). Then we indeed get a bound of 1/

√
2+ om→∞(1) for the

correlation. �

Remark 4.10. For specific multiplicative functions one can do slightly better by not applying Cauchy–
Schwarz. For example, in the case g(n)= λ3(n) one gets a bound of 2

3 for the correlation by using the
fact (following from [Tao 2016, Corollary 1.5]) that (λ3(n), λ3(n+ h)) takes for fixed h 6= 0 each of the
possible 9 values with logarithmic density 1

9 .

5. The case of few sign patterns

In this section we prove Theorem 1.17. Assume the hypotheses of that theorem. Let h be a natural number.
By the Hahn–Banach theorem, it suffices to show that

E∗n∈Nλ(n)λ(n+ h)= 0

for every generalised limit lim∗X→∞. Accordingly, let us fix such a limit. As usual, we introduce the
correlation sequences

fd(a) :=
∗

lim
X→∞

En≤X/dλ(n)λ(n+ ah) (59)

for every real d > 0. Our task is now to show that

f1(1)= 0.

Proposition 2.3 (noting that G(p)= 1 in our case) establishes the approximate isotopy formula

sup
d>0

E
log
p≤P | fdp(a)− fd(ap)| ≤ ε

whenever ε > 0 and P is sufficiently large depending on ε. But because of our hypothesis of few sign
patterns, we can obtain a stronger result in which the logarithmic weighting on the averages is removed.

Proposition 5.1 (improved approximate isotopy formula). Let fd(a) be as in (59), let ε > 0, and let a be
a natural number. Assume the hypotheses of Theorem 1.17. Then there exist arbitrarily large m such that

sup
d>0

E2m≤p<2m+1 | fdp(a)− fd(ap)| ≤ ε.

This formula also applies for negative a, but in this argument we only require the case of positive a (in
fact, for the binary correlations considered here, we only need the case a = 1).
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Proof. This will be a modification of the arguments in [Tao and Teräväinen 2019, Section 3], and we
freely use the notation from that paper.

Let d > 0 be real, let a be an integer, and let m be a large integer to be chosen later. We allow implied
constants to depend on h, a, but they will remain uniform in d,m, ε. From (13) we have the formula

fdp(a)− fd(ap)= E(d)g(d)(0)g(d)(aph)(p1p | n(d) − 1)+ O(ε)

for all 2m
≤ p< 2m+1, if m is sufficiently large depending on ε, and where g(d)= g(d)1 = g(d)2 and n(d) are

the random variables provided by Proposition 2.1 (with g1 = g2 = λ). We can thus write the expression

E2m≤p<2m+1 | fdp(a)− fd(ap)|

as

E(d)E2m≤p<2m+1cp g(d)(0)g(d)(aph)(p1p|n(d) − 1)+ O(ε)

for some sequence of complex numbers cp with |cp| ≤ 1. By stationarity we can also write this expression
as

E(d)E1≤l≤2m E2m≤p<2m+1cp g(d)(l)g(d)(l + aph)(p1n(d)=−l (p)− 1)+ O(ε)

and thus

E2m≤p<2m+1 | fdp(a)− fd(ap)| = E(d)F(X (d),Y (d))

where X (d)
= X (d)

m ∈ {−1,+1}(2ah+1)2m
, Y (d)

= Y (d)
m ∈

∏
2m≤p<2m+1 Z/pZ are the random variables

X (d)
:= (g(d)(l))1≤l≤(2ah+1)2m and Y (d)

:= (n(d) (p))2m≤p<2m+1

and F : {−1,+1}(2ah+1)2m
×
∏

2m≤p<2m+1 Z/pZ→ C is the function

F((gl)1≤l≤(2ah+1)2m , (n p)2m≤p<2m+1) := E1≤l≤2m E2m≤p<2m+1cpgl gl+aph(p1n p=−l (p)− 1).

Repeating the arguments in [Tao and Teräväinen 2019, Section 3] verbatim (but without the additional
conditioning on the Y<m random variable), we conclude that

E(d)|F(X (d),Y (d))| ≤ ε

unless we have the mutual information bound

I(X (d)
: Y (d)) > ε5 2m

m
.

At this point we deviate from the arguments in [Tao and Teräväinen 2019, Section 3] by using the trivial
bound

I(X (d)
: Y (d))≤ H(X (d))

to conclude that we will have the desired bound

E2m≤p<2m+1 | fdp(a)− fd(ap)| ≤ ε
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whenever X (d) obeys the entropy bound

H(X (d))≤ ε5 2m

m
.

By Jensen’s inequality, this bound will hold if Xd attains at most exp(ε52m/m) values with positive
probability. Using the correspondence principle (Proposition 2.1), this claim in turn is equivalent to
the number of possible sign patterns (λ(n+ l))1≤l≤(2ah+1)2m not exceeding exp(ε52m/m); note that this
assertion does not depend on d , so we in fact obtain the uniform bound

sup
d>0

E2m≤p<2m+1 | fdp(a)− fd(ap)| ≤ ε

in this case. But by the hypothesis of Theorem 1.17, this assertion holds for arbitrarily large values of
m. �

Now we establish Theorem 1.17. By the above proposition, for any ε > 0, there exist arbitrarily large
m such that

f1(1)= E2m≤p<2m+1 fP(p)+ O(ε),

where P := 2m . By (59), it suffices to show that

lim sup
X→∞

|EP≤p<2P En≤X/Pλ(n)λ(n+ ph)| � ε

for sufficiently large P . But this follows from the results in [Tao 2016, Section 3], specifically Lemmas 3.6
and 3.7 and equation (2.9) of that paper13 (see also Remark 3.8 for a simplification in the case of the
Liouville function). We remark that the equation [loc. cit., (2.8)] relies crucially on the Matomäki–
Radziwiłł theorem [Matomäki and Radziwiłł 2016] (as applied in [Matomäki et al. 2015]).

Remark 5.2. A similar argument also gives the odd order cases of the Chowla conjecture if one strengthens
the hypothesis of Theorem 1.17 to hold for all sufficiently large K , rather than for arbitrarily large K , by
using the arguments in [Tao and Teräväinen 2018, Section 3] (but with the exceptional sets M1 in those
arguments now being empty, and using unweighted averaging in n rather than logarithmic averaging).
We leave the details to the interested reader.
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