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The structure of correlations of multiplicative
functions at almost all scales, with applications to
the Chowla and Elliott conjectures

Terence Tao and Joni Teravainen

We study the asymptotic behaviour of higher order correlations
Er<xjagi(n+ahy)--- gr(n+ahy)

as a function of the parameters a and d, where gy, .. ., g; are bounded multiplicative functions, i1, ..., i
are integer shifts, and X is large. Our main structural result asserts, roughly speaking, that such correlations
asymptotically vanish for almost all X if g; - - - g does not (weakly) pretend to be a twisted Dirichlet
character n > x (n)n', and behave asymptotically like a multiple of @~ (a) otherwise. This extends
our earlier work on the structure of logarithmically averaged correlations, in which the d parameter is
averaged out and one can set t = 0. Among other things, the result enables us to establish special cases
of the Chowla and Elliott conjectures for (unweighted) averages at almost all scales; for instance, we
establish the k-point Chowla conjecture E,<xA(n +h;) - - - L(n + hyx) = o(1) for k odd or equal to 2 for
all scales X outside of a set of zero logarithmic density.

1. Introduction

The Chowla and Elliott conjectures. Define a 1-bounded multiplicative function to be a function g :
N — D from the natural numbers N := {1, 2, ...} to the unit disk D := {z € C: |z| < 1} satisfying
g(nm) = g(n)g(m) whenever n, m are coprime. If in addition g(nm) = g(n)g(m) for all n, m € N, we
say that g is completely multiplicative. In addition, we adopt the convention that g(n) = 0 when n is zero
or a negative integer.

This paper is concerned with the structure of higher order correlations of such functions. To describe
our results, we need some notation for a number of averages.

Definition 1.1 (averaging notation). Let f : A — C be a function defined on a nonempty finite set A:

(i) (Unweighted averages) We define

Suea f@)

Erea f(n) = S
neA
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(i1) (Logarithmic averages) If A is a subset of the natural numbers N, we define

ZneA f(l’l)/n
ZneA l/n ‘

(iii)) (Doubly logarithmic averages) If A is a subset of the natural numbers N, we define

> onea f()/(nlog(l +n))
Donea 1/(nlog(1+n))

Of course, the symbol n can be replaced here by any other free variable. For any real number X > 1, we use
(n) and E°€° £ (n). If we use the

n<X n<X

symbol p (or pp, pa, etc.) instead of n, we implicitly restrict p to the set of primes P := {2, 3 57,...}

E%, f(n) ==

loglog
Epea f(n) =

E,<x f(n) as a synonym for E,cnnp1,x7f (1), and similarly for o

thus for instance for X > 2, E,<x f(p) is a synonym for E,cpn2,x7f(p), and similarly for [E Xf(p)

Remark 1.2. The use of log(1 + 1) in the E'°8!°¢ notation instead of logn is only in order to avoid
irrelevant divergences at n = 1, and the shift by 1 may otherwise be ignored. Because of the prime number
theorem, prime averages such as E,<x f(p) are often of ‘ comparable strength” to logarithmic averages

[Eliloi X (n), and similarly logarithmic prime averages such as E°8 p<xf (p) are of comparable strength to
Enoéy ; £ f(n). See Lemma 2.6 for a more precise statement.

Following Granville and Soundararajan [2008], given two 1-bounded multiplicative functions f, g :
N — D, and X > 1, we define the pretentious distance D( f, g; X) between f and g up to scale X by the

—R 1/2
D(f. g: X) := (Z e(f(p)g(p)) )

=X p

formula

It is conjectured that multiple correlations of 1-bounded multiplicative functions should asymptotically
vanish unless all of the functions involved “pretend” to be twisted Dirichlet characters in the sense of the
pretentious distance. More precisely, the following conjecture is essentially due to Elliott.

Conjecture 1.3 (Elliott conjecture). Let g1, ..., gk : N — D be 1-bounded multiplicative functions for
some k > 1. Assume that there exists j € {1, ..., k} such that for every Dirichlet character x one has
\tllnf D(gj,n+ )((n)n X) > o© (D)
as X — oo.
(i) (Unweighted Elliott conjecture) If hy, ..., hy € Z are distinct integers, then

lim E,<xgi(n+hy)---ge(n+hy) =0
X—o00
(1) (Logarithmically averaged Elliott conjecture) If hy, . .., hy € Z are distinct integers, then

hm [En<xg1(n +hy)---g(n+h) =0
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Conjecture 1.3(i) was first stated by Elliott [1992; 1994], with condition (1) weakened to the assertion
thatD(g;, nr> x (n)n't; X) — oo for each fixed 7, with no uniformity in ¢ assumed. However, it was shown
in [Matomiki et al. 2015] that this version of the conjecture fails for a technical reason. By summation
by parts, Conjecture 1.3(i) implies Conjecture 1.3(ii). At present, both forms of the Elliott conjecture
are known for k = 1 (thanks to Hal4sz’s theorem [1971]), while the k = 2 case of the logarithmic Elliott
conjecture was established in [Tao 2016]. Specialising the above conjecture to the case of the Liouville
function A,' we recover the following conjecture of Chowla [1965], together with its logarithmically
averaged form.

Conjecture 1.4 (Chowla conjecture). Let k > 1 be a natural number:

(1) (Unweighted Chowla conjecture) If hy, . .., hy € Z are distinct integers, then
lim E,cxA(n+hy)---A(n+hg) =0.
X—o00o T
(ii) (Logarithmically averaged Chowla conjecture) If hy, ..., hy € Z are distinct integers, then

lim ¢ A(n+hy)-- A(n+hy) =0.

X— o0 n<X

Note that for k = 1, the unweighted Chowla conjecture is equivalent to the prime number theorem,
while the logarithmically averaged 1-point Chowla conjecture has a short elementary proof. No further
cases of the unweighted Chowla conjecture are currently known, but the logarithmically averaged Chowla
conjecture has been established for k =2 in [Tao 2016] and for all odd values of k in [Tao and Terdvdinen
2019] (with a second proof given in [Tao and Terdvédinen 2018]). The logarithmically averaged Chowla
conjecture is also known to be equivalent to the logarithmically averaged form of a conjecture of Sarnak
[2010]; see [Tao 2017a]. See also [Matomiki et al. 2015] for a version of Elliott’s conjecture where one
averages over the shifts /;. One can also formulate an analogous version of Chowla’s conjecture for the
Mobius function, for which very similar results are known.”

In [Tao and Terdviinen 2019], we obtained the following special case of the logarithmically averaged
Elliott conjecture (Conjecture 1.4(ii)). We say that a 1-bounded multiplicative function f : N — D weakly
pretends to be another 1-bounded multiplicative function g : N — D if

lim ———D(f, g; X)>=0
XmeloglogX (/8%

or equivalently

3 1 —Re(f(Pg(p) _ o(loglog X).

p=X p

IFor the definitions of the standard multiplicative functions used in this paper, see page 1.

2If one generalises the Chowla conjecture by using affine forms a;n 4 h; instead of shifts n + h;, then a simple sieving
argument can be used to show the equivalence of such generalised Chowla conjectures for the Liouville function and their
counterparts for the Mobius function; we leave the details to the interested reader.
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Theorem 1.5 (special case of logarithmically averaged Elliott [Tao and Terdviinen 2019, Corollary 1.6]).

Letk>1,andlet g, ..., g :N— D be 1-bounded multiplicative functions such that the product g1 - - - gk
does not weakly pretend to be any Dirichlet character n — x (n). Then for any integers hy, . .., hy, one
has

-
Jim E,Sxg(n+hi) - gu(n+h)=0.

In particular this establishes the logarithmically averaged Chowla conjecture for odd values of k. This
result was also recently used by Frantzikinakis and Host [2019] to control the Furstenberg measure-
preserving systems associated to 1-bounded multiplicative functions, and to establish a version of the
logarithmic Sarnak conjecture where the Mobius function w(n) is replaced by a 1-bounded multiplicative
function g(n) and the topological dynamical system involved is assumed to be uniquely ergodic.

Theorem 1.5 was deduced from a more general structural statement about the correlation sequence
at— limy_ o [Eilof x&1(n+ahy)--- gr(n+ahy) for 1-bounded multiplicative functions gy, ..., gk, where

one now permits the product g; - - - gx to weakly pretend to be a Dirichlet character. Here one runs into

log
n<X

around this difficulty, the device of generalised limit functionals was employed.® By a generalised limit

the technical difficulty that the asymptotic limits limy_, o, E are not known a priori to exist. To get
functional we mean a bounded linear functional lim_,  : £*°(N) — C which agrees with the ordinary
limit functional limy_, » on convergent sequences, maps nonnegative sequences to nonnegative numbers,
and which obeys the bound

[ Jim (0] < limsupl £ ()

X— 00

for all bounded sequences f. As is well known, the existence of such generalised limits follows from the
Hahn—Banach theorem. With these notations, we proved in [Tao and Terdvainen 2019, Theorem 1.1] the

following:
Theorem 1.6 (structure of logarithmically averaged correlation sequences). Let k > 1, and let hy, ..., hy
be integers and g1, . . ., gk : N — D be 1-bounded multiplicative functions. Let lim_, . be a generalised

limit functional. Let f : Z — D denote the function

*
flay:= lim [EL°§Xg1(n+ah1)-.-gk(n+ahk). )

(1) Ifthe product g - - - gx does not weakly pretend to be a Dirichlet character, then f is identically zero.
(1) If instead the product g - - - gx weakly pretends to be a Dirichlet character x, then f is the uniform
limit of periodic functions F;, each of which is y-isotypic in the sense that F;(ab) = F;(a)x (b)

whenever a is an integer and b is an integer coprime to the periods of F; and .

Among other things, Theorem 1.6 yields Theorem 1.5 as a direct corollary. Theorem 1.5 in turn can be
used to establish various results about the distribution of consecutive values of 1-bounded multiplicative

3 Alternatively, one could employ ultrafilter limits, or pass to subsequences in which all limits of interest exist. The latter
approach is for instance the one adopted in [Frantzikinakis 2017; Frantzikinakis and Host 2018; 2019].
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functions; to give just one example, in [Tao and Terdvdinen 2019, Corollary 7.2] it was used to show that
every sign pattern in {—1, 41} occurred with logarithmic density % amongst the Liouville sign patterns
A(n), A(n+1), A(n 4+ 2)).

From logarithmic averages to almost all ordinary averages. 1t would be desirable if many of the above
results for logarithmically averaged correlations such as [ELOE &1 (n+hy) - ge(n+hy) could be extended

to their unweighted counterparts such as E,<xgi(n + h1) - -- gr(n + hi). However, such extensions

log
n<X

unweighted averages [E,< xnt diverge. Similarly, the statement [ELO‘_E xA(n) = o(1) has a short and simple

cannot be automatic, since for instance the logarithmic averages [, ¢, n'' converge to 0 for ¢ # 0, but the
elementary proof,* whereas the unweighted analogue E,<xA(n) = o(1) is equivalent to the prime number
theorem and its proofs are more involved. Moreover, one can show” that if, for example, the correlation
limit limy_, oo E,<xA(n)A(n + 1) exists, then it has to be equal to 0, which means that proving the mere
existence of the limit captures the difficulty in the two-point unweighted Chowla conjecture.
Nevertheless, there are some partial results of this type in which control on logarithmic averages can
be converted to control on unweighted averages for a subsequence of scales X. For instance, in [Gomilko
et al. 2018] it is shown using ergodic theory techniques that if the logarithmically averaged Chowla
conjecture holds for all k, then there exists an increasing sequence of scales X; such that the Chowla
conjecture for all k£ holds for X restricted to these scales. This was refined in a blog post of Tao [2017b],
where it was shown by an application of the second moment method that if the logarithmically averaged
Chowla conjecture held for some even order 2k, then the Chowla conjecture for order & would hold for
all scales X outside of an exceptional set X C N of logarithmic density zero, by which we mean that

Jim EvSy1y(n) =0.

Unfortunately, as the only even number for which the logarithmically averaged Chowla conjecture is
currently known to hold is k = 2, this only recovers (for almost all scales) the k =1 case of the unweighted
Chowla conjecture, which was already known from the prime number theorem.

At present, the restriction to logarithmic averaging in many of the above results is needed largely
because it supplies (via the “entropy decrement argument”) a certain approximate dilation invariance,
which roughly speaking asserts the approximate identity

gi(p)--- gk(P)E:Exgl(n +hy)g(n+h) =~ [El,"é’xgl(n + phy) -+ gr(n+ phy)

for “most” primes p, and for extremely large values of X; see for instance [Frantzikinakis and Host
2019, Theorem 3.2] for a precise form of this statement, with a proof essentially provided in [Tao and

4One can for example prove this by writing [Eiloégxk(n) = —[Epfy[ELOéyxk(n)plmn + 0y—00(1), and then using the Turdn—
Kubilius inequality to get rid of the p1 ), factor; we leave the details to the interested reader.

SMore generally, one can use partial summation to show that, for any bounded real-valued sequence a : N — R, if
limy_ 5 [E:Lg x@(n) = a, then there exists an increasing sequence X; such that lim;_, o B, <x;a(n) = «. In particular, if the
logarithmic Elliott conjecture holds, then the ordinary Elliott conjecture also holds in the case of real-valued functions along
some subsequence of scales (which may depend on the functions involved).
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Terdvidinen 2019, Section 3]. However, an inspection of the entropy decrement argument reveals that it
also provides an analogous identity for unweighted averages, namely that

g1(p) - gk (PEi<xgin+hy) - gr(n+hy) *E<x/pg1(n+ phy) - - - gx(n+ phy) 3)

for “most” primes p, and “most” extremely large values of X; see Proposition 2.3 for a precise statement.
By using this form of the entropy decrement argument, we are able to obtain the following analogue of
Theorem 1.6 for unweighted averages, which is the main technical result of our paper and is proven in

Section 2.
Theorem 1.7 (structure of unweighted correlation sequences). Let k > 1, and let hy, ..., hy be integers
and g1, ..., 8k : N — D be 1-bounded multiplicative functions. Let limy_, . be a generalised limit

functional. For each real number d > 0, let f; : Z — D denote the function
*
fa(a) := lim Ey<x/ag1(n+ahy)--- gr(n+ahp). “)
X—o00

() If the product gi - - - gx does not weakly pretend to be any twisted Dirichlet character n — y (n)n',
then

. log|
Jim B 55| fa(@)] =0
for all integers a.

(ii) If instead the product g1 - - - gx weakly pretends to be a twisted Dirichlet character n — x (n)n', then

there exists a function f : Z — D such that
. log1 —i
lim E 2y*|fa(@) — fa)yd™"| =0 (5)
X—o00 "~
for all integers a. Furthermore, f is the uniform limit of x -isotypic periodic functions F;.°

We have defined f; for all real numbers d > 0 for technical reasons, but we will primarily be interested
in the behaviour of f; for natural numbers d; for instance, the averages limy_, [Elffi?g appearing in the
above theorem are restricted to this case. B

Roughly speaking, the logarithmic correlation sequence f(a) appearing in Theorem 1.6 is analogous
to the average limy_, o Eg)fi?g fa(a) of the sequences appearing here (ignoring for this discussion the
question of whether the limits exist). These averages vanish when ¢ # 0 in Theorem 1.7, and one
basically recovers a form of Theorem 1.6; but, as the simple example of averaging the single 1-bounded
multiplicative function n > ni already shows, in the # # 0 case it is possible for the f;(a) to be nonzero
while the logarithmically averaged counterpart f(a) vanishes.

By combining Theorem 1.7 with a simple application of the Hardy—Littlewood maximal inequality, we
can obtain several new cases of the unweighted Elliott and Chowla conjectures at almost all scales, as

follows.

That is, we have F;i(ab) = Fj(a)x (b) for any integers a and b with b coprime to the periods of F; and x.
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Corollary 1.8 (some cases of the unweighted Elliott conjecture at almost all scales). Let k > 1, and let
g1s .-, 8k : N — D be 1-bounded multiplicative functions. Suppose that the product g - - - g; does not
weakly pretend to be any twisted Dirichlet character n — x (n)n'.

(i) Forany hy, ..., hy € Z and € > 0, one has
|En<xg1(n+h1) - ge(n+h)| <&
for all natural numbers X outside of a set X, of logarithmic Banach density zero, in the sense that

. log
Jim, sup EL% <oy L. () =0. ©

(1) There is a set Xy of logarithmic density zero, such that

lim B En<xgi(n+hy) - g(n+h) =0

X—00; X¢Xy
forallhy, ..., hy €.

Remark 1.9. We note that Corollary 1.8 can be generalised to the case of dilated correlations

Ern<xgi(qin+hy)--- ge(gin + hy),

where ¢, ..., qx € N. To see this, one applies exactly the same trick related to Dirichlet character
expansions as in [Tao and Terdviinen 2019, Appendix A]. Similarly, Corollary 1.13 below generalises to
the dilated case. We leave the details to the interested reader.

Remark 1.10. We see by partial summation that if f: N — C is any bounded function such that for
every € > 0 we have |limy_, oo xgx, En<x f(n)| < & for some set X; C N of logarithmic Banach density 0,
then we also have the logarithmic correlation result lim supy_, | [El;gfw x)<n<x J (M) K ¢ for any function
1 < w(X) < X tending to infinity. Thus Corollary 1.8 is a strengthening of our earlier result [Tao and
Terdvidinen 2019, Corollary 1.6] on logarithmic correlation sequences. Similarly, Corollary 1.13 below is

a strengthening of [Tao 2016, Corollary 1.5].

Remark 1.11. The logarithmic density (or logarithmic Banach density) appearing in Corollaries 1.8
and 1.13 is the right density to consider in this problem. Namely, if one could show that the set Ap has
asymptotic density 0, then [1, c0) \ Xy would intersect every interval [x, (1 + ¢)x] for all large x, which
would easily imply (together with (56) below) that the unweighted correlation converges to zero without
any exceptional scales.

Remark 1.12. The twisted Dirichlet characters x (n)n'* appear both in Conjecture 1.3 and in Theorems 1.6
and 1.7. However, there is an interesting distinction as to how they appear; in Conjecture 1.3, ¢ is allowed
to be quite large (as large as X) and y (n)n!' is associated to just a single multiplicative function g j» while
in Theorems 1.6 and 1.7, the quantity ¢ is independent of X and is now associated to the product g; - - - gi.
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The dependence of ¢ on X in Conjecture 1.3(i) is necessary,” as is shown in [Matomiki et al. 2015];
roughly speaking, the individual g; can oscillate like n''i for various large ¢ ; in such a fashion that these
oscillations largely cancel and produce nontrivial correlations in the product g;(n + hy) - - - g (n + hy).
Meanwhile, Theorem 1.7 asserts in some sense that the shifted product g;(n+hy) - - - gx(n + hy) oscillates
“similarly to” the unshifted product g (n) - - - gx(n), so in particular if the latter began oscillating like n'
for increasingly large values of ¢ then the former product should exhibit substantial cancellation.

The proof of Corollary 1.8 is found in Section 3. So far, all of our results have concerned correlations
where the product of the multiplicative functions involved is nonpretentious. In the case of two-point
correlations, however, we can prove Corollary 1.8 under the mere assumption that one of the multiplicative
functions involved is nonpretentious, thus upgrading the logarithmic two-point Elliott conjecture in [Tao
2016] to an unweighted version at almost all scales.

Corollary 1.13 (the binary unweighted Elliott conjecture at almost all scales). Let g1, g» : N — D be
1-bounded multiplicative functions, such that there exists j € {1, 2} for which (1) holds as X — oo for

every Dirichlet character .

(1) For any distinct hy, hy € Z and ¢ > 0, one has
|[En<xgi(n+h1)g2(n+ho)| <e¢

for all natural numbers X outside of a set X; of logarithmic Banach density zero (in the sense of (6)).

(i1) There is a set Xy of logarithmic density zero such that

lim E,<xgi(n+hi)g2(n+h2)=0

X—00; XX
for all distinct hy, hy € Z.

When specialised to the case of the Liouville function, the previous corollaries produce the following
almost-all result.

Corollary 1.14 (some cases of the unweighted Chowla conjecture at almost all scales). There is an
exceptional set Xy of logarithmic density zero, such that

lim  EpexA(n+/hy) - A(n+hg) =0

X—00; X€X)

for all natural numbers k that are either odd or equal to 2, and for any distinct integers hy, . .., hi. The
same result holds if one replaces one or more of the copies of the Liouville function A with the Mobius

function (L.

In the case of the logarithmically averaged Conjecture 1.3(ii), in contrast, (1) might not be a necessary assumption, since the
sequence of bad scales constructed in [Matoméki et al. 2015, Theorem B.1] is sparse and thus does not influence logarithmic
averages.
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We establish these results in Section 3. One can use these corollaries to extend some previous results
involving the logarithmic density of sign patterns to now cover unweighted densities of sign patterns at
almost all scales. For instance, by inserting Corollary 1.14 into the proof of [Tao and Terdvéinen 2019,
Corollary 1.10(i)], one obtains the following.

Corollary 1.15 (Liouville sign patterns of length three). There is an exceptional set Xy of logarithmic
density zero, such that

. 1
X%gggl(ﬂo En<x LG.0) A4+ 1) A (14+2)=(eo.e1.€2) = 3

for all sign patterns (e, €1, €) € {—1, 1}°.

Similarly several other results in [Tao and Terdvéinen 2019] and in [Terdvdinen 2018] can be generalised.
For example, the result [Terdvédinen 2018, Theorem 1.16] on the largest prime factors of consecutive
integers can be upgraded to the following form.

Corollary 1.16 (the largest prime factors of consecutive integers at almost all scales). Let PT(n) be the
largest prime factor of n with P (1) := 1. Then there is an exceptional set Xy of logarithmic density 0,
such that

. _ 1
X»i(lar;r)lfﬁ.)fo [En§X1P+(n)<P+(”+1) -2 )

The same equality with ordinary limit in place of the almost-all limit is an old conjecture formulated
in the correspondence of Erd6s and Turdn [S6s 2002, pages 100-101; Erdés 1979]. We remark on the
proof of Corollary 1.16 in Remark 3.3. In [Terdvéinen 2018, Theorem 1.6] it was proved that (7) holds
for the logarithmic average [Eilof y (without any exceptional scales).

It would of course be desirable if we could upgrade “almost all scales” to “all scales” in the above
results. We do not know how to do so in general, however there is one exceptional (though conjecturally
nonexistent) case in which this is possible, namely if there are unusually few sign patterns in the
multiplicative functions of interest. We illustrate this principle with the following example.

Theorem 1.17 (few sign patterns implies binary Chowla conjecture). Suppose that for every € > 0, there
exist arbitrarily large natural numbers K such that the set {(A(n+1), ..., A(n+K)):neN}C{—1, +1}X
of sign patterns of length K has cardinality less than exp(¢ K /log K). Then, for any natural number h,
one has

lim E,<xA(m)A(n+h)=0.
X—o0 -

Remark 1.18. The best known lower bounds for the number s(K) of sign patterns of length K for the
Liouville function are very far from exp(e K /log K). It was shown by Matomiki, Radziwitt and Tao
[Matomaiki et al. 2016] that s (K) > K +5, and Frantzikinakis and Host [2018] showed that s(K)/K — oo
as K — oo, but the rate of growth is inexplicit in that result. This was very recently improved to
s(K) > K? by McNamara [2019]. If one assumes the Chowla conjecture (in either the unweighted or
logarithmically averaged forms), it is not difficult to conclude that in fact s(K) = 2X for all K.
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We prove this result in Section 5. Roughly speaking, the reason for this improvement is that the entropy
decrement argument that is crucially used in the previous arguments becomes significantly stronger under
the hypothesis of few sign patterns. A similar result holds for the odd order cases of the Chowla conjecture
if one assumes the sign pattern control for all large K (rather than for a sequence of arbitrarily large K)
by adapting the arguments in [Tao and Terdvidinen 2018], but we do not do so here. It is also possible to
strengthen this theorem in a number of further ways (for instance, restricting attention to sign patterns
that occur with positive upper density, or to extend to other 1-bounded multiplicative functions than the
Liouville function), but we again do not do so here.

One should view Theorem 1.17 as stating that if there is ”too much structure” in the Liouville sequence
(in the sense that it has a small number of sign patterns), then the binary Chowla conjecture holds. This is
somewhat reminiscent of various statements in analytic number theory that rely on the assumption of a
Siegel zero; for example, Heath-Brown [1983] proved that if there are Siegel zeros, then the twin prime
conjecture (which is connected to the two-point Chowla conjecture) holds. Nevertheless, the proof of
Theorem 1.17 does not resemble that in [Heath-Brown 1983].

Isotopy formulae. The conclusion of Theorem 1.7(ii) asserts, roughly speaking, that f;(a) “behaves like”
a multiple of x (a)d ™" in a certain asymptotic sense. The following corollary of that theorem makes this
intuition a bit more precise.

Theorem 1.19 (isotopy formulae). Let k > 1, let hy, ..., hy be integers and g1, ..., 8 : N — D be
1-bounded multiplicative functions. Suppose that the product g - - - gx weakly pretends to be a twisted
Dirichlet character n — x (n)n't.

(i) (Archimedean isotopy) There exists an exceptional set Xy of logarithmic density zero, such that

lim  (Epexgi(n+h1) - ge(n+he) — ¢ Euex/gg1(n+h1) - gi(n +hi)) =0
X—00; X €Xo

for all rational numbers q > 0.

(i) (Nonarchimedean isotopy) There exists an exceptional set Xy of logarithmic density zero, such that

lim — (En<xgi(n—ahy)- - gc(n —ahi) = x(=DEn<xgi(n +ahy) - ge(n+ahi)) =0
0

X—00; X¢&
for all integers a.

Remark 1.20. This generalises [Tao and Terdviinen 2019, Theorem 1.2(iii)], which implies f(—a) =
x(—1)f(a) where f(a) is a generalised limit of a logarithmic correlation defined in (2) (indeed,
Theorem 1.19(ii) implies by partial summation that f(—a) = x(—1) f(a) in the notation of (2)). In
[Tao and Terdvdinen 2019], we only considered logarithmically averaged correlations, and for such
averages Theorem 1.19(i) does not make sense, as logarithmic averages are automatically slowly varying.
However, for unweighted averages Theorem 1.19(i) gives nontrivial information about the behaviour of
the correlation at nearby scales.
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We give the proof of Theorem 1.19 in Section 4. We show in that section that, perhaps surprisingly,
the nonarchimedean isotopy formula (Theorem 1.19(ii)) allows us to evaluate the correlations of some
multiplicative functions whose product does pretend to be a Dirichlet character. Among other things, we
use the isotopy formula to prove a version of the even order logarithmic Chowla conjectures where we
twist one of the copies of the Liouville function by a carefully chosen Dirichlet character and the shifts of
A are consecutive.

Corollary 1.21 (even order correlations of a twisted Liouville function). Let k > 4 be an even integer,
and let x be an odd Dirichlet character of period k — 1 (there are ¢(k — 1) /2 such characters). Then there
exists an exceptional set Xy of logarithmic density 0, such that

lim = En<xx(mAmrn+a)---An+ Kk —1Da) =0 ®)

X—00;X¢
for all integers a.

By partial summation, we see from (8) that we have the logarithmic correlation result

n<X

lim o y (mAmAm+1)---A(n+k—1) =0,
—>00

which is already new. We stated Corollary 1.21 only for even k&, but of course the result also holds for
odd k by Corollary 1.8.
The assumption that x is an odd character is crucial above, as will be seen in Section 4; the isotopy
formulae are not able to say anything about the untwisted even order correlations of the Liouville function.
We likewise show in Section 4 that the archimedean isotopy formula (Theorem 1.19(i)) gives a rather
satisfactory description of the limit points of the correlations

En<xgi(n+hy)---gr(n+hy), 9

where the product g; - - - gy weakly pretends to be a twisted Dirichlet character n — x (n)n'* with 1 # 0.
Indeed, our Theorem 4.2 shows that once one continuously excludes the scales at which the correlation
(9) is close to zero, the argument of the quantity in (9) is in a sense uniformly distributed on the unit
circle. This uniform distribution is indeed expected when g; are pretentious; for example, one has
E.< xnlt = Xit /(14it) + o(1), which uniformly distributes on the circle of radius 1/|1 + i¢| with respect
to logarithmic density.

Proof ideas. We now briefly describe (in informal terms) the proof strategy for Theorem 1.7, which
follows the ideas in [Tao and Terdvdinen 2019], but now contains some “archimedean” arguments (relating
to the archimedean characters n — n'') in addition to the “nonarchimedean” arguments in [loc. cit.]
(that related to the Dirichlet characters n — x (n)). The new features compared to [loc. cit.] include
extensive use of the fact that the correlations f;(a) are “slowly varying” in terms of d (this is made
precise in formula (16)), and the use of this to derive “approximate quasimorphism properties” for certain
quantities related to these correlations (these are detailed below). We then prove that the approximate
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quasimorphisms are very close to actual quasimorphisms (which in our case are Dirichlet characters or
archimedean characters), which eventually leads to the desired conclusions.

As already noted, one key ingredient is (a rigorous form of) the approximate identity (3) that arises
from the entropy decrement argument. In terms of the correlation functions f;(a), this identity takes the
(heuristic) form

Jfap(@)G(p) =~ falap)

for any integers a, d and “most” p, where G := g - - - gx; see Proposition 2.3 for a precise statement.
Compared to [loc. cit.], the main new difficulty is the dependence of f; on the d parameter.
Assuming for simplicity that G has modulus 1 (which is the most difficult case), we thus have

fap(@) = fa(ap)G(p)

for any integers a, d and “most” p. Iterating this leads to

Foip (@ = fi(ap1p2)G(p1)G(p2) (10)

for “most” primes pp, p» (more precisely, the difference between the two sides of the equation is o(1)
when suitably averaged over pi, p;; see Corollary 2.4). On the other hand, results from ergodic theory
(such as [Leibman 2015; Le 2018]) give control on the function fj(a), describing it (up to negligible
errors) as a nilsequence, which can then be decomposed further into a periodic piece fi o and an “irrational”
component. The irrational component was already shown in [Tao and Terdvidinen 2019] to give a negligible
contribution to the (10) after performing some averaging in p;, p», thanks to certain bilinear estimates
for nilsequences. As such, one can effectively replace f; here by the periodic component fi o (see (19)
for a precise statement).
We thus reach the relation

Soip (@) = f10(ap1p2)G(p1)G(p2)

for “most” pi, p2. Let g be the period of f;o. If we pick two large primes p; = ¢ (mod ¢) and
pi = bc (mod q) for arbitrary b, ¢ € (Z/qZ)* with p; ~ p; (using the prime number theorem), we get

fr.0(acp2)G(p1) = f1.0(abepa)G(p)),

for “most” pjy, p/l, P2, since the averages f;(a) are slowly varying as a function of d (see (16) for the
precise meaning of this). Choosing p» = 1 (mod g), we see that the quotient f; o(ac)/f1,0(abc) is
independent of a (since pi, p| were independent of a). Substituting then a = a; and a = a, to the
quotient, we get the approximate identity

fiolaic) fi,0(axbe) =~ fi0(aibe) f1,0(azc); (11)

see Proposition 2.7 for a precise version of this, where we need to average over ¢ to make the argument
rigorous. We may assume that f(agp) 7 O for some ay, as otherwise there is nothing to prove, and this
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leads to fi g(ap) # 0. Taking a; = aoc™! (mod q), a» = ap (mod ¢) in (11), we are led to

f1,0(ao0) f1,0(aobc) =~ fi,0(aob) f1,0(aoc)

Thus, the function ¥ (x) = f1.0(aox)/f1,0(ap) satisfies the approximate quasimorphism equation

VY (b1b2) = Yy (b)Y (D2)

for by, by € (Z/qZ)* ranging in the invertible residue classes in Z/qZ and some unknown function
v (Z/qZ)* — C (to make the above deductions rigorous, we need to take as ¥ (x) an averaged
version of x — f1.0(aox)/f1.0(ap)). Moreover, the function v (x) takes values comparable to 1. Of
course, Dirichlet characters obey the quasimorphism equation exactly; and we can use standard “cocycle
straightening” arguments to show conversely that any solution to the quasimorphism equation must be
very close to a Dirichlet character xy (see Lemma 2.8 for a precise statement). This will be used to show
that f10 and f; are essentially x-isotypic.

Once this isotopy property is established, one can then return to (10) and analyse the dependence of
various components of (10) on the archimedean magnitudes of p;, p, rather than their residues mod q.
One can eventually transform this equation again to the quasimorphism equation, but this time on the
multiplicative group R rather than (Z/qZ)* (also, the functions ¥ will be “log-Lipschitz” in a certain
sense). Now it is the archimedean characters n — n'® that are the model solutions of this equation, and we
will again be able to show that all other solutions to this equation are close to an archimedean character
(see Lemma 2.10 for a precise statement). Once one has extracted both the Dirichlet character y and
the archimedean character n — n'* in this fashion, the rest of Theorem 1.7 can be established by some
routine calculations.

Notation. We use the usual asymptotic notation X < Y, Y > X, or X = O(Y) to denote the bound
|X| < CY for some constant C. If C needs to depend on parameters, we will denote this by subscripts,
thus for instance X «; Y denotes the estimate | X| < CiY for some C; depending on k. We also write
On—o00(Y) for a quantity bounded in magnitude by c(n)Y for some c(n) that goes to zero as n — 00
(holding all other parameters fixed). For any set X C N with infinite complement, we define the limit
operator limy , oo xgx f(X) as lim, .« f(x,), where xi, x2, ... are the elements of the complement
N\ X in strictly increasing order.

We use a (g) to denote the residue class of @ modulo ¢. If E is a set, we write 1g for its indicator
function, thus 1x(n) =1 when n € E and 1g(n) = 0 otherwise.

We use the following standard multiplicative functions throughout the paper:

o The Liouville function A, which is the 1-bounded completely multiplicative function with A(p) = —1
for all primes p.

o The Mobius function p, which is equal to A at square-free numbers and 0 elsewhere.

e Dirichlet characters x, which are 1-bounded completely multiplicative functions of some period ¢,
with x (n) nonzero precisely when n is coprime to g.
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o Archimedean characters n — n", where ¢ is a real number.

o Twisted Dirichlet characters n — x (n)n", which are the product of a Dirichlet character and an
archimedean character.

In the arguments that follow, asymptotic averages of various types feature frequently, so we introduce
some abbreviations for them.

Definition 1.22 (asymptotic averaging notation). If f : N — C is a function, we define the asymptotic
average

Eversf (n) = lim E,<x f(n)

provided that the limit exists. We adopt the convention that assertions such as E,cn f(n) = o are

automatically false if the limit involved does not exist. Similarly define [ELOGgN f(n) and [Eiloegéjog fn). If

f: P — Cis a function, we similarly define
Epep f(p):= lim Ep<x f(p) and [E;,)ﬁpf(p) = lim [E,,<Xf(p)-

Moreover, given a generalised limit functional lim}_, ., we define the corresponding asymptotic limits

log,* rloglog,* log
* *
IEneN’ [EneN ’ IEnGN [EpeP’ peP

for instance

by replacing the ordinary limit functional by the generalised limit, thus

E°8* £(n) := 1ffn E°S. £ (n).

neN n<X

Lofr’\‘* f(n) will attain the same value; but

the latter limit exists for all bounded sequences f, whereas the ordinary limit need not exist. In later

If an ordinary asymptotic limit such as [En enJ () exists, then E

parts of the paper we will also need an additional generalised limit lim¥", _, and one can then define
. . log, *x .
generalised asymptotic averages such as £, " f (n) accordingly.

Remark 1.23. If f is a bounded sequence and « is a complex number, a standard summation by

parts exercise shows that the statement E,cn f(n) = o 1mphes [En enJ (n) = a, which in turn implies
loglog
neN

can be highly nontrivial or even false. For instance, as mentioned earlier, it is not difficult to show
that [ELOEgNn = 0 for any ¢ # 0, but the limit E,enn't does not exist. (On the other hand, from the
prime number theorem and partial summation one has E,cpp" = 0.) In the same spirit, if A is the

f(n) =a, and similarly E,cp f (p) =« implies E'°8 peP f(p) = a; however, the converse implications

E3]

set of integers whose decimal expansion has leading digit 1, then one easily computes “Benford’s law
log
neN

14(n) = (log2)/(log 10), whereas E,cn14(n) fails to exist.

2. Proof of main theorem

In this section we establish Theorem 1.7. We first establish a version of the Furstenberg correspondence
principle.
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Proposition 2.1 (Furstenberg correspondence principle). Let the notation and hypotheses be as in
Theorem 1.7. Then for any real number d > 0, there exist random functions gid), e g,gd) :Z— Danda

random profinite integer n'¥) e 2.8 all defined on a common probability space QYD such that
%k
EDF (g (h))1<i<k—n<n=n, 0D (@) = Jim By x/a F((8i(n + )ik, -N<hsn, 7 (@)

for any natural numbers N, q and any continuous function F : DXCN+D 57 /47 — C, where E@) denotes
the expectation on the probability space QY. Furthermore, the random variables gfd), R g,Ed) Z—D
and n'D € 7 are a stationary process, by which we mean that for any natural number N, the joint
distribution of (gl-(d)(n + h))1<i<k.—N<h<n and n@ + n does not depend on n as n ranges over the
integers.

Proof. Up to some minor notational changes, this is essentially [Tao and Terdviinen 2019, Proposition 3.1],
log

X [ Wi SN=<Xpm

applied once for each value of d. The only difference is that the logarithmic averaging E there

has been replaced by the nonlogarithmic averaging E,<x /4. However, an inspection of the arguments
reveal that the proof of the proposition is essentially unaffected by this change. (Il

Let G : N — D denote the multiplicative function G := g; - - - gx. We now adapt the entropy decrement
arguments from [Tao and Terdvédinen 2019, Section 3] to establish the approximate relation

fa(ap) = fap(a)G(p) (12)

for integers a, real numbers d > 0, and “most” primes p.
Fix a, d, and let p be a prime. From (4) we have

Jap(@)G(p) = xlljolo En<x/apgi(p)g1(n+ahy)---g(p)gr(n+ahy).

From multiplicativity, we can write g;(p)g;j(n+ah;) as gj(pn+aph ;) unless n = —ah; (p). The latter
case contributes 0( ) to the above limit (where we allow implied constants to depend on k), thus

1
)4
*
fap(@G(p) = lim Ey<vjapgi(pn +aph) -« g(pn+aphi) + 0(3).
If we now make pn rather than n the variable of summation, we conclude that
*
fap@G(p) = lim Enzyjagi(n+aphy)---ge(n+aphplyin+0(5)-
Comparing this with (4), we conclude that
*
fap(@G(p) — falap) = lim Ey<yjagi(n+aphy)--- gi(n+aph)(plyn — 1)+ o(3)

and hence by Proposition 2.1

fap@G(p) = fa(ap) =E@g{" (aphy) -+ g, (aphi)(p1 1 aw — 1) + O (L) (13)

8The profinite integers Z are the inverse limit of the cyclic groups Z/qZ, with the weakest topology that makes the reduction
maps n — n (g) continuous. This is a compact abelian group and therefore it has a well-defined probability Haar measure.
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On the other hand, by repeating the proof of [Tao and Terdvainen 2019, Theorem 3.6] verbatim (see
also [loc. cit., Remark 3.7]), we have the following general estimate:
Proposition 2.2 (entropy decrement argument). Let g1, ..., g : Z — D be random functions and n € VA
be a stationary process, let a, hy, ..., hy be integers, and let 0 < ¢ < % be real. Then one has
Eon<p<omsi|Egr(aphy) - - - grlaphi)(plpin — Dl < ¢

for all natural numbers m outside of an exceptional set M obeying the bound

> L anyn, & Hlog L. (14)
meM
Note that the bound (14) is uniform in the random functions g1, ..., g (although the set M may

depend on these functions). Summing the result over different dyadic scales gives us the following version
of (12).

Proposition 2.3 (approximate isotopy). Let the notation and hypotheses be as in Theorem 1.7. Let a be

an integer, and let € > 0 be real. Then for sufficiently large P, we have

sup Ex® ol fap(@G(p) — falap)| <e

where the supremum is over positive reals.

A key technical point for our application is that while P may depend on a, ¢, it can be taken to be
uniform in d.

Proof. Let a, e, P be as in the proposition, and let d > 0. We may assume that ¢ > 0 is small. By the
prime number theorem, we have

1
E;§p|fdp(a>G(p) — falap)| K [E}q(;gf(log p)/(]ogz)[EZ'"gp<2m+' |fdp(a)G(P) — fa(ap)|.

By (13) and Proposition 2.2, we have

[EZ”’Sp<2”‘+1 |fdp(a)G(P) - fd(ap)| =< 82

for all m outside of an exceptional set M, . 4 obeying the bound
Z % <<a,h1 ..... hy 878 log %

In the exceptional set M, . 4, we use the trivial bound

Eon<pcomtt| fap(@)G(p) — falap)| K 1
to conclude that

[Elog

e 8log1/e
e plfap(@G (p) — faap)| K & + O, (—g/)

loglog P

and the claim follows by choosing P large in terms of a, €, hy, ..., h. |
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As in [Tao and Terdviinen 2019], we iterate this approximate formula to obtain:

Corollary 2.4. For any integer a one has

lim sup lim sup Ey%_ p, % | £, (@G (p1)G (p2) — fi(api p2)| =

Pi—>o0 P~

Proof. Let a be an integer, let ¢ > 0 be real, let P; be sufficiently large depending on a, ¢, and let P, be
sufficiently large depending on a, ¢, P;. From Proposition 2.3 one has

Ey® p | foups @G (p1) = fp(ap))| < &

for all primes p», and hence

1 1
ERSp EYS 1 fpm @G (PG (p2) — fr, (ap)G(p2)] <.

On the other hand, from a second application of Proposition 2.3 one has

EvS_ | fpa (@p))G(p2) — filapipo)| < &

for all p; < Py, and hence

1 1
Epe p Epepy | fr (@p1)G(p2) — filapip2)| < &.

From the triangle inequality we thus have

1 1
S p B e | o1 pa (@G (p1)G(p2) — filapip)| K &

under the stated hypotheses on ¢, Py, P>. Taking limit superior in P, and then in P, we conclude that

log

lim sup lim sup E'°8 p1<P Eprep | [pip: (@G (p1)G(p2) — filapip2)| K &

Pi—o0 P,—o0

for any ¢ > 0, and the claim follows. U
Next, we have the following structural description of fi.

Proposition 2.5. Let f| be as in Theorem 1.7. For any ¢ > 0, one can write

fi=fiotg

where f10= fl(so) is periodic, and the error g = g® obeys the bilinear estimate

Ep <xEp,<yap Bpglap1p2) KL & (15)

as well as the logarithmic counterpart

1 I
[Ezflg <x [E.l(7)2g<yapl Bpglapipr) K ¢

whenever a is a nonzero integer, x is sufficiently large depending on a, €; y is sufficiently large depending

onx,a,é¢;andap,, Bp, = O(1) are bounded sequences.
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Proof. We freely use the notation from [Tao and Terdviinen 2019, Sections 4-5]. By summation by parts
it suffices to obtain a decomposition obeying (15). By repeating the proof of [loc. cit., Corollary 4.6]
verbatim,” we can write

fi=fir+ fiz

where f],1 is a nilsequence of some finite degree D, and f] » obeys the asymptotic
lim Ep<i|fi2(ap)| =0
X—>00

for any nonzero integer a. We can now neglect the fj» term as it can be absorbed into the g error. Next,
applying [loc. cit., Proposition 5.6], we can decompose

D U
frii=fio+ ZZCi,in,j
i=1 j=1
for some periodic function f} o, some nonnegative integers Ji, ..., Jp, some irrational nilcharacters x; ;
of degree i, and some linear functionals ¢; ;. Using [loc. cit., Lemma 5.8] (noting that if x is an irrational
nilcharacter, then so is x (a-)) we see that each of the terms ¢; ; x; ; can be absorbed into the error term g.
The claim then follows from the triangle inequality. (I

Finally, we record a simple log-Lipschitz estimate

| fa, (@) — fa,(a)| < 2[logd) —logds| (16)

for any integer a and any real di, d> > 0; this follows by using (4) and the triangle inequality to estimate
| fa, (@) — fa,(a)| <2|d| — dz|/max{d,, d2} and then the mean value theorem to x — log x.
We return to the proof of Theorem 1.7. If we have

lim sup Ey %] f4(a)] = 0
X—o0

for all a, then the claim follows by setting f = 0, so we may assume without loss of generality that there

exists an integer ag such that

lim sup Ey¢ 0| f4(ag)| > 0.
X—00

sk

Thus, by the Hahn—-Banach theorem, we may find a generalised limit limy",

(which may or may not be
equal to the previous generalised limit lim¥_, ) such that

Kk
. log log

lim E ap)| >0
Jim_EZ 5| fu(ao)| > 0,

K3k

and thus using the generalised limit asymptotic notation associated to limy",

(see page 1), we have

EVSCE*) f1(a0)| > 1. (17)

9In [loc. cit., Corollary 4.6], a was required to be a natural number rather than a nonzero integer, however one can easily
adapt the arguments to the case of negative a with only minor modifications (in particular, one has to modify the definition of
X slightly to allow [ to be negative).
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. . . . log log,
For future reference we record the following convenient lemma relating the averaging operator E ; egNOg =
. log, 3
with £ Zp

Lemma 2.6 (comparing averages over integers and primes). Let f : N — C be a function which is
bounded log-Lipschitz in the sense that there is a constant C such that | f (d)| < C and | f(d) — f(d")| <
Cllogd —logd'| for all d, d’ € N. Then for any natural number a, one has

lim sup|[E?§}?gf(d) — [E}:ixf(apﬂ =0,
X—00

so in particular

loglog, log,
Egin ™" f(@) =E,2p" f(ap).

Proof. We allow implied constants to depend on C, a. Let ¢ > 0, and assume X is sufficiently large
depending on C, . Then from the prime number theorem and the bounded log-Lipschitz property we
have

1

log _ f(ap)
Epx /D) = ooeX ;{ S, To®

_ 1 1 f(ap)
_loglongst Z p +0()

<X d<p=<(l+e)d

. 1 1 f(ad)
_loglogXZS_ Z d + 0

d
d=X d=p=(1+e)d

f(ad)
dizxdlog(2+d) + O(e).

1
" loglog X

Again by the bounded log-Lipschitz property, we have

1
fady=- > fd)+0(/d),
a
ad<d'<a(d+1)
and inserting this into the preceding computation, we get

log 1 , 1 1

E - a1t I .,

px D) = e X IORICAIEEDY dlogata) T0®
d'<aX d'Ja—1<d<d'|a

1 3 f(d)
= 0 .
loglog X =% d'log2+d’) +0()

Taking the absolute value of the difference of the two sides of this equation, applying lim supy_, ., and
then sending € — 0, we obtain the claim. ]

Now, let ¢ > 0 be a sufficiently small parameter. If one had

Z 1—1g;(pl >

> p
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for some 1 < j <k, then by Wirsing’s theorem [1967] as in [Tao and Terdvéinen 2019, Section 6] one
would have f;(a) =0 for all a, d. Thus we may assume that

Z 1—1g j ()l
—_— <
> p

for all j, which implies in particular that one has

l—e=<|G(pl=1 (18)

for all but finitely many p. For any integer a, we see from Corollary 2.4 that

lim sup limsup Ex®_, B8 | £, (@G (p1)G(p2) — fi(apip2)| < &

P| —0Q P2—>
By (18) we then have

limsup limsup Ex%_, E_ 1 | £, (@) = G(p1)G(p2) f (ap1 p2)| < &

Pi—oc0 Py—>o0

Applying Proposition 2.5, we conclude that

l
limsup limsup Ex%_, E%_ | £, (@) — G(p1)G(p2) fi0(ap1 p2)] < e. (19)
Pi—o00 Pr,—o0
In particular we have
1 l N N~
e pEp | foup (@ — G(p1)G (p2) f10(ap1 p2)l < &. (20)

Heuristically, (20) asserts the approximation

foipa(@) = G(p1)G(p2) f1.0(ap1p2) (2D

for “most” a, p1, p2. This turns out to be a remarkably powerful approximate equation, giving a lot of
control on the functions G, fy, and f] o. Roughly speaking, we will be able to show that the only way
to solve (21) (in a manner compatible with (17) and (16)) is if G(p) ~ x (p)p", fs(a) ~ f(a)d~ ", and
f1.0~ f for some x-isotypic g-periodic function f. Conversely, it is easy to see that if G, f4, f1,0 are of
the above form, then they obey (21).

We first use (20) to control f . Let g denote the period of fj o (which depends on ¢); by abuse of
notation, we view f1,o as a function on Z/qZ as well as on Z. We then have:

Proposition 2.7 (initial control on fj 9). Let ag be as in (17). We have

Ecez/qzy* | f1,0(aoc)| > 1. (22)

Furthermore, for any integers ay, a, and any natural number b coprime to q, we have

Ecez/qmy<| f1,0(arc) fi0(axbe) — fio(aibe) fio(azxo)| K e. (23)
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Proof. By Lemma 2.6, (17) and (16), we see that

1 log 1
ES 5| i o (a0)] = E2°™ | f(ag) > 1

for any pj, and hence

log, s log ok
[EpleP preP |fp1pz(a0)| > 1.

On the other hand, from (20) we have

1 1 N NN
Epep Epmep | foip(@0) = G(p1)G(p2) f10(aop1p2)| < e (24)

From the triangle inequality, we have

[ fp1p,(@0)| K | f1.0(@p1p2)| + | fpp,(a0) — G(p1)G(p2) f1.0(a0p1p2)],

and hence (since ¢ is assumed small)

logx
|E[§)1ge>;:k ﬁfe?klfl olaop1p2)| > 1.

By the periodicity of fi,0 and the prime number theorem in arithmetic progressions, we conclude (22).
Next, let ay, ap, b be as in the proposition. Applying (20) twice, we see that

log xx |
Eyp Epp | foip (@) = G(pDG(p2) fiolarpipa)] < & (25)
and
log sox 1 AT
Epcp Epep | foim (@) = G(pG(p2) fio(apip2)| K e. (26)
We now eliminate the functions f,, ,, and G from these estimates. As in the proof of Lemma 2.6, we
can use the prime number theorem in arithmetic progressions to rearrange the left-hand side of (25) as

log, log
Epip Ecezjany Eqen s Bazp=(borts p=e @) fpipa (@) = GG (p2) f1.0(a1 p1p2)] + O (e)
and hence after a change of variables ¢ — bc (and renaming p» as p})

log, log log, ———
[E;)lg;;k[Ece(Z/qZ)X E et **[Edgp;<(1+s)d;p;=bc @ fppy (@) = G(p)G(p)) frolapipy)| K e.

From (16), we have f,, ,,(a1), fplp’z (a1) = fp,a(ar) + O(e); from the periodicity of fi o we also have
frolaipip2) = fiolaicpy) and fio(a1 p1p5) = fi,0(aibepr). We conclude that

. o
[E;,)lge?k[Ece(Z/qZ)X[EdeN T Ei<pr<(iterd: prec @) | frra(@ar) — G(p1)G(p2) frolarcpr)| K &
and

log, %% log log,

[Eplgép Ece/qny<Eqon ™ Ea<py<+eyd: py=be @)l fpralar) — G(p)G (P frolatbepy)| < &

and hence by the triangle inequality and (18) we have

log, 3 K%
Eysp Ece/anEaent  Eazpr<(+e)d: prc (@)
X Eg<py<(14e)d: py=be (|G (P2) fr0(aicpr) — G(py) fiolarbepr)| K e.



2124 Terence Tao and Joni Teravainen

We have thus eliminated f), », and one factor of G; we still seek to eliminate the other factor of G. To do

this, we replace a; by a; in the above analysis to obtain

log, % log log,
[EpleP Ece@/qz) [EdeN

Ea<pr<+erd:pr=c (@)
X Eg<py<(14e)d: py=be (|G (P2) fr0(azepr) — G(py) fi0(azbepr)| K e.
At this point, let us note that | f1 0(a)| < 1 for a € Z. To see this, we use Corollary 2.4 to conclude that

. -
lim sup lim sup [Ep1<P1 — (q)[E;2g<P2 o=t (@) pip(@) = G(p1)G(p2) fro(@)] =0

Pi—>o0 P,—o00

Then from the triangle inequality, (18), and the trivial bound | f), »,(a)| < 1 we reach the conclusion

| fro@)] < 1.
Next observe the identity

G(p2)(f1,0(aicpy) f1,0(azbepr) — fi,0(aibepy) fi,0(azepr))

= f1,0(a2bcp1)(G(p2) f1,0(aicpr) — G(ph) fi,0(a1bepy))
— fr.0(a1bep1)(G(p2) f1,0(azepr) — G(p3) fi.0(azbepr));

we thus have from the triangle inequality, the boundedness of | f1 0(a)l, and (18) that

| f1.0(a@1cpy) f1,.0(a2bepy) — f10(aibepy) f1,0(azcpr)|
<L I1G(p2) fiolaicpr) — G(p5) fiolaibep)| + G (p2) fi0(axepr) — G(p)) fi0(azbep)|

for all but finitely many p;, p», and thus by further application of the triangle inequality

log, 3 K%
Eysp Ece/anEaent  Ea<pr<(+e)d: prc (@)
X Ba<py<(+e)d: py=be @ f1,0(@1cp) fro(azbepy) — fiolaibepy) fiolazepn)| < e.

As the expression being averaged does not depend on d, p», p5, this bound simplifies to
[Eflg;;[Ece(Z/qZ)x | f1,0(a1cpy) f1,0(azbepr) — fir0(aibepy) fi0(azepr)| K &

and by the prime number theorem in arithmetic progressions and the periodicity of fj o, this simplifies
further (see Lemma 2.6) to give the desired bound (23). O

Let a be an integer, and let b be coprime to ¢. Applying (23) with a; = a and a, = apc’ for ¢’ coprime

to ¢, and averaging, we conclude that

Eee@/qz)<Ece@/qm< | f1,0(ac) fio(aobec’) — fio(abe) fiolapec’)| K &

and hence

Eee@/qz)<Eee@/qn)~

fro(ac) fi.0(aobec’) fio(agec’) — fi,0(abo)l fi,0(aoec)?| < e.



Correlations of multiplicative functions 2125

By the triangle inequality, this implies that

Ece/q2) | 1,0(a0)Evcz /g2y« f1.0(@obec’) fioaoec’) — f1,0(abe)Epez qn<| fi0laoce) 1P| < e.

Making the change of variables ¢”” = ¢c/, this is

f1.0a0)Eere@qny< fr0laobe”) fiolaoc”) — fi,0(abe)Eerez qz)* |f1,0(doC”)|2‘ L.
If we define the function v : (Z/qZ)* — C by

Ecez/qz)~

ez frofabe’) Froa@oe”)
Eerez/qzy* | f1.0(aoc”)?

then by (22) and Cauchy—Schwarz, we have ¥ (b) = O(1) for all b € (Z/qZ)*, and

Ecez/qzy<| fr.0(@a)¥ (D) — frolabo)| K e (27)

foralla e Z/qZ and b € (Z/qZ)*.
By definition, ¢ (1) = 1. Next, we establish an approximate multiplicativity property of ¥, known

E
Y (b) =

as the quasimorphism property [Kotschick 2004] in the literature. If by, by € (Z/qZ)*, then from three
applications of (27) one has
Ecez/qz*1 f1,0(aoc) ¥ (b1) — fio(aobic)| K e
Ecez/qz*1 f1,0(aob1c) ¥ (b2) — f1.0(aob1b2c)| K €
Ece@/qz)<| f1,0(a0c) ¥ (b1b2) — f1,0(apb1b20)| K &.

Applying the triangle inequality (after multiplying the first inequality by | (b,)|, we conclude that

Ecez/qzy< | f1,0(a0c) (Y (b1ba) — ¥ (b)Y (b2))] K &

and hence by (22) we have the quasimorphism equation

Y (b1b2) = Y (b)Y (b2) + O(e).

We now apply a stability theorem to replace this quasimorphism on (Z/gZ)* by a homomorphism
(i.e., a Dirichlet character).

Lemma 2.8 (stability of Dirichlet characters). Let ¢ > 0, and let v : (Z/qZ)* — C be a function
obeying the bound ¥ (b) = O(1) for all b € Z/qZ, the identity V(1) = 1, and the quasimorphism
equation Y (b1by) = ¥ (b)Y (by)+ O(e) forall by, by € (Z/qZ)*. Then there exists a Dirichlet character
x : (Z/qZ)* — S! of period q such that ¥ (b) = x (b) + O(¢) for all b € (Z/q7)*.

This lemma is a special case of Kazhdan [1982],'0 and also follows from [Balog et al. 2013, Proposi-
tion 5.3] (which cites [Babai et al. 2003] for a more general result), but for the convenience of the reader
we give a self-contained proof here.

10We thank Assaf Naor for this reference. Ben Green also pointed out to us the closely related fact that the bounded
cohomology of amenable groups is trivial; see for instance [Frigerio 2017, Theorem 3.7].
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Proof. We can assume that ¢ is smaller than any given positive absolute constant, as the claim is trivial
otherwise. Since 1 = (1) = v ()Y (b)) 4+ O(e) and ¥ (b~") = O(1), we see that | < | (b)]| < 1
for all b € (Z/qZ)*. We introduce the cocycle p : (Z/qZ)* x (Z/qZ)* — C by defining p(by, by) for
b1,by € (Z/qZ)* to be the unique complex number of size O (g) such that

Y (b1b2) = ¥ (b)Y (b2) exp(p (b1, b2)); (28)
this is well-defined for & small enough. For by, by, b3 € (Z/qZ)*, we have
U (b1b2b3) = ¥ (b1D2) Y (b3) exp(p (D12, b3)) = ¥ (b)Y (b2) ¥ (b3) exp(p (b1, b2) + p(b1b2, b3))
and
Y (b1b2b3) = Y (b1) ¥ (b2b3) exp(p (b2, b3)) = ¥ (b)Y (b2) ¥ (b3) exp(p (b1, bab3) + p (b2, b3))

which on taking logarithms yields (for ¢ small enough) the cocycle equation

p (b1, b2) + p(b1b2, b3) = p (b1, brb3) + p(b2, b3).
Averaging in b3, we conclude the coboundary equation

p (b1, b2) + ¢ (b1b2) = ¢(b1) + ¢ (b2)
where ¢ (b) := Ep,ez/92)% 0 (b, b3). If we then define the function x : Z/qZ — C by
x (D) := ¥ (b) exp(¢ (b)),
then ¥ (b) = x (b) + O(e) for all b € (Z/qZ)*, and from (28) we have
X (b1b2) = x (b1) x (b2)

for all by, by € (Z/qZ)*, thus x : (Z/qZ)* — C is a homomorphism and therefore a Dirichlet character
of period g. The claim follows. 0

Let x be the Dirichlet character of period g provided by the above lemma, then from (27) and the
triangle inequality we have the approximate isotopy equation

Ecez/qzy< | f1,0(ac) x (b) — frolabe)| K &
foralla € Z/qZ and b € (Z/qZ)*. We can rearrange this as
Ecez/qz)* ) f10(ac) — x (b) fi0(abe)| < e

and average in b to conclude that

Ecez/qzy<| fr0(ac) — flao)| K & (29)

for all a, where f :7/qZ — C is the function

f(@) :=Epezsqz< X B) f1.0(ab).
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Observe that f is X -isotypic in the sense that

fab) = x(b) f (@)
whenever a € Z/qZ and b € (Z/qZ)*.
From (29) and (22), one has
Ecez/qzy<| f (aoc)| > 1

and hence by the x-isotypy of f
|f (@) > 1. (30)

Now we work to control f;. Let a be an integer. From (29) and the prime number theorem in arithmetic
progressions, we have

lim sup lim sup Ep1<p1 p2<p2|f1 o(apip2) — flapipr)| < &

P1—>OO Pz—)OO

From this, (18), (19), and the triangle inequality, we conclude that

lim sup lim sup |EPI<P1 1];)£g<p2|f171172(a) G(p)G(p2) flapip2)] < e.

Pi—o00 Py—o0

Using the y-isotopy of f, we can write this as

limsup limsup Ex%_, E%_ | fou 0 (@) = Gx (PG x (p2) f(@)] < e (31)

Pi—>o00 Py,—>00
This has the following useful consequence.

Lemma 2.9 (isotopy). Let the notation be as above. Let a be an integer and let b be an integer coprime
to q. Then we have

lim sup Ey % 0| f4(ab) — x (b) fa(@)| < &.

X—00

Proof. 1t suffices to prove the claim with an arbitrary generalised limit lim}_, . in place of limsupy_, .
From (31) we have

Er eS| fpup (@) — Gx (PG X (p2) f(@)] < &
and

IElog>s< log,* ~ 3

pepEpepl foum(@b) = Gx(p)G X (p2) f (ab)| K &.

As f is isotypic, f (ab) = x (b) f (a). From the triangle inequality and (18), we conclude that
log.*
[El?lgej" [?zgej"lfplpz(ab) XD) fpip (@) K&

On the other hand, since d — | f;(ab) — x (D) fa(a)| is bounded log-Lipschitz by (16), by Lemma 2.6 for
any p; we have

Ey el fp1 2 (@) = X (B) fou o (@)] = i) fulab) — x (b) fu(@)].
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and now the claim now follows by taking the average [E P on both sides. U

Now we derive another consequence of (31). Let x > 0 be a positive real, and let @ be an integer. From
(31) we have

! l =~ ~
Eep Eper [y m(@ = Gx(pDGx(p2) (@) L.

By the prime number theorem, this can also be written as

1 1 =~ ~
Epep Expi<pi<4ercp Epap | fp 5 (@) = G (PG x (p2) f(@)] <&

From (18) we have
1—e <|Gx(pOl IGx(PDI, IGx(p2) <1

for all but finitely many py, p}, p2, so that
| fo (@) = G X (PDGX(P1) fpy o (@)]
LN fop @ = Gx(p)G X (p2) f@] + | fpr p(@) — Gx (PG x (p2) f (@) + O (e).

Thus by the triangle inequality we have

log, log _
[Epo:ger[Expl<p|<(1+8)xp1[E;26>;;k|fplpz(a) GX(pll)GX(p])fplpz(a”<<8'

From (16) we have fpfl (@) = fippr(@) + O(e) (recall that f, is defined for any real d > 0), thus

log,

log, —
[E;lge?{[Exp] <p|=(1+&)xpi [Epzep |fxp1p2 (@) — GX (Pi)GX (pl)fmpz (@ K¢
and thus by the triangle inequality
1 I
[El?lge? [())feﬂ;klfxl’ll’z (@) —ap (x) fp (@) L&,

where

Up, (-x) = [Exp|§p1<(l+s)xp| GX - Pll)G)_((Pl)
By Lemma 2.6, this implies that

Ey S gt s ™ fra(@) — ap, (x) fa(@)] < & (32)

which by the triangle inequality implies that
ENEE ™) fra(@) — (o) fa(a)| < & (33)
where
O{(x) - [Elolgeﬂli;)< Pl( )

By construction, we have a(x) = O(1) for all x. Setting a = ap in (33) and using (16) to write
fra(a) = fa(a) + O(e) for |x — 1] <&, we deduce from (17) that w(x) =14+ O(¢) for |[x — 1| < e.
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Next, for x, y > 0, we have the estimates

F8Y8"| £4(a0) — a(x) falao)| < €

log log,

Egind S ™| frya(ao) — a(y) fra(ao)| < e
log log,

E S0 ™| feya(ao) — a(xy) falag)| < e,

which by the triangle inequality and (17) implies the quasimorphism equation
a(xy) = a(x)a(y)+ O(e).

We now require the archimedean analogue of Lemma 2.8 (which is also a special case of the results of
[Kazhdan 1982]).

Lemma 2.10 (stability of archimedean characters). Let « : (0, 4+00) — C be any function obeying the
bound a(x)=0() forall x >0, such that x(x) =1+ 0 () when |x—1| <e,and a(xy) =a(x)x(y)+ O (¢)
forall x, y > 0. Then there exists a real number t such that a(x) = x~ '+ O (¢) for all x > 0.

Proof. As before, we can assume ¢ is smaller than any given positive constant, as the claim is trivial
otherwise. Since a(1) =1+ O(¢) and o (1) = a(x)x(1/x) + O(e), we have the bounds 1 < |a(x)| <« 1
for all x. By construction, we also have a(xy) = a(x) + O(e) whenever 1 <y <1+ ¢. By replacing «
with the discretised version
a(e?|%]) x=e,

1

(x(%) xe(#,;],0<x<8,

ai(x) = {

we may assume that « is Lebesgue measurable. The function «; continues to enjoy the same properties
as «, since o1 (x) = a(x) + O(e) for all x > 0. To simplify notation, we denote oy by « in what follows.

We introduce the cocycle p : (0, +00) x (0, 4+00) — C by defining p(x1, xp) for xq, x > 0 to be the
unique complex number of size O(¢) such that

a(x1x2) = a(xpa(xz) exp(p(x1, x2)); (34)

this is well-defined and measurable for ¢ small enough. Arguing exactly as in the proof of Lemma 2.8,
we obtain the cocycle equation

p(x1, x2) + p(x1x2, x3) = p(x1, X2X3) + p(x2, X3).

Taking an asymptotic logarithmic average in x3, we conclude the coboundary equation

p(x1, x2) + P (x1x2) = P (x1) + ¢ (x2) (35)
where
e o
d(x):= Jim log M J, p(x, x3) o

If we then define the function & : (0, 4+00) — C by

a(x) = a(x) exp(¢(x))
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then &(x) = a(x) + O(¢) for all x > 0, and from (34) and (35) we have
a(xy) =a(x)a(y)

for all x, y > 0, thus & : (0, 4+00) — C is a homomorphism. Also, by construction one has &(x) = O(1)
for all x, so @ in fact takes values in the unit circle S'. We have @(x) = 1+ O(e) when |x — 1] < ¢, and
we will use this additional information to show that & (x) = x'* for some real ¢ and all x > 0.

If [x — 1| < ¢/n for some natural number n, then @(x)",@(x) = 1 + O(e), which implies that
a(x) =14 O(e/n). This implies that @(x) = 1 4+ O(|x — 1]), and so & is continuous at 1 and hence
continuous on all of (0, +00). Next, if xg := 1 + ¢ then we have &(xg) = x ! for some ¢ = O(1); taking
roots we conclude that o?(xé/ )= (xl/ "It for all natural numbers 7, and hence a(x, m/n )= (xm/ 1t for all
natural numbers n and integers m. By continuity we conclude that &(x) = X' for all x € (0, +00), as
required. O

From the above lemma, we conclude that there is a real number ¢ with the property that for every

integer a and real x > 0, one has
loglog, i
Epin® " | fra(@) —x " fa(@)| < e. (36)
In particular, for every prime p;, one has

plog! .
E 50 foua(ao) — py " falao)| < &,
and thus
Jog, s log log, .
Ey o Egin ™ foua(ao) — py " falao)l < 37)

On the other hand, from Proposition 2.3 one has that if Pj is sufficiently large depending on ay, €, then
SUP [Ep,<p] | fp1a(a0)G(p1) — falaop)| K e.

Hence on averaging in d and taking limits in the d average and then in the p; average, we conclude that

limsup ES_, ELE ™| fp,0(a0)G (p1) — falaop)| < e. (38)

Pi—o0
Meanwhile, from Lemma 2.9 we have

log log,
E 50E ™ falaopr) — x (p1) falao)| < &

for all sufficiently large p;, and thus

limsup ENE_, E50% ™| fa(aop1) — x (p1) fulao)| < e. (39)

Py—o0

Applying the triangle inequality to (37), (38), (39), we obtain

1 loglog,
limsup E,%_p E 508" |G (p1) — x (p) pill falao)| < &

Pj—o0
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and hence by (17) we have
limsup E,%_ 5, 1G(p1) — x(popl| < &.

P 1—> 00
To summarise the above analysis, we have shown that for every ¢ > 0 there exists a Dirichlet character
X = Xe and a real number ¢ = 7, such that

lim sup [Ep _p1G(p1) — xe (PO &

Pi—o0

A priori, the character x. and the real number ¢, depend on ¢. But if €, ¢’ > 0 are sufficiently small, we
have from the triangle inequality that

lim sup [Ep1<P1 e (PDPY = xe (PP < & +¢.

Pi—o0

But from the prime number theorem in arithmetic progressions and partial summation, we see that the
left-hand side is >> 1 unless ¢, =t and the Dirichlet characters are cotrained in the sense that they are
both induced from the same primitive character x. We conclude that there exists a primitive character x
independent of ¢, and a real number ¢y independent of ¢, such that #, =ty and . is induced from y for ¢
sufficiently small. In particular, as x.(p;) and x (p1) agree for all but O,(1) primes p;, we have for each
& > 0 that

lim sup [Ep ~p1G(p1) — X(Pl)PlilO| Le

Pj—o00

and thus
log G i to
E, cplG(p1) — x(p1)py"| =0. (40)

Thus G weakly pretends to be the twisted Dirichlet character n +— n' x (n). This (vacuously) establishes
part (i) of Theorem 1.7.

Now let € > 0 be small, and let a be an integer. From (31) (and the fact that . is induced from ),
and making the dependence of f; on ¢ explicit, we have

1 £ — ~
Eper Epten | fpip (@ —Gx(p)G X (p2) fela)| <&
and hence by (40) and the triangle inequality
log.#x _
Epiep Eprer | fmp (@ = p1 0" fel@)] <

or equivalently
log, s 1
E o E o p (P1p2)™ fpi (@) — fe(a)| K&

Applying (16), Lemma 2.6 and (36) (where we can in fact take ¢ — 0, since the deduction succeeding
this formula shows that ¢ = 1y is independent of ¢), we have

EyS i 1(p102)™ fp1py (@) = o(@)] = EpE5E ™ [(p1d)™ fpia(@) — fe(@)] = EgE® ¥ 1d™ fa(a) — fo(@)]
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for any pi, and hence

loglog, **
E g log

deN |d”0fd

We thus see from the triangle inequality that

Terence Tao and Joni Teravainen

@) — fe(@)] < e.

|fel@) = fo(@)] <& +¢
and so f, converges uniformly to a limit f with
|fel@) = f@)] <& (41)
and thus by the triangle inequality, we have
Egen =" 1d™ fa(@) = f (@) <&
whenever ¢ > 0, which gives
EpEy® ™1’ fa(@) — f (@) = (42)

From (17) we see in particular that f(ag) # 0. By construction, each f, is x-isotypic in the sense that

fe(ab) =

x (b) fg(a) whenever a, b are integers with b coprime to the periods of both y and fg Hence,

what remains to be shown is that (42) holds also when taking the average with respect to the ordinary

limit.

Now let ¢ > 0 be arbitrary. Inserting (40) into (31), we see that

log

limsup limsup Ex®_, x| fp, (@) — (p1p2) ™™ fol@)| < &
P1—>OO P2—>OO
and hence by (41) and sending ¢ — 0 we get
g .
limsuplimsup E%_p E)% [ fy o (@) = (p1p2) ™™ f (@) = 0

P]—)OO Pz—)OO

For any ¢ > 0 and any P; large enough in terms of ¢, we apply Lemma 2.6, Proposition 2.3, formula (40)

and Lemma 2.9 to write

| Fp1pa(@) = (p1p2) ™ f (a)]

log
P1<P

log log

lim sup [Epl =P P2<P2

Py—o0

= limsup E
P,—o0
log

= lim sup [EPISPI

Pz—)OO
log

=limsupE ~_p

Py—o0

T log log
=limsupE,Zp

P,—o0
and hence, sending ¢ — 0, we obtain

log log
d eN

EyS o8| fpua(@) — (p1d) ™™ f (@)
ENEREIG (p1) falapy) — (p1d) "™ f (@) + O (e)
ENERE pr % (p1) falapy) — (pid) ™™ £ (@)| + O (e)

| fa(@) —d™™ f(a)| + O(e),

| fa(@) —d ™ f(a)| =
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This establishes part (ii) of Theorem 1.7 (recalling as before that as G weakly pretends to be a twisted
Dirichlet character n — x (n)n', it can only weakly pretend to be another twisted Dirichlet character
ni— x'(mn'’ if t =¢ and x, x’ are cotrained).

3. Proofs of corollaries

In this section we use Theorem 1.7 to prove Corollaries 1.8, 1.13, 1.14. We begin with Corollary 1.8.

Proof of Corollary 1.8. Suppose the claim failed, then we can find k, g1, ..., gk as in that corollary, as
well as hy, ..., hy € Z and € > 0, such that the set

X:={XeN:|E<xgi(n+hi)- - gi(n+hp)| > e}

does not have logarithmic Banach density zero. In particular, one can find sequences X; > w; — oo and
0<é< % such that

Eyo=x=y, 1v() = 8 (43)

for all i.

Intuitively, if the exceptional set X was big in the sense of (43), there would have to be a lot of “points
of density” of X' (in a sense to be specified later). To make this rigorous, we introduce for each i the
function a; : R — [0, 1] given by

ai(s) == Z Liog(X—1)<s<log X -
Xijoi<X<X;:X¢X
Note that a; (s) is the indicator function of the event that there exists an integer X ¢ X with X € [¢®, ¢*+1)
and X;/w; < X < X;.
The function g; is a piecewise constant function supported on an interval of length (14 0;_, 5 (1)) log w;
and has integral

X
i(s)ds = 1
/Ra(s) s Z ogx_1

X,—/a),-SXSX,-:XgX
_ ( ) %) +o()
Xijoi<X<X;:X¢X
1
=logw; + O(1) — > 5%
X[/(U,'fXSX,‘:XEX
< (I =68+0i500(1)) logw;.

We introduce the one-sided Hardy-Littlewood maximal function

N
Ma;(s) := suplf a;i (s ds'.
S—r

r>0
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It is a well-known consequence of the rising sun lemma [Riesz 1932] that one has the Hardy—Littlewood

maximal inequality

m({seR:Mai(s)zk})fl/ai(s)ds
A Jr

1/2

for any A > 0, where m denotes Lebesgue measure. Applying this with A := (1 — §)"/<, we conclude that

m(ls € R: Mai(s) = (1= )"} < (1 =)' + 0j-.00(1)) log ;.
In particular, one can find a real number s; with
log Xi — (1 =8)'? + 01 (1)) logw; < 5; < log X; (44)

such that
Ma;(s;) < (1=8)'72

which implies that
Si
/ ai(t)dt < (1 —8)r (45)
S

i—r
for all » > 0. Informally, the estimate (45) asserts that the natural number |exp(s;)] is a “multiplicative

point of density” for the exceptional set X
By passing to subsequences, and using a diagonalisation argument, we may assume that the limits

fala) = ll_lglo En<iexp(s))/ag1(n+ahy) - - gx(n+ahy), (46)

exist for every natural number d and integer a. In particular, the limit of the right-hand side of (46) is the
same along any generalised limit lim**. If we now apply Theorem 1.7(i) to a generalised limit of the form

* kK
lim f(X):= lim f([exp(s;)]),
X—o00 i—o00
where lim** is any generalised limit, we conclude that

plog!
Egon 1 fa (D] =0.

Thus, if we let « > 0 denote a small constant (depending on §, €) to be chosen later, and D is sufficiently
large depending on p, we have

1 1
Egspfl fa(D] < .

Thus by the triangle inequality
. 1
lim sup [E;fD |En<lexp(si)/a81(n+hy) - gr(n+hi)| <,
1—> 00

and hence for all sufficiently large i (depending on §, ¢, u, D) we find

l log
Egs o f I Enz exps) /81 +h1) -+ gr(n + i) | < 2.
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This implies

1
Z dlogd |En<iexpisi)/ag1(m+hy) - - - ge(n+hi)| K ploglog D,
log D<d<D

say. In particular, by Markov’s inequality one has

€
|[En§|_exp(s,-)J/dgl(n+hl)" 'gk(n+hk)| =< 5 (47)
for all log D < d < D outside of an exceptional set D; with
Z < " loglog D. (48)
dlogd €

dED,’

If log D <d < D lies outside of D;, then one has
|En<xgi(n+hy) - gr(n+hy)| <e

for all X between exp(s;)/(d+1) —1 and exp(s;)/d + 1. In particular, all such X lie outside of X. Using
(44) (which places exp(s;)/d below X; and well above X;/w;), we conclude that

ai(r) =1
on the interval [s; —log(d + 1), s; — log(d)]. In particular,
d+1
/ a;(si —logu)du = 1.
d
For d € D; we use the trivial bound
d+1
f ai(si —logu)du > 0.
d

From (48) we conclude that

1 d+1 m
Z f ai(si —logu)du>|1—-0[ — | )loglog D. (49)
dlogd J, g

log D<d<D

The left-hand side, up to errors that can be absorbed into the 0(%) loglog D term, can be rewritten as

D
/ a;(s; —logu)
1

ogD ulogu

which by the change of variables s = s; — log # becomes

si—loglog D ds
/ ai(s)
S,

i—log D Si— S




2136 Terence Tao and Joni Teravainen

However, from Fubini’s theorem and (45) we have

si—loglog D ds si—loglog D s dt 1
a; (s) = / a~(s)</ + )ds
/s,-—logD l Si—8§ si—log D l si—log D (s — t)z log D
si—loglog D si—loglog D dt 1 si—loglog D
= a;(s) ds) + / a;i(s)ds
LlogD </t l (si — t)z 10g D si—log D l

si—loglog D S dt 1 Si
< / (/ a;(s) ds) 5+ / a;(s)ds
si—log D t (si—1) IOg D si—log D

si—loglog D dt 1
s/ (1=8)"2(si = 1) s+ ——(1-58)logD
si—log D (si —1) log D

= (1-6)"2(loglog D —logloglog D + 1)

and the right-hand side is equal to (1 — 8)!/?loglog D up to errors that can be absorbed into the
0(%) loglog D term. For v small enough, this gives a contradiction when compared with (49), proving
Corollary 1.8(i).

We are left with proving part (ii) of Corollary 1.8. Since sets of logarithmic Banach density zero
automatically have logarithmic density zero, we already know from Corollary 1.8(i) that for each tuple

(h1, ..., hg) of integers and every m > 1, there is a set Xj,  p,.m Of logarithmic density zero such that
1
|[Ep<xgi(n+hy)---gr(n+hp)| < p

for all X outside of X}, . n..m- Since the number of tuples (hy, ..., hx, m) is countable, a standard

diagonalisation construction then gives a further set Xy, still of logarithmic density zero, such that for each
hi, ..., hi, m, all but finitely many of the elements of A},

.....

.......

ExSy Ly, (O 52707070
for all Y > 1, and then take X} to be the union of all the /’\,’;“M hem which thus differs from a finite union
of these sets by a set of arbitrarily small logarithmic density (and finite unions of the sets X};l ’’’’’ he.m have
logarithmic density 0). By construction one then has
. 1
limsup [Ep<xgi(n+hi)---ge(n+hp)| < —
X—00; X¢X) m
for all iy, ..., hi, m, and the claim follows. O

Remark 3.1. An inspection of the above argument shows that one could have replaced the sequence
nt> gi(n+hy)---g1(n+ h) by any other bounded sequence n +— F'(n) for which the analogue of
Theorem 1.7(i) holds, or more precisely that

log1 X
Ege ¥l lim EqcxjaF ()] =0

for any generalised limit limy_, .
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Next we prove Corollary 1.13.

Proof of Corollary 1.13. By Corollary 1.8, we are done unless g;g>» weakly pretends to be a twisted
Dirichlet character n — x (n)n', so suppose that this is indeed the case for some x and r. Then for any
generalised limit lim}_, _, the corresponding correlations f;(a) defined by (4) obey the property (5) for
some function f : Z — D. If this function f was vanishing at a = 1 for every choice of the generalised
limit, then one could repeat the proof of Corollary 1.8 to obtain the claim (see Remark 3.1). Thus suppose
instead that we can find a generalised limit lim}_,  such that f (1) # O for the function f provided by
Theorem 1.7(ii). By (5) and the triangle inequality, this implies that

log1 ~
Egn® fa(Dd" = f(1) #0.
In particular, for D sufficiently large, one has
EgS 58 fa(Dd™ > 1
and hence by summation by parts we have
ESE, fa(Dd > 1
for a sequence of arbitrarily large D. If D obeys the above estimate, then by (4) we have
* .
| lim B d Epex/agi(n +h1)ga(n+ha)| > 1
X—o00o "~
and thus there exist arbitrarily large X such that
L .
|[E;§Dd“[En5X/dgl(n +hy1)ga(n+ha)| > 1.

This implies that
o
|Eg% pd Ecxja<n<x/ag1(n+h1)ga(n+hy)| > 1

for some small constant ¢ > 0 (not depending on D and X). This yields

Yoodt Y a+h)gn+h)

log D<d<D cX/d<n<X/d

> XlogD

The left-hand side can be rearranged (discarding negligible errors, assuming D is large enough) as

> ( > dit)gl(n-i-hl)gz(n-l-hz) > Xlog D.
cX/D<n<X/logD “cX/n<d<X/n
By summation by parts, for cX/D <n < X/log D we have
it 7it§ _Xit_(cx)it_c
> d'=an -+ 0p—oo(l), w=

cX/n<d<X/n
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where in particular the quantity « is bounded and is independent of n. For D large enough, we conclude

that
>

cX/D<n<X/log D

—it

gi(n+hy)g(n+hy)| > logD.

and hence

1 s
|[E§§D§n§Xn g1+ h1)ga(n+h)| > 1.
Approximating n~ " by (n 4 k)~ ', we conclude that there exist arbitrarily large D such that
1 .
|[E;()§DSHSX(" +h) g1+ h)ga(n+hy)| > 1

for arbitrarily large X. But this contradicts the k = 2 case of the logarithmically averaged Elliott conjecture
[Tao 2016, Corollary 1.5] applied to the functions n +— n~ it g1(n) and n — g>(n) (note that the hypothesis
(1) for g implies the same hypothesis for n — n~ilg;(n)). This completes the proof of part (i) of
Corollary 1.13.

Part (ii) of Corollary 1.13 is then deduced from Corollary 1.13(i) using precisely the same diagonalisa-
tion argument that was used to deduce Corollary 1.8(ii) from Corollary 1.8(i). [l

Remark 3.2. The above argument shows more generally that if the logarithmically averaged Elliott
conjecture'! (resp. Chowla conjecture) is proven for a given value of k, then the unweighted form of the
Elliott conjecture (resp. Chowla conjecture) for that value of k holds at almost all scales. (Note in the
case of the Chowla conjecture that the parameter ¢ will vanish, since AX = 1 for even k and A¥ = A does
not pretend to be any twisted Dirichlet character for odd k.)

Remark 3.3. With small modifications, we can adapt the above proofs to prove Corollary 1.16. Firstly,
by approximating the indicator function 1p+(,)<p+n+1) as in [Terdviinen 2018, Section 4] by a linear
combination of indicator functions of the form 1p+ ;) <pe. p+(n41)<nf» We can reduce the proof to showing

. 1 1
X—)gg;l)lf¢Xo [En§X1P+(n)<na 1P+("+1)<”ﬁ - P(E)IO(E>’ 0

where p(-) is the Dickmann function and «, 8 € (0, 1) are any rational numbers. Since the set of rationals
is countable, by a diagonal argument (as in the proof of Corollary 1.13(ii)) it suffices to prove (50)
with «, 8 fixed. One starts by proving a version of the structural theorem (Theorem 1.7) in the case
of the functions g1 (n) = 1 p+u)<ne, g2(1) = 1p+(y)<,s; these are not quite multiplicative functions, but
they can be approximated as 1p+()<pe = Lp+y<xe + O(1p+@myef(x/10g X)2,x21) for n € [X/log X, X].
The O(-) term has negligible contribution in the entropy decrement argument by standard estimates on
smooth numbers, so the proof of Proposition 2.3 goes through for the generalised limits associated to the
correlations of g and g» with G =1 (so certainly (18) holds). We did not use the specific properties of

11Ope needs the variant where we sum over X /w(X) <n < X rather thann < X.



Correlations of multiplicative functions 2139

g1, g2 anywhere else in the proof of Theorem 1.7, so that proof goes through, giving

*
Eqenl i Eyx/ag1(mga(n+1) ' =0 (51

for all generalised limits lim* and some constant ¢* depending on lim*. From [Teréviinen 2018, proof of
Corollary 1.19], we have a logarithmic version of (50), so following the proof of Corollary 1.13 verbatim,
we see that ¢* = p(1/a)p(1/8). Then from Remark 3.1 we deduce (50). We leave the details to the
interested reader.

Proof of Corollary 1.14. We observe from Corollary 1.8(i) (for odd k) or Corollary 1.13(ii) (for k = 2)
that for any distinct integers 41, ..., iy and € > 0, one has

|En<xA(n+h1)---An+hl <e

for all X outside of a set X  of logarithmic Banach density zero, and hence also of logarithmic density
zero. The claim then follows by the same diagonalisation argument used to prove Corollary 1.8(ii) and
Corollary 1.13(ii). O

4. Consequences of the isotopy formulae

Before proving the isotopy formula in the form of Theorem 1.19, let us state a variant of it that involves
the quantities f;(a) present in Theorem 1.7. In what follows, a sequence b, of integers is said to be
asymptotically rough if for any given prime p, one has p1b, for all sufficiently large n. For instance, any
increasing sequence of primes is asymptotically rough, as is the sequence —1, —1, —1, .. ..

Lemma 4.1. Let the notation and hypotheses be as in Theorem 1.7. Let n— x (n)n' be a twisted Dirichlet
character that weakly pretends to be g1 - - - i, if one exists; otherwise, choose x and t arbitrarily. Let a

be an arbitrary integer:
(1) (Archimedean isotopy) For any natural number h, one has
. log1 —i
lim Eg23%| fra(@) —h™" fa(@)] =0.
X—o00o "~
(i1) (Nonarchimedean isotopy) For any asymptotically rough sequence b, of natural numbers, one has

lim lim Ey¢%| fa(aby) — x (ba) fa(@)] = 0.

n—o0 X—o00

In particular, since the sequence b, = —1 is asymptotically rough, one has
. log|
Jim EgE¢8 I fu(—a) = x (=1 fa(@)| =0. (52)

A variant of Lemma 4.1(ii) (for logarithmic averaging, and with b, specialised to the primes in
an arithmetic progression 1 (g) for ¢ a period of x) was obtained in [Frantzikinakis and Host 2019,
Corollary 3.7].
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Proof. We may assume without loss of generality that g - - - g weakly pretends to be n — x (n)n', as
the claims follow from Theorem 1.7(i) otherwise. Extracting out the contribution to (5) from multiples of
h, we see that

EVEYE| fia(@) — f (@) (hd) ™ = 0
and also by (5) we have

EN8| fu(a) — fa)d ™| =

Now the claim follows from the triangle inequality.
To prove Claim (ii),'> we observe from (5) that

Egen | falaby) = f(aby)d™"| =
for all n, and
Epey) fata) — fl@)d ) =
Putting together the above two equalities we have

Eypi %1 fa(abn) — x (ba) fa(@)| = | f (@by) — X (bu) f (@)] (53)

By Theorem 1.7, f is the uniform limit of yx-isotypic periodic functions F;. For each such F;, we have
F;(ab,) = x(by) F; (a) for all sufficiently large n, since the sequence b, is asymptotically rough. Thus
also f(ab,) = x(b,) f(a) + 0p— 0 (1). Combining this with (53), the claim follows. U

We then use Lemma 4.1 to deduce the isotopy formulae (Theorem 1.19).

Proof of Theorem 1.19. We start with the proof of (i). By a diagonalisation argument, similarly as in the
proof of Corollary 1.8(ii), it suffices to show that for any fixed rational ¢ > O there exists a set Xp , of
logarithmic density O such that the claim holds with X , in place of &p. Next, we argue that it suffices to
consider the case ¢ € N. Suppose that the case g € N has been established, and let ¢ = a/b with a, b € N.
Then if Xy 4 := (1/b)Xp,o U (1/b) Xy, (Which is still a set of logarithmic density zero), we have

li E,- —(9)"E,<px /0
x—>ool;r>l(l¢xo_q( <x81(n+h) - gn+h) = ($) Enzpx/ag1(n+h1) -+ ge(n+hy))

= X—)o})i‘I)?gX (b~ "En<pxgi(n+hy) -+ ge(n+hy) — (%)H[Engbxmgl (n+hy)--ge(n+hi)) =0
5 0,9

Hence we may assume from now on that g € N. Observe that the statement of Lemma 4.1(1) with a =1

can be written in the form
ifeg,ifg| hm [En<x/d(g1(n +hy) - ge(n+hi) —q "Epezjgzgi(gn+b+hy) - gr(gn+b+hi))| =0

1ZNote that Lemma 2.9 does not directly imply Claim (ii), since the Dirichlet character present in that lemma depends on the
error ¢.
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for every generalised limit limy_, ... By following the proof of Corollary 1.8(i) verbatim (see also
Remark 3.1), this leads to

lim  Ey<x(gi(n+hi) - ge(n+hy) —q "Epezjqzg1(qn+b+hy) - - gi(gn+b+hy)) =0 (54)
X—00; X¢X0 4

for some set &y 4, of logarithmic density zero. But rewriting (54), it becomes the identity asserted in
Theorem 1.19(1).

We turn to the proof of part (ii), which is similar. Again by a diagonalisation argument, it suffices to
prove the statement for fixed a rather than all a. From Lemma 4.1(ii) we have

loglog 1.*

Egen | im Ensx/a(gi(n—ahy) - ge(n—ahe) = x(=Dgi(n+ahp) - g+ ahi))| =0
for every generalised limit lim}_, . Just as in the proof of part (i) of the Theorem, by the proof of
Corollary 1.8(i) (see Remark 3.1) we get

lim  |E,<x(g1(n —ahy) - g(n —ahy) — x(=Dgi(n+ahy) - - ge(n+ahy))| =0
X—00; XXy 4

for some set Aj , of logarithmic density zero, and this is what we wished to prove. ]

Morally speaking, the archimedean isotopy formula implies that the argument of the correlation (9)
becomes equidistributed at large scales whenever ¢ # 0. Unfortunately we cannot quite establish this
claim as stated, because of the discontinuous nature of the complex argument function. However, if we
insert a continuous mollifier to remove this discontinuity, we can obtain equidistribution. More precisely,
we have the following result.

Theorem 4.2 (equidistribution of argument away from zero). Letk > 1, let hy, ..., hy be integers and
g1s---» 8k : N — D be 1-bounded multiplicative functions. Suppose that the product gi - - - gx weakly
pretends to be a twisted Dirichlet character n — x (n)n", where t # 0. Let us denote

SX) :=E<xg1(n+hy) - gx(n+ hy).

Let i : C — C be a continuous function that vanishes in a neighbourhood of the origin, and let

1 2

1 i0
2 ), Y(e'"z)do

V() =
be r averaged over rotations around the origin. Then we have

E9E ¥ (S(X)) — ¥ (S(X)) =0,

Proof. Since S is bounded, we may assume that 1y is compactly supported. By replacing v by ¥ — ¢ we
may assume that ¥ = 0. Approximating ¥ uniformly by partial Fourier series (e.g., using Fejér summation)
in the angular variable, and using linearity, we may assume that y takes the form v (re'?) = W (r)e'*?
for some nonzero integer k and some continuous compactly supported function W that vanishes in a
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neighbourhood of the origin (cf. the standard proof of the Weyl equidistribution criterion [1916]). In
particular we have the isotopy formula

Y (07) = " Y (2) (55)

forallz e Cand w € S'.
Let g > 1 be an integer to be chosen later. From Theorem 1.19(i), outside of an exceptional set Xj of
logarithmic density zero, we have

lim  S(X)—¢"S(X/q) =0.
X—00; XX

From (55) and the uniform continuity of v, this implies that

Y (S(X)) — g™y (S(X/q)) =0.

X—00; X ¢ Xy
Taking logarithmic averages, we conclude that
Exen ¥ (S() — ™9 (S(X/q)) = 0.
On the other hand, in analogy to (16), we have the log-Lipschitz bound
|S(x) = S(y)| < |logx —log y|. (56)
We can use this and the uniform continuity of ¥ to estimate, for X large enough,
ExS ¢, ¥ (S(X/) = ExE ¢ o Fobeq ¥ (S(X +b/q)) +o0(1)
=ExSy, ¥ (S(X)) +o(l)
= B2, ¥ (S(X)) +o(1).

Hence

ExS ¥ (S(X)) — ¥ (S(X/q)) =
By the triangle inequality, we conclude that
(1= g™ )ERE\ ¥ (S(X)) =0.
Since 7 # 0, we can select g so that g’* # 1 for all k € N.. The claim follows. (I

Suppose that W : [0, +00) — [0, +00) is a nonnegative continuous function vanishing near the origin,
and let I C R/27Z be an arc in the unit circle R/2wZ. Applying Theorem 4.2 to upper and lower
approximants to the discontinuous function z — W (|z|)1;(arg(z)), and taking limits, we conclude that

[El;?iN(lz(arg(S(X))) - u)\v(w(xn) =

where |/| denotes the length of /. Informally, this asserts that the argument arg(S(X)) is uniformly
distributed in the unit circle, so long as one inserts a continuous weight of the form W (|S(X)]|). It would
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be more aesthetically pleasing if we could replace this weight with a discontinuous cutoff such as 1,s(x)|>¢,
but we were unable to exclude the possibility that |S(X)]| lingers very close to & for very many scales X,
with the event that |S(X)| > ¢ being coupled in some arbitrary fashion to the argument of S(X), leading
to essentially no control on the argument of S(X) restricted to the event |S(X)| > ¢. On the other hand, if
one was able to show that S(X) did not concentrate at the origin in the sense that

. 1
lim sup Ey% v 1js(x)1<e — 0
Xo—00 -

as ¢ — 0, then the above arguments do show that

B2 1 arg(SC0)) = 10
XeN*I g - 27

for all intervals I, so that arg(S(X)) is indeed asymptotically equidistributed on the unit circle. Alter-
natively, by selecting the cutoff ¢ using the pigeonhole principle to ensure that |S(X)| does not linger
too often in a neighbourhood of ¢, one can prove statements such as the following: If § > 0, then for
all sufficiently large X outside of a set of logarithmic density zero, one can find 0 < ¢ < § with the

approximate equidistribution property

1 7]
[E;?gixo (1,(arg(S(X))) - Z) Liscx)=e <6
for all intervals I C R/2wZ. We leave the proof of this assertion to the interested reader.
Now we investigate the consequences of the nonarchimedean isotopy formula (Theorem 1.19(i1)).
Many of these consequences tell us that the correlation (9) tends to O along almost all scales also in some

cases that are not covered by Corollary 1.8(1).

Definition 4.3. We say that a tuple (g, ..., gx) of functions is reflection symmetric if g; = grr1—;
forall 1 <i < (k+1)/2. Similarly, we say that a tuple (&, ..., hy) of integers is progression-like if
hi+hy=h;j+hgy—; forall 1 <i <(k41)/2. In particular, all arithmetic progressions are progression-like.

Theorem 4.4. Let k > 1 and let hy, ..., hy be integers. Suppose that x is an odd Dirichlet character
(ie., x(=1) = =) with x(n+ hy + hy) = x(n) forall n. Let g1, ..., g« : N — D be multiplicative
functions such that the product g - - - g weakly pretends to be a Dirichlet character  with r even.
Suppose additionally that the tuple (g1, . .., gk) is reflection symmetric and that the tuple (hy, ..., hy) is
progression-like. Then there exists an exceptional set Xy of logarithmic density 0, such that

lim E,<xx(m)gi(n+hy)g2(n+hy)---ge(n+hy)=0.

X—00; XXy

Proof. Note that the function g; - - - gx x weakly pretends to be 1 x, which is an odd character. Hence by
Theorem 1.19(ii) there exists some set Ay of logarithmic density 0, such that for X ¢ X we have

En<xx(m)g(m)gi(n+hy)---ge(n+hp) = =En<x x (m)g1(n —h1)g(n —ha) - - - g(n — hi) +o(1).
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By translation invariance, the periodicity assumption y (n+h + hy) = x (n), and the progression-likeness
of (hy, ..., hy), the latter expression equals

—Ei<xx(+hi+h)gi(n+h)go(n+hy+hg—hy)---ge(n+hy) +o(l)
=—E,<xx(m)gi(n+hp)g2(n+hx—1)--- gk(n+hy)+o(1).

Since the tuple (g1, ..., g) is reflection symmetric, this equals the original correlation with a minus sign,
proving the statement. 0

Corollary 1.21 is an immediate consequence of Theorem 4.4.

Proof of Corollary 1.21. Taking g1 =---=gr=»XAand (hy,...,h)=(0,a, ..., (k—1)a) in Theorem 4.4,
we readily obtain the claim. O

In other words, the shifted products of the Liouville function can be shown to be orthogonal to some
suitable Dirichlet characters also when there is an even number of shifts. As already mentioned, also the
weaker, logarithmic version of Corollary 1.21 is new.

The next theorem is in the same spirit as Theorem 4.4, but with somewhat different conditions.

Theorem 4.5. Let k > 1 be odd, and let g1, ..., gr : N — D be multiplicative functions such that the
product g1 - - - gk weakly pretends to be a Dirichlet character x with x odd. Suppose also that the tuple
(g1, - -, &) is reflection symmetric and that (hy, ..., hy) is a progression-like tuple of integers. Then
there exists an exceptional set Xy of logarithmic density 0, such that

lim [E,<xgi(n+hy)g2(n+hy)---gr(n+hi)=0.
X—00; X¢X)

Proof. As with Theorem 4.4, this follows directly from the isotopy formula (Theorem 1.19) and translation
invariance. U

This theorem can for example be applied to the variants

2wiQ(n)
Ag(n) :=e| —————
q
of the Liouville function that take values in the g-th roots of unity. Here €2 (n) is the number of prime
factors of n with multiplicities. We obtain the following.

Corollary 4.6. Let k > 1 be odd, g € N, and let x be an odd Dirichlet character. Then there exists an
exceptional set Xy of logarithmic density 0, such that

lim Ei<xAqm)x(m)As(n+a)x(n+a)---rg(n+(k—1a)x(n+ (k—1)a) =0.

X—00; XXy

Proof. We apply Theorem 4.5 with g;(n) = g(n) := x(n)Ay(n) and (hy, ..., h) = (O, ..., (k= Da).
Then if g1k, the function g x* does not weakly pretend to be any twisted Dirichlet character, since g*
does not do so. In this case, we may appeal to Corollary 1.8(i) to obtain the claim. Suppose then that
q | k. Then g* weakly pretends to be x*, which is an odd character, so Theorem 4.5 is applicable. ~ [J
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Example 4.7. Let x3 be the odd Dirichlet character of modulus 3 and xs any odd Dirichlet character of
modulus 8. Then from Corollary 4.6 and partial summation, for any sequences 1 < w,, < x,, of reals
tending to infinity we have

. 1
im EPS, iz, 3233 (0 + 3)A3(n +6) =0
and

lim [Eijf/wmsnsxmh(n)h(n +2)A3(n+4) xs(n+6) =0.

m—0o0
This is seen by applying the corollary to the functions g;(n) = A3(n) x3(n) witha =3 and g;(n) =
A3(n) xg(n) with a =2 and using n(n +2)(n +4) =n + 6 (mod 8) for n odd.

We then turn to bounding more general correlations of multiplicative functions where the shifts involved
no longer form a progression-like tuple. In the case of triple correlations, we obtain savings that are
explicit but nevertheless far from the desired o(1) bound.

Theorem 4.8 (savings in logarithmic three-point Elliott conjecture). Let g : N — D be a multiplicative
function, and let hy, hy, h3 be distinct integers. Suppose that g is nonpretentious in the sense that

liminf inf D(g,n — x(m)n'", x) = 00
X—o00 |t|<X

for every Dirichlet character x. Then for any sequences 1 < wy,, < x,,, tending to infinity we have

Tim sup|E'%8 g(n+ )2 +ha)g(n +ha)| < % (57)

Xim [ @Om <n=<Xp
m— 00

Remark 4.9. This looks superficially similar to [Klurman and Mangerel 2018, Lemma 5.3] (and also to
[Tao and Terdvdinen 2019, Proposition 7.1], which achieves the better upper bound of % for real-valued
multiplicative functions). However, importantly, the shifts 4; are allowed to be arbitrary here, while in
the aforementioned results they had to form an arithmetic progression for the method to work.

Proof. If hy, hy, h3 is an arithmetic progression, we may apply [Klurman and Mangerel 2018, Lemma 5.3],
so we may henceforth suppose that &1, iy, h3 is not an arithmetic progression.

If the function g* does not weakly pretend to be any Dirichlet character, we get the bound 0O for the
lim sup by [Tao and Teriviinen 2019, Theorem 1.2(ii)]. Suppose then that g> weakly pretends to be some
character x. By the isotopy formula (Theorem 1.19), partial summation and translation invariance, we
have
By <ney, 81+ D)+ h2)g(n + h3)

= X(~DE, . . g(n+h)gn+hi+h3—h)gn+h3) +omsoe(l). (58)

Xm / Wm

In particular, the first part of (58) is the average of both parts of the equation. Hence, the average on the
left-hand side of (57) is up to 0,;,— 00 (1) bounded by

B ey, 801+ H) (4 h3)(g(n + o) + X (—1)g(n+hy + 3 — ho))]
< 1B o I he) 4 X (—Dg(n 4 hy +hy — ).
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By the Cauchy—Schwarz inequality, this is bounded by

LE, <nes, 1800+ h) + X (—=1)g(n + Iy +h3 — h2)) )2
< JE®, oo @+2x(~DRei(gn+h)gmn+hy+hs—h))"/2

X [ Om

Since hy # hy + h3 — hy by assumption, we can apply [Tao 2016, Corollary 1.5] to see that the term
involving real parts contributes o,,—,(1). Then we indeed get a bound of 1/ V2 + Om—soo(1) for the
correlation. O

Remark 4.10. For specific multiplicative functions one can do slightly better by not applying Cauchy-
Schwarz. For example, in the case g(n) = A3z(n) one gets a bound of % for the correlation by using the
fact (following from [Tao 2016, Corollary 1.5]) that (A3(n), A3(n + h)) takes for fixed i # 0 each of the
possible 9 values with logarithmic density é.

5. The case of few sign patterns

In this section we prove Theorem 1.17. Assume the hypotheses of that theorem. Let / be a natural number.
By the Hahn—Banach theorem, it suffices to show that

EX A (A +h) =0

for every generalised limit lim}_, ... Accordingly, let us fix such a limit. As usual, we introduce the

correlation sequences

*
fa(a) == Xlim Er<x/ar(n)i(n +ah) (39)
—00
for every real d > 0. Our task is now to show that

fi(1) =0.

Proposition 2.3 (noting that G(p) = 1 in our case) establishes the approximate isotopy formula
1
supE,% | fup(a) — falap)| < &
d>0

whenever ¢ > 0 and P is sufficiently large depending on &. But because of our hypothesis of few sign
patterns, we can obtain a stronger result in which the logarithmic weighting on the averages is removed.

Proposition 5.1 (improved approximate isotopy formula). Let f;(a) be as in (59), let ¢ > 0, and let a be
a natural number. Assume the hypotheses of Theorem 1.17. Then there exist arbitrarily large m such that

sup Eon <, com+1| fap(a) — falap)| < e.
d>0

This formula also applies for negative a, but in this argument we only require the case of positive a (in
fact, for the binary correlations considered here, we only need the case a = 1).
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Proof. This will be a modification of the arguments in [Tao and Terdvidinen 2019, Section 3], and we
freely use the notation from that paper.

Let d > 0 be real, let a be an integer, and let m be a large integer to be chosen later. We allow implied
constants to depend on %, a, but they will remain uniform in d, m, ¢. From (13) we have the formula

fap(@) = falap) = EVg D 0)g"V (aph)(p1, 0 = 1) + O(e)
for all 2" < p < 2*! if m is sufficiently large depending on &, and where g@ = g%d) = géd) and n‘? are
the random variables provided by Proposition 2.1 (with g = g» = A). We can thus write the expression
Eon<p<om+i| fap(a) — falap)|
as

E9Eyn <y comi1c,8 P (0)g(aph) (pl i — 1) + O (e)

for some sequence of complex numbers c,, with |c,| < 1. By stationarity we can also write this expression
as

EDE) <1<omEpne pcgmricp@ DD P U+ aph) (plyaw—_; () — D+ O(e)

and thus
Eon<pont| fup(@) — fa(ap)| = EPF (XD, YD)

where X@ = XD ¢ [—1, +1}Cah+12" y@ — y D ¢ [Ton<p<pn+1 Z/ pZ are the random variables
XD = @POnzizeaninz and Y= @D (p))ynopomn
and F : {—1, +1}@ah+D2" ]_[2,,,5[,<2m+1 Z/pZ — C is the function
F((g)1<1<@an+1y2ms (Mp)om <y com+t) i= Er<y<omBom < comt1€p8181+aph (PLn,=—1 (p) — 1)-

Repeating the arguments in [Tao and Terdviinen 2019, Section 3] verbatim (but without the additional
conditioning on the Y_,, random variable), we conclude that

[E(d)|F(X(d), Y(d))| <e
unless we have the mutual information bound

I(XD.yDy > s5z.
m

At this point we deviate from the arguments in [Tao and Terdviinen 2019, Section 3] by using the trivial
bound

I(XD: YDy < HXD)
to conclude that we will have the desired bound

Eon<p<omti| fap(a) — falap)| < €
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whenever X (@ obeys the entropy bound
2)1’[
H(XP) <=,
T m

By Jensen’s inequality, this bound will hold if X¢ attains at most exp(£°2™/m) values with positive
probability. Using the correspondence principle (Proposition 2.1), this claim in turn is equivalent to
the number of possible sign patterns (A(n 4 1)) 1<i<2an+1)2» DOt exceeding exp(852’" /m); note that this
assertion does not depend on d, so we in fact obtain the uniform bound

sup Eon <, comi1| fap(a) — falap)| < e

d>0

in this case. But by the hypothesis of Theorem 1.17, this assertion holds for arbitrarily large values of
m. ]

Now we establish Theorem 1.17. By the above proposition, for any ¢ > 0, there exist arbitrarily large
m such that

Ji(D) =Egync )y ome1 fP(p) + O(e),
where P :=2". By (59), it suffices to show that
li;n sup|Ep<p<apbr<x/pA(mMA(n+ ph)| K ¢
—00
for sufficiently large P. But this follows from the results in [Tao 2016, Section 3], specifically Lemmas 3.6
and 3.7 and equation (2.9) of that paper'3 (see also Remark 3.8 for a simplification in the case of the

Liouville function). We remark that the equation [loc. cit., (2.8)] relies crucially on the Matomiki—
Radziwilt theorem [Matomiki and Radziwitt 2016] (as applied in [Matomaiki et al. 2015]).

Remark 5.2. A similar argument also gives the odd order cases of the Chowla conjecture if one strengthens
the hypothesis of Theorem 1.17 to hold for all sufficiently large K, rather than for arbitrarily large K, by
using the arguments in [Tao and Terdvéinen 2018, Section 3] (but with the exceptional sets M in those
arguments now being empty, and using unweighted averaging in n rather than logarithmic averaging).
We leave the details to the interested reader.
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