
Algebra &
Number
Theory

msp

Volume 13

2019
No. 7

Crystalline comparison isomorphisms
in p -adic Hodge theory:

the absolutely unramified case
Fucheng Tan and Jilong Tong



msp
ALGEBRA AND NUMBER THEORY 13:7 (2019)

dx.doi.org/10.2140/ant.2019.13.1509

Crystalline comparison isomorphisms
in p -adic Hodge theory:

the absolutely unramified case
Fucheng Tan and Jilong Tong

We construct the crystalline comparison isomorphisms for proper smooth formal schemes over an
absolutely unramified base. Such isomorphisms hold for étale cohomology with nontrivial coefficients, as
well as in the relative setting, i.e., for proper smooth morphisms of smooth formal schemes. The proof
is formulated in terms of the proétale topos introduced by Scholze, and uses his primitive comparison
theorem for the structure sheaf on the proétale site. Moreover, we need to prove the Poincaré lemma for
crystalline period sheaves, for which we adapt the idea of Andreatta and Iovita. Another ingredient for the
proof is the geometric acyclicity of crystalline period sheaves, whose computation is due to Andreatta
and Brinon.
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Notation

• Let p be a prime number.

• Let k be a p-adic field, i.e., a discretely valued complete nonarchimedean extension of Qp, whose
residue field κ is a perfect field of characteristic p. (We often assume k to be absolutely unramified
in this paper.)

• Let k be a fixed algebraic closure of k. Set Cp :=
ˆk the p-adic completion of k. The p-adic valuation

v on Cp is normalized so that v(p)= 1. Write the absolute Galois group Gal(k/k) as Gk .
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• For a (commutative unitary) ring A, let A〈T1, . . . , Td〉 be the PD-envelope of the polynomial ring
A[T1, . . . , Td ] with respect to the ideal (T1, . . . , Td)⊂ A[T1, . . . , Td ] (with the requirement that the
PD-structure be compatible with the one on the ideal (p)) and then let A{〈T1, . . . , Td〉} be its p-adic
completion.

• We use the symbol ' to denote canonical isomorphisms, and sometimes quasiisomorphisms. The
symbol ≈ is frequently used for almost isomorphisms with respect to some almost-setting that will
be fixed later.

1. Introduction

Let k be a discretely valued complete nonarchimedean field over Qp, which is absolutely unramified.
Consider a rigid analytic variety over k, or more generally an adic space X over Spa(k,Ok) which

admits a proper smooth formal model X over SpfOk , whose special fiber is denoted by X0. Let L be
a lisse Zp-sheaf on Xét. On the one hand, we have the p-adic étale cohomology H i (Xk, L) which is a
finitely generated Zp-module carrying a continuous Gk = Gal(k/k)-action. On the other hand, one may
consider the crystalline cohomology H i

cris(X0/Ok, E) with the coefficient E being a filtered (convergent)
F-isocrystal on X0/Ok . At least in the case that X comes from a scheme and the coefficients L and E are
trivial, it was Grothendieck’s problem of the mysterious functor to find a comparison between the two
cohomology theories. This problem was later formulated as the crystalline conjecture by Fontaine [1982].

In the past decades, the crystalline conjecture was proved in various generalities, by Fontaine and
Messing, Kato, Tsuji, Niziol, Faltings, Andreatta and Iovita, Beilinson and Bhatt. Among them, the
first proof for the whole conjecture was given by Faltings [1989]. Along this line, Andreatta and Iovita
introduced the Poincaré lemma for the crystalline period sheaf Bcris on the Faltings site, a sheaf-theoretic
generalization of Fontaine’s period ring Bcris. Both the approach of Fontaine and Messing and that of
Faltings, Andreatta and Iovita use an intermediate topology, namely the syntomic topology and the Faltings
topology, respectively. The approach of Faltings, Andreatta and Iovita, however, has the advantage that it
works for nontrivial coefficients L and E .

More recently, Scholze [2013] introduced the proétale site Xproét, which allows him to construct the
de Rham comparison isomorphism for any proper smooth adic space over a discretely valued complete
nonarchimedean field over Qp, with coefficients being lisse Zp-sheaves on Xproét. (The notion of lisse
Zp-sheaf on Xét and that on Xproét are equivalent.) Moreover, his approach is direct and flexible enough
to attack the relative version of the de Rham comparison isomorphism, i.e., the comparison for a proper
smooth morphism between two smooth adic spaces.

It seems that to deal with nontrivial coefficients in a comparison isomorphism, one is forced to work
over analytic bases. For the generality and some technical advantages provided by the proétale topology,
we adapt Scholze’s approach to give a proof of the crystalline conjecture for proper smooth formal
schemes over SpfOk , with nontrivial coefficients, in both absolute and relative settings. Meanwhile, we
point out that the method adopted in our proof is rather different from that in [Bhatt et al. 2018], in which
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the authors develop a new cohomology that allows them to prove a strong integral comparison theorem
(for trivial coefficients).

Let us explain our construction of crystalline comparison isomorphism (in the absolutely unramified
case) in more details. First of all, Scholze is able to prove the finiteness of the étale cohomology of
a proper smooth adic space over Cp =

ˆk with coefficient L′ being an Fp-local system. Consequently,
he shows the following “primitive comparison”, an almost (with respect to the maximal ideal of OCp )
isomorphism

H i (XCp,ét, L′)⊗Fp OCp/p −→∼ H i (XCp,ét, L′⊗Fp O
+

X/p).

With some more efforts, one can produce the primitive comparison isomorphism in the crystalline case:

Theorem 1.1 (see Theorem 4.3). For L a lisse Zp-sheaf on Xét, we have a functorial isomorphism of
Bcris-modules

H i (Xk,ét, L)⊗Zp Bcris −→
∼ H i (Xk,proét, L⊗Bcris). (1A.1)

compatible with Gk-action, filtration, and Frobenius.

It seems to us that such a result alone may have interesting arithmetic applications, since it works for
any lisse Zp-sheaves, without the crystalline condition needed for comparison theorems.

Following Faltings, we say a lisse Zp-sheaf L on the proétale site Xproét is crystalline if there exists a
filtered F-isocrystal E on X0/Ok together with an isomorphism of OBcris-modules

E ⊗Our
X
OBcris ' L⊗Zp OBcris, (1A.2)

which is compatible with connection, filtration and Frobenius. Here, Our
X is the pullback to Xproét of OXét

and OBcris is the crystalline period sheaf of Our
X -module with connection ∇ such that OB∇=0

cris = Bcris.
When this holds, we say the lisse Zp-sheaf L and the filtered F-isocrystal E are associated.

We illustrate the construction of the crystalline comparison isomorphism briefly. Firstly, we prove
a Poincaré lemma for the crystalline period sheaf Bcris on Xproét. It follows from the Poincaré lemma
(Corollary 2.17) that the natural morphism from Bcris to the de Rham complex dR(OBcris) of OBcris is a
quasiisomorphism, which is compatible with filtration and Frobenius. When L and E are associated, the
natural morphism

L⊗Zp dR(OBcris)→ dR(E)⊗OBcris

is an isomorphism compatible with Frobenius and filtration. Therefore we find a quasiisomorphism

L⊗Zp Bcris ' dR(E)⊗OBcris.

From this we deduce

R0(Xk,proét, L⊗Zp Bcris)−→
∼ R0(Xk,proét, dR(E)⊗OBcris).

Via the natural morphism of topoi w : X∼
k,proét

→ X∼ét , one has

R0(Xk,proét, dR(E)⊗OBcris)' R0(Xét, dR(E)⊗̂Ok Bcris))
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for which we have used the fact that the natural morphism

OX ⊗̂Ok Bcris→ Rw∗OBcris

is an isomorphism (compatible with extra structures), which is a result of Andreatta and Brinon.
Combining the isomorphisms above, we obtain the desired crystalline comparison isomorphism.

Theorem 1.2 (see Theorem 4.5). Let L be a lisse Zp-sheaf on X and E be a filtered F-isocrystal on
X0/Ok which are associated as in (1A.2). Then there is a natural isomorphism of Bcris-modules

H i (Xk,ét, L)⊗ Bcris −→
∼ H i

cris(X0/Ok, E)⊗k Bcris

which is compatible with Gk-action, filtration and Frobenius.

After obtaining a refined version of the acyclicity of crystalline period sheaf OBcris in Appendix A, we
achieve the crystalline comparison in the relative setting, which reduces to Theorem 1.2 when Y = SpfOk .

Theorem 1.3 (see Theorem 5.5). Let f : X→Y be a proper smooth morphism of smooth formal schemes
over SpfOk , with fk : X→ Y the generic fiber and fcris the morphism between the crystalline topoi. Let
L and E be as in Theorem 1.2. Suppose that Ri fk∗L is a lisse Zp-sheaf on Y . Then it is crystalline and is
associated to the filtered F-isocrystal Ri fcris ∗E .

2. Crystalline period sheaves

Let k be a discretely valued nonarchimedean extension of Qp, with κ its residue field. Let X be a locally
noetherian adic space over Spa(k,Ok). For the fundamentals on the proétale site Xproét, we refer to
[Scholze 2013].

The following terminology and notation will be used frequently throughout the paper. We shall fix
once for all an algebraic closure k of k, and consider Xk := X ×Spa(k,Ok) Spa(k,Ok) as an object of Xproét

(see the paragraph after the proof of Proposition 3.13 in [loc. cit.]). As in [loc. cit., Definition 4.3], an
object U ∈ Xproét lying above Xk is called an affinoid perfectoid (lying above Xk) if U has a proétale
presentation U = lim

←−−
Ui → X by affinoids Ui = Spa(Ri , R+i ) above Xk such that, with R+ the p-adic

completion of lim
−−→

R+i and R = R+[1/p], the pair (R, R+) is a perfectoid affinoid (ˆk,Oˆk)-algebra. Write
Û = Spa(R, R+). By [loc. cit., Proposition 4.8, Lemma 4.6], the set of affinoid perfectoids lying above
Xk of Xproét forms a basis for the topology.

2A. Period sheaves and their acyclicities. Following [loc. cit.], let

ν : X∼proét→ X∼ét

be the morphism of topoi, which, on the underlying sites, sends an étale morphism U → X to the
proétale morphism from U (viewed as a constant projective system) to X . Consider O+X = ν

−1O+Xét

and OX = ν
−1OXét , the (uncompleted) structural sheaves on Xproét. More concretely, for U = lim

←−−
Ui a
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qcqs (quasicompact and quasiseparated) object of Xproét, one has OX (U )= lim
−−→

OX (Ui )= lim
−−→

OXét(Ui )

[Lemma 3.16]. Set

Ô+X := lim
←−−

n
O+X/pn, ÔX := Ô+X

[ 1
p

]
, and O[+

X := lim
←−−

x 7→x p
O+X/p.

For U ∈ Xproét an affinoid perfectoid lying above Xk with Û = Spa(R, R+), by [loc. cit., Lemmas 4.10
and 5.10], we have

Ô+X (U )= R+, ÔX (U )= R, and O[+
X (U )= R[+ := lim

←−−
x 7→x p

R+/p.

Denote
R[+→ R+, x = (x0, x1, . . .) 7→ x] := lim

n→∞
x̂ pn

n ,

for x̂n any lifting from R+/p to R+. We have the multiplicative bijection induced by projection
R+→ R+/p:

lim
←−−

x 7→x p
R+ −→∼ R[+,

whose inverse sends x ∈ R[+ to (x], (x1/p)], . . .). Put Ainf :=W (O[+
X ) and Binf =Ainf[1/p]. As R[+ is a

perfect ring, Ainf(U )=W (R[+) has no p-torsion. In particular, Ainf has no p-torsion and it is a subsheaf
of Binf.

Following Fontaine, define as in [loc. cit., Definition 6.1] a natural morphism

θ : Ainf→ Ô+X (2A.1)

which, on an affinoid perfectoid U with Û = Spa(R, R+), is given by

θ(U ) : Ainf(U )=W (R[+)→ Ô+X (U )= R+,
∞∑

n=0

pn
[xn] 7→

∞∑
n=0

pnx]n (2A.2)

with xn ∈ R[+. As (R, R+) is a perfectoid affinoid algebra, θ(U ) is known to be surjective (see [Brinon
2008, 5.1.2]). Therefore, θ is also surjective.

Definition 2.1. Let X be a locally noetherian adic space over Spa(k,Ok) as above.

(1) Define Acris to be the p-adic completion of the PD-envelope A0
cris of Ainf with respect to the ideal

sheaf ker(θ)⊂ Ainf, and define B+cris := Acris[1/p].

(2) For r ∈Z≥0, set Filr A0
cris := ker(θ)[r ]⊂A0

cris to be the r -th divided power ideal, and Fil−r A0
cris=A0

cris.
The family {Filr A0

cris : r ∈ Z} gives a descending filtration of A0
cris.

(3) For r ∈ Z, define Filr Acris ⊂ Acris to be the image of the following morphism of sheaves (we shall
see below that this map is injective):

lim
←−−

n
(Filr A0

cris)/pn
→ lim
←−−

n
A0

cris/pn
= Acris, (2A.3)

and define Filr B+cris = Filr Acris[1/p].
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Let p[ = (pi )i≥0 be a fixed family of elements of k such that p0 = p and that p p
i+1 = pi for any i ≥ 0.

Set ξ := [p[]− p, which can be seen as a section of the restriction Ainf|Xk
of the proétale sheaf Ainf to

Xproét/Xk .

Proposition 2.2. We have ker(θ)|Xk
= (ξ)⊂ Ainf|Xk

. Furthermore, ξ ∈ Ainf|Xk
is not a zero-divisor.

Proof. As the set of affinoid perfectoids U lying above Xk forms a basis for the topology of Xproét/Xk ,
we only need to check that, for any such U , ξ ∈ Ainf(U ) is not a zero-divisor and that the kernel of
θ(U ) : Ainf(U )→ Ô+X (U ) is generated by ξ . Write Û = Spa(R, R+). Then Ainf(U ) = W (R[+) and
Ô+X (U )= R+, hence we reduce our statement to (the proof of) [Scholze 2013, Lemma 6.3]. �

Corollary 2.3. (1) We have A0
cris|Xk

= Ainf|Xk
[ξ n/n! : n ∈ N] ⊂ Binf|Xk

. In particular, A0
cris and Acris

have no p-torsion. Moreover, for every r ≥ 0, Filr A0
cris|Xk

=Ainf|Xk
[ξ n/n! : n≥ r ] and grr A0

cris|Xk
=

Ô+X · (ξ
r/r !)−→∼ Ô+X |Xk

.

(2) The morphism (2A.3) is injective, hence lim
←−−n Filr A0

cris/pn
−→∼ Filr Acris. Moreover, for r ≥ 0,

grr Acris|Xk
−→∼ Ô+X |Xk

.

Proof. The first three statements in (1) are clear from Proposition 2.2. In particular, for r ≥ 0 we have the
following exact sequence

0→ Filr+1 A0
cris|Xk

→ Filr A0
cris|Xk

→ Ô+X |Xk
→ 0, (2A.4)

where the second map sends aξ r/r ! to θ(a). This gives the last assertion of (1).
As Ô+X has no p-torsion, an induction on r shows that the cokernel of the inclusion Filr A0

cris ⊂ A0
cris

has no p-torsion. As a result, the morphism (2A.3) is injective and Filr Acris is the p-adic completion
of Filr A0

cris. Since Ô+X is p-adically complete, we deduce from (2A.4) also the following short exact
sequence after passing to p-adic completions:

0 // Filr+1 Acris|Xk
// Filr Acris|Xk

// Ô+X |Xk
// 0 (2A.5)

giving the last part of (2). �

Let ε = (ε(i))i≥0 be a sequence of elements of k such that ε(0) = 1, ε(1) 6= 1 and (ε(i+1))p
= ε(i) for all

i ≥ 0. Then 1− [ε] is a well-defined element of the restriction Ainf|Xk
to Xproét/Xk of Ainf. Moreover

1− [ε] ∈ ker(θ)|Xk
= Fil1 Acris|Xk

. Let

t := log([ε])=−
∞∑

n=1

(1− [ε])n

n
, (2A.6)

which is well-defined in Acris|Xk
since Fil1 Acris is a PD-ideal.

Definition 2.4. Let X be a locally noetherian adic space over Spa(k,Ok). Define Bcris = B+cris[1/t]. For
r ∈ Z, set Filr Bcris =

∑
s∈Z t−s Filr+s B+cris ⊂ Bcris.

Remark 2.5. We shall see in Corollary 2.24 that t is not a zero-divisor in Acris and in B+cris, so B+cris⊂Bcris.
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Before investigating these period sheaves in details, we first study them over a perfectoid affinoid
(ˆk,Oˆk)-algebra (R, R+). Consider

Ainf(R, R+) :=W (R[+), Binf(R, R+) := Ainf(R, R+)[1/p],

and define the morphism
θ(R,R+) : Ainf(R, R+)→ R+

in the same way as in (2A.2). It is known to be surjective as (R, R+) is perfectoid. The element ξ generates
ker(θ(R,R+)) and is not a zero-divisor in Ainf(R, R+). Let Acris(R, R+) be the p-adic completion of the
PD-envelope of Ainf(R, R+) with respect to ker(θ(R,R+)). So Acris(R, R+) is the p-adic completion of

A0
cris(R, R+) := Ainf(R, R+)

[
ξ n

n!
: n ∈ N

]
⊂ Binf(R, R+).

For r an integer, let Filr A0
cris(R, R+) ⊂ A0

cris(R, R+) be the r-th PD-ideal, i.e., the ideal generated
by ξ n/n! for n ≥ max{r, 0}. Let Filr Acris(R, R+) ⊂ Acris(R, R+) be the closure (for the p-adic
topology) of Filr A0

cris(R, R+) inside Acris(R, R+). Finally, put B+cris(R, R+) := Acris(R, R+)[1/p],
Bcris(R, R+) := B+cris(R, R+)[1/t], and for r ∈ Z, set

Filr B+cris(R, R+) := Filr Acris(R, R+)
[ 1

p

]
and Filr Bcris(R, R+) :=

∑
s∈Z

t−s Filr+s B+cris(R, R+).

In particular, taking R+ = OCp with Cp the p-adic completion of the fixed algebraic closure k of
k, we get Fontaine’s rings Acris, B+cris, Bcris as in [Fontaine 1994]. Write C

[
p the tilt of Cp, which is an

algebraically closed nonarchimedean field of characteristic p. The maximal ideal of its ring of integers
O[

Cp
is generated by [p[]1/pN

for all N ∈ N. Let I ⊂ Acris be the ideal generated by

{[ε]1/pN
− 1, [p[]1/pN

: N ∈ N} ⊂ Acris.

By [Brinon 2008, Lemme 6.3.1], we have I⊂ I2
+ pn
·Acris for any n ∈N>0. In particular, I ·(Acris/pn)=

(I · (Acris/pn))2. In the following, when working with algebras (or modules) over Acris/pn , we consider
the almost-setting with respect to the ideal I · (Acris/pn)⊂ Acris/pn . When n = 1, as ε1/pN

− 1 ∈O[

Cp
is

contained in the maximal ideal, I · (Acris/p) is the same as the ideal generated by {[p[]1/pN
: N ∈N}. So

the almost-setting adopted here for Acris/p-modules is the same as the one used by Scholze [2013] (see
the paragraph before Theorem 6.5 for his convention).

Lemma 2.6. Let X be a locally noetherian adic space over (k,Ok). Let F be a p-adically complete sheaf
of Acris-modules on Xproét, flat over Zp. Set Fn =F/pn , n ∈ Z≥1. Assume that, for any affinoid perfectoid
U above Xk ,

(a) there exists a p-adically complete Acris-module F(U ), flat over Zp, equipped with a morphism of
Acris-modules αU : F(U )→ F(U ) such that the composed morphism

αU,1 : F(U )/p αU mod p
−−−−−→F(U )/p→ F1(U )
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is an almost isomorphism; and

(b) the Acris/p-module H i (U,F1) is almost zero for any i > 0.

Then, for an affinoid perfectoid U as above, n ≥ 1 and i > 0,

(1) the composed morphism

αU,n : F(U )/pn αU mod pn
−−−−−→F(U )/pn

→ Fn(U )

is an almost isomorphism, and H i (U,Fn) is almost zero;

(2) we have I · R1 lim
←−−

Fn(U ) = 0, and that ker(αU ) and coker(αU ) are killed by I2. Furthermore,
I2
· Ri lim

←−−
Fn = 0, and I2i+1

· H i (U,F)= 0.

Proof. Let U be a affinoid perfectoid lying above Xk . For n ∈ Z≥1, let F(U )n = F(U )/pn . Since F and
F(U ) are flat over Zp, we have exact sequences

0→ F1
·pn
−→Fn+1

can
−→Fn→ 0, and 0→ F(U )1

·pn
−→ F(U )n+1

can
−→ F(U )n→ 0,

from which we deduce exact sequences

H i (U,F1)→ H i (U,Fn+1)→ H i (U,Fn), i ≥ 0,

and a commutative diagram with exact rows

0 // F(U )1
·pn
//

αU,1

��

F(U )n+1 //

αU,n+1

��

F(U )n //

αU,n

��

0

0 // F1(U )
·pn
// Fn+1(U ) // Fn(U ).

So, by induction on n, (1) follows from conditions (a) and (b) above and the fact that I · (Acris/pn) =

I2
· (Acris/pn) for any n ∈ N [Brinon 2008, Lemme 6.3.1]. In particular, the collection (αU,n)n∈N gives a

morphism of projective systems

(F(U )n)n∈N→ (Fn(U ))n∈N

whose kernel and cokernel are killed by I. Passing to limits relative to n, we find I · R1 lim
←−−

Fn(U )= 0,
and that ker(αU ) and coker(αU ) are killed by I2, giving also the first part of (2).

To go further, let Sh (resp. PreSh) denote the category of sheaves (resp. of presheaves) on Xproét, and
let ShN (resp. PreShN) denote the category of projective systems of sheaves (resp. projective systems of
presheaves) indexed by N on Xproét. The projective limit functor lim

←−−
: ShN

→ Sh factors as

ShN σ
−→ PreShN lim

←−

′

−→ PreSh a
−→ Sh,

where the first functor σ is induced from the natural inclusion Sh⊂ PreSh, the second is the projective
limit functor of presheaves, and the third takes a presheaf to its associated sheaf. Let τ := lim

←−−

′
◦σ . Since



Crystalline comparison isomorphisms in p -adic Hodge theory 1517

the functor a is exact, R lim
←−−
= a ◦ Rτ . In particular, for each i , Ri lim

←−−
Fn is the associated sheaf of the

presheaf Riτ(F•), where we denote by F• the projective system (Fn)n∈N. Let

0→ I (0)•→ I (1)•→ · · ·

be an injective resolution of F• in ShN, with I ( j)• = (I ( j)n)n∈N. For each i , Riσ(F•) is the i-th
cohomology of this complex in PreShN. On the other hand, for each n, this resolution gives an injective
resolution of Fn in the category of sheaves on Xproét [Jannsen 1988, (1.1) Proposition]

0→ I (0)n→ I (1)n→ · · · .

So, for U an affinoid perfectoid lying above Xk , H i (U,Fn) is the i-th cohomology group of the induced
complex

0→ I (0)n(U )→ I (1)n(U )→ · · · ,

which is annihilated by I when i > 0 by (1). Varying n, we find

I · Riσ(F•)(U )= I · H i (U,F•)= 0, for i > 0. (2A.7)

On the other hand, as infinite products exist and are exact functors in PreSh, by [Jannsen 1988, (1.6) Propo-
sition], we have an exact sequence of presheaves for each i ∈ Z:

0→ R1lim
←−−

′Ri−1σ(F•)→ Riτ(F•)→ lim
←−−

′Riσ(F•)→ 0.

The latter gives an exact sequence of abelian groups

0→ (R1lim
←−−

′Ri−1σ(F•))(U )→ Riτ(F•)(U )→ (lim
←−−

′Riσ(F•))(U )→ 0.

We claim that I2
· Riτ(F•)(U )= 0 for i ≥ 1. Indeed, when i ≥ 2, our claim follows from (2A.7). When

i = 1, by what we have shown in the first paragraph, I · (R1 lim
←−−

′ σ(F•))(U ) = I · R1 lim
←−−
(Fn(U )) = 0.

Combining (2A.7), we get I2
· R1τ(F•)(U )= 0, as claimed. Since Ri lim

←−−
Fn is the associated sheaf of

Riτ(F•), we deduce I2
· Ri lim

←−−
Fn = 0 when i > 0. This proves the second part of (2).

Now, because I2
· Ri lim

←−−
Fn = 0 for i > 0, for the spectral sequence below

E i, j
2 = H i (U, R j lim

←−−
Fn)H⇒ H i+ j (U, R lim

←−−
Fn),

one checks that I2
· E i, j
∞ = 0 for j > 0, E i,0

∞
= E i,0

i+1, and the surjection E i,0
2 → E i,0

∞
has kernel killed by

I2i−2. It follows that the canonical map

H i (U,F)= H i (U, lim
←−−

Fn)→ H i (U, R lim
←−−

Fn)

has kernel annihilated by I2i−2 and cokernel annihilated by I2i . Using the short exact sequence (see
Lemma 4.1)

0→ R1 lim
←−−

H i−1(U,Fn)→ H i (U, R lim
←−−

Fn)→ lim
←−−

H i (U,Fn)→ 0,
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and that R1 lim
←−−

H i−1(U,Fn) is annihilated by I, one deduces that the morphism

H i (U,F)= H i (U, lim
←−−

Fn)→ lim
←−−

H i (U,Fn), i ≥ 0

is an isomorphism up to I2i -torsion, i.e., its kernel and cokernel are killed by I2i . In particular, H i (U,F)
is killed by I2i+1 when i > 0, as wanted. �

Lemma 2.7. Let X be a locally noetherian adic space over (k,Ok). Let U ∈ Xproét be an affinoid
perfectoid above Xk with Û = Spa(R, R+). Then there is a natural filtered morphism Acris(R, R+)→
Acris(U ) of Acris-algebras, inducing an almost isomorphism Filr Acris(R, R+)/pn

→ (Filr Acris/pn)(U )
for any r ≥ 0 and n ≥ 1. Moreover, H i (U,Filr Acris/pn)a = 0 for any i > 0.

Proof. As U is affinoid perfectoid, Ô+X (U ) = R+, O[+
X (U ) = R[+ and θ(U ) = θ(R,R+). In particular,

Ainf(U )= Ainf(R, R+), and the natural morphism

Ainf(R, R+)= Ainf(U )→ Acris(U )

sends ker(θ(R,R+)) into Fil1 Acris(U ). As Fil1 Acris(U ) ⊂ Acris(U ) has a PD-structure, the morphism
above induces a map A0

cris(R, R+)→ Acris(U ), respecting the filtrations on both sides. Passing to p-adic
completions, we obtain the required filtered morphism Acris(R, R+)→ Acris(U ) of Acris-algebras.

In particular, for each r ≥ 0, we have a natural morphism

Filr Acris(R, R+)→ Filr Acris(U ).

Composing its reduction modulo pn with Filr Acris(U )/pn
→ (Filr Acris/pn)(U ), we get a morphism

Filr Acris(R, R+)/pn
→ (Filr Acris/pn)(U ) (2A.8)

for all n ≥ 1. We need to show that this is an almost isomorphism of Acris/pn-modules, and that
H i (U,Filr Acris/pn)a = 0 for i > 0. Using Lemma 2.6(1), one reduces to the case where n = 1. Then,
we claim that it suffices to prove this when r = 0. Indeed, from the exact sequence (2A.4) and the fact
that Ô+X is p-torsion free, we deduce a short exact sequence for each r ≥ 0:

0→ (Filr+1 Acris|Xk
)/p→ (Filr Acris|Xk

)/p→ (O+X |Xk
)/p→ 0. (2A.9)

We have a short exact sequence for Filr Acris(R, R+)/p obtained in a similar way:

0→ Filr+1 Acris(R, R+)/p→ Filr (R, R+)/p→ R+/p→ 0.

As U is affinoid perfectoid, by [Scholze 2013, Lemma 4.10], the natural morphism

R+/p = Ô+X (U )/p→ (O+X/p)(U )

is an almost isomorphism: recall that the almost-setting adopted here for Acris/p-modules is the same as
the one used by Scholze [2013]. So we have a commutative diagram with exact rows, such that the right
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vertical map is an almost isomorphism:

0 // (Filr+1 Acris/p)(U )a // (Filr Acris/p)(U )a // (O+X/p)(U )a

0 // Filr+1 Acris(R, R+)a/p //

OO

Filr (R, R+)a/p //

OO

(R+/p)a //

≈

OO

0.

In particular, the upper row of the diagram above is right exact. On the other hand, combined with
[Scholze 2013, Lemma 4.10], the long exact sequence associated with (2A.9) gives an isomorphism

H i (U,Filr+1 Acris/p)a −→∼ H i (U,Filr Acris/p)a, ∀ i ≥ 1.

Therefore, our claim follows by induction on r ≥ 0.
So, it remains to prove the second part of our lemma when r =0 and n=1. Denote by α1 the map (2A.8)

in this case. Recall the following identification of Acris(R, R+)/p (see [Brinon 2008, Proposition 6.1.2])

Acris(R, R+)/p −→∼ (R[+/(p[)p)[δi : i ∈ N]/(δ
p
i : i ∈ N),

with δi being the image of ξ [p
i+1
]. Similarly, restricting to Xproét/Xk , we have

Acris/p −→∼ (O[+
X /(p

[)p)[δi : i ∈ N]/(δ
p
i : i ∈ N).

In particular, Acris/p is a direct sum of copies of O[+
X /(p

[)p on Xproét/Xk . Under these identifications,
the morphism α1 is induced by

R[+/(p[)p
=O[+

X (U )/(p
[)p
→ (O[+

X /(p
[)p)(U ).

Since U is qcqs, to conclude the proof, it suffices to show H i (U,O[+
X /(p

[)p)a = 0 for i > 0, and that
the morphism above is an almost isomorphism. Both of these two assertions follow from [Scholze 2013,
Lemma 4.10]. �

Corollary 2.8. Keep the notation of Lemma 2.7. In particular, U is an affinoid perfectoid of Xproét lying
above Xk , with Û = Spa(R, R+).

(1) For any r ∈ N, there is a natural morphism Filr Acris(R, R+) → Filr Acris(U ) of Acris-modules
whose kernel and cokernel are killed by I2. Moreover, I2

· Ri lim
←−−n Filr Acris/pn

= 0 and I2i+1
·

H i (U,Filr Acris)= 0 for i > 0.

(2) The natural morphisms in (1) induce isomorphisms

Bcris(R, R+)−→∼ Bcris(U ), and Filr Bcris(R, R+)−→∼ Filr Bcris(U )

for all r ∈ Z. Moreover, H i (U,Bcris)= H i (U,Filr Bcris)= 0 for i ≥ 1.

Proof. (1) This follows directly from Lemma 2.6 and Lemma 2.7.
(2) As U is qcqs, inverting t , we deduce from (1) a morphism of Bcris-modules Bcris(R, R+)→ Bcris(U ),
with kernel and cokernel killed by I2. Moreover, the Bcris-module H i (U,Bcris) is annihilated by I2i+1
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for i > 0. Note that t is divisible by [ε] − 1 in Acris (see for example the proof of Theorem A.12), so the
assertions for Bcris follow as I · Bcris = Bcris.

To prove our assertions for Filr Bcris, observe first that the following two properties hold. For s ∈ N,
(a) the canonical map grs B+cris(R, R+)→ grs B+cris(U ) is an isomorphism; and (b) H i (U, grs B+cris)= 0.
Indeed, over Xproét/Xk , we have grs B+cris = ÔX · ξ

[s] by (2A.5). Similarly, grs B+cris(R, R+) = R · ξ [s].
Therefore the two properties above follow from [Scholze 2013, Lemma 4.10].

Now, let us begin the proof for Filr Bcris. Twisting by t−r if necessary, we shall assume r = 0.
Inverting p, we get from (1) a morphism of B+cris-modules:

αs : Fils B+cris(R, R+)→ Fils B+cris(U )

whose kernel and cokernel are killed by I2. Passing to direct limits (with respect to multiplication-by-t),
we deduce a natural map of B+cris-modules, denoted by β:

Fil0 Bcris(R, R+)= lim
−−→
s≥0

Fils B+cris(R, R+)→ Fil0 Bcris(U )= lim
−−→
s≥0

Fils B+cris(U ),

whose kernel and cokernel are killed by I2, hence by t2. One needs to show that this map is an
isomorphism. The injectivity of β is clear as ker(β)⊂ Bcris(R, R+) is t-torsion free. So it is enough to
check its surjectivity. Note that we have the following commutative diagram with exact rows

0 // Fils+1 B+cris(U ) // Fils B+cris(U ) // grs B+cris(U )

0 // Fils+1 B+cris(R, R+) //

αs+1

OO

Fils B+cris(R, R+) //

αs

OO

grs B+cris(R, R+) //

'

OO

0.

Here the right vertical map is an isomorphism because of the property (a) above. Then, by the snake lemma,
the inclusion Fils+1 B+cris(U )⊂ Fils B+cris(U ) induces an isomorphism coker(αs+1)−→

∼ coker(αs). So we
get identification coker(αs)−→

∼ coker(α0)=: C induced by the inclusion Fils B+cris(U )⊂ Fil0 B+cris(U )=
B+cris(U ) for all s ≥ 0. With these identifications, we have

coker(β)= lim
−−→
s≥0

coker(αs)= lim
−−→
s≥0

C

where, in the last direct limit, the transition maps are multiplication-by-t . Since C = coker(α0) is killed
by t2, necessarily coker(β)= 0. In other words, β is surjective, thus is an isomorphism.

Finally, it remains to show H i (U,Fil0 Bcris)= 0 when i > 0. For s ∈N, from the commutative diagram

Fil0 B+cris
·t s
// Fils B+cris

Fils B+cris

?�
canonical

OO

·t s

99
,



Crystalline comparison isomorphisms in p -adic Hodge theory 1521

we get a commutative diagram of cohomology groups

H i (U,Fil0 B+cris)
·t s
// H i (U,Fils B+cris)

H i (U,Fils B+cris)

OO

·t s

66
.

(2A.10)

We claim that, for i > 0, the vertical map above is surjective. To see this, it suffices to check the surjectivity
of the map

H i (U,Fils+1 B+cris)→ H i (U,Fils B+cris)

induced by the inclusion Fils+1 B+cris ⊂ Fils B+cris for any s ≥ 0. So, one only needs to show that
H i (U, grs B+cris)= 0 for i > 0, as claimed by the property (b) above. Thus the vertical map in (2A.10) is
surjective. On the other hand, the B+cris-module H i (U,Fils B+cris) is killed by I2i+1 and t is a multiple of
[ε] − 1 ∈ I, so the map

H i (U,Fils B+cris)→ H i (U,Fils B+cris), x 7→ t s x

is zero whenever s ≥ 2i + 1. Thus, the horizontal map in (2A.10) is trivial when s ≥ 2i + 1. We conclude
H i (U,Fil0 Bcris)= lim

−−→s H i (U,Fils B+cris)= 0 for i > 0. �

2B. Period sheaves with connections. In this section, assume that the p-adic field k is absolutely un-
ramified. Let X be a smooth formal scheme over Ok . Set X := Xk the generic fiber of X , viewed as an
adic space over Spa(k,Ok). For any étale morphism Y→ X , by taking the generic fiber, we obtain an
étale morphism Yk→ X of adic spaces, hence an object of the proétale site Xproét. In this way, we get a
morphism of sites Xét→ Xproét, with the induced morphism of topoi

w : X∼proét→ X∼ét .

Let OXét denote the structural sheaf of the étale site Xét: for any étale morphism Y→X of formal schemes
over Ok , OXét(Y) = 0(Y,OY). Define Our+

X := w−1OXét and Our
X := w

−1OXét[1/p]. Thus Our+
X is the

associated sheaf of the presheaf Õur+
X :

Xproét 3U 7→ lim
−−→
(Y,a)

OXét(Y)=: Õ
ur+
X (U ),

where the limit runs through all pairs (Y, a) with Y ∈ Xét and a : U → Yk a morphism making the
following diagram commutative:

U //

a
##

X = Xk

Yk

OO

(2B.1)
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The morphism a : U → Yk induces a map 0(Y,OY)→OX (U ). There is then a morphism of presheaves
Õur+

X →O+X , whence a morphism of sheaves

Our+
X →O+X . (2B.2)

Recall Ainf :=W (O[+
X ). Set OAinf :=Our+

X ⊗Ok Ainf and

θX : OAinf→ Ô+X (2B.3)

to be the map induced from θ : Ainf→ Ô+X of (2A.1) by extension of scalars.

Definition 2.9. Consider the following sheaves on Xproét.

(1) Let OAcris be the p-adic completion of the PD-envelope OA0
cris of OAinf with respect to the ideal

sheaf ker(θX )⊂OAinf, OB+cris :=OAcris[1/p], and OBcris :=OB+cris[1/t] with t = log([ε]) defined
in (2A.6).

(2) For r ≥ 0 an integer, define Filr OA0
cris ⊂OA0

cris to be the r-th PD-ideal ker(θX )
[r ], and Filr OAcris

the image of the canonical map

lim
←−−

Filr OA0
cris/pn

→ lim
←−−

OA0
cris/pn

=OAcris.

Also set Fil−r OAcris =OAcris for r > 0.

(3) For any integer r , set Filr OB+cris := Filr OAcris[1/p] and Filr OBcris :=
∑

s∈Z t−s Filr+s OB+cris.

Remark 2.10. As t p
= p! · t [p] in Acris = Acris(

ˆk,Oˆk), one can also define Filr OBcris as∑
s∈N

t−s Filr+s OAcris.

A similar observation holds for Filr Bcris.

Remark 2.11. (1) We shall see later that OAcris has neither p-torsion (Corollary 2.16) nor t-torsion
(Corollary 2.24). So OAcris ⊂OB+cris ⊂OBcris.

(2) The morphism θX of (2B.3) extends to a surjective morphism OA0
cris→ Ô+X with kernel Fil1 OA0

cris,
hence a morphism OAcris→ Ô+X . Let us denote them again by θX . As Ô+X is p-adically complete
and has no p-torsion, using the snake lemma and passing to limits one can deduce the following
short exact sequence

0→ lim
←−−

n
(Fil1 OA0

cris/pn)→OAcris
θX−→ Ô+X → 0.

In particular, Fil1 OAcris = ker(θX ).

Definition 2.12. Consider the following sheaves on Xproét.

(1) Let Acris{〈u1, . . . ,ud〉} be the p-adic completion of the sheaf of PD polynomial rings A0
cris〈u1, . . . ,ud〉

⊂ Binf[u1, . . . , ud ]. Set B+cris{〈u1, . . . , ud〉} := Acris{〈u1, . . . , ud〉}[1/p] and Bcris{〈u1, . . . , ud〉} :=

Acris{〈u1, . . . , ud〉}[1/t].
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(2) For r an integer, let Filr A0
cris〈u1, . . . , ud〉 ⊂ A0

cris〈u1, . . . , ud〉 be the ideal sheaf∑
i1,...,id≥0

Filr−(i1+···+id ) A0
cris · u

[i1]
1 · · · u

[id ]
d ⊂ A0

cris〈u1, . . . , ud〉,

and Filr (Acris{〈u1, . . . , ud〉})⊂ Acris{〈u1, . . . , ud〉} the image of the morphism

lim
←−−

n
(Filr A0

cris{〈u1, . . . , ud〉}/pn)→ Acris{〈u1, . . . , ud〉}.

The family {Filr (Acris{〈u1, . . . , ud〉}) : r ∈ Z} gives a descending filtration of Acris{〈u1, . . . , ud〉}.
Inverting p, we obtain Filr (B+cris{〈u1, . . . , ud〉}). Finally set

Filr (Bcris{〈u1, . . . , ud〉}) :=
∑
s∈Z

t−s Filr+s(B+cris{〈u1, . . . , ud〉}).

To describe OAcris more explicitly, assume that X is small, i.e., there is an étale morphism X →
Spf(Ok{T±1

1 , . . . , T±1
d })=: T

d of formal schemes over Ok , where we have used {−, . . . ,−} to denote
convergent power series. Let Td denote the generic fiber of T d and T̃d be obtained from Td by adding a
compatible system of pn-th roots of Ti for 1≤ i ≤ d and n ≥ 1

T̃d
:= Spa(k{T±1/p∞

1 , . . . , T±1/p∞
d },Ok{T

±1/p∞

1 , . . . , T±1/p∞
d }).

Set X̃:= X×Td T̃d. Let T [
i ∈O

[+
X |X̃ be the element (Ti , T 1/p

i , . . . , T 1/pn

i , . . .). Then θX (Ti⊗1−1⊗[T [
i ])=0,

giving an Acris-linear morphism

α : Acris{〈u1, . . . , ud〉}|X̃ →OAcris|X̃ , ui 7→ Ti ⊗ 1− 1⊗[T [
i ]. (2B.4)

Clearly, α respects the filtrations on both sides.

Proposition 2.13. The morphism α of (2B.4) is an isomorphism. Moreover, α is strictly compatible with
the filtrations on both sides, i.e., the inverse of the isomorphism α respects also the filtrations of both sides.

Lemma 2.14. Let k be an algebraic closure of k. Then Acris{〈u1, . . . , ud〉}|X̃k
has an Our+

X |X̃k
-algebra

structure, sending Ti to ui + [T
[

i ], such that the composition

Our+
X |X̃k

→ Acris{〈u1, . . . , ud〉}|X̃k

θ ′|X̃k
−−−→ Ô+X |X̃k

is the map (2B.2) composed with O+X → Ô+X . Here θ ′ : Acris{〈u1, . . . , ud〉}→ Ô+X is induced from the map
Acris

θ
−→ Ô+X by sending ui ’s to 0.

Proof. Let U be an affinoid perfectoid lying above X̃k , and Y ∈ Xét, equipped with a map a : U → Yk as
in (2B.1). We shall first construct a morphism of Ok-algebras

OY(Y)→ (Acris{〈u1, . . . , ud〉})(U ) (2B.5)

sending Ti to ui + [T
[

i ]. As our construction is functorial and as Acris{〈u1, . . . , ud〉} is a sheaf, shrinking
U and Y if necessary, we may and we do assume Y = Spf(A) affine. Then, the map a : U → Yk

gives us a morphism of Ok-algebras a#
: A→ R+. Moreover, U being qcqs, Acris{〈u1, . . . , ud〉}(U )=
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lim
←−−n((Acris/pn)(U )〈u1, . . . , ud〉). Consequently, the morphisms Acris(R, R+)/pn

→ (Acris/pn)(U ) for
all n ≥ 1 in Lemma 2.7 induce a natural filtered map

Acris(R, R+){〈u1, . . . , ud〉} → Acris{〈u1, . . . , ud〉}(U ). (2B.6)

Therefore, to obtain (2B.5), it suffices to construct a natural map

A =OY(Y)→ Acris(R, R+){〈u1, . . . , ud〉}. (2B.7)

of Ok-algebras mapping Ti to ui +[T
[

i ]. To do so, composing the map Y→ X with X → T d , we obtain
an étale morphism b : Y→ T d of p-adic formal schemes, whence an étale morphism

b#
:Ok{T±1

1 , . . . , T±1
d } → A

of Ok-algebras. On the other hand, ui has divided powers in Acris(R, R+){〈u1, . . . , ud〉}, so [T [
i ] + ui ∈

Acris(R, R+){〈u1, . . . , ud〉} is invertible. This allows to define a map

f :Ok{T±1
1 , . . . , T±1

d } → Acris(R, R+){〈u1, . . . , ud〉}

of Ok-algebras, sending each Ti to ui +[T
[

i ]. Let fn be its reduction modulo pn for n ≥ 1. Then, we have
the following diagram, which is commutative without the dotted map:

R+/pn A/pna# mod pn
oo

∃! gn

tt

Acris(R, R+){〈u1, . . . , ud〉}/pn

θ ′
(R,R+)

mod pn

OO

Ok{T±1
1 , . . . , T±1

d }/pn.
fn
oo

b# mod pn

OO

(2B.8)

Here, the left vertical map is the reduction modulo pn of the ring homomorphism

θ ′(R,R+) : Acris(R, R+){〈u1, . . . , ud〉} → R+

which sends each ui to 0 and extends the usual map θ(R,R+) : Acris(R, R+)→ R+. Since ker(θ ′
(R,R+)) has

PD-structure, the left vertical map of (2B.8) has a nilpotent kernel. Then, by the étaleness of b#, we get a
unique dotted map gn , making the whole diagram (2B.8) commutative. These gn’s are compatible with
each other, and the limit lim

←−−n gn gives the morphism (2B.7) and thus (2B.5). Since Õur+
X (U )= lim

−−→
OY(Y),

where the direct limit runs through the diagrams (2B.1), we get from (2B.5) a morphism of Ok-algebras,
sending Ti to ui + [T

[
i ]:

Õur+
X (U )→ Acris{〈u1, . . . , ud〉}(U ),

whose construction is functorial with respect to affinoid perfectoid U ∈ Xproét lying above X̃k . As such
affinoid perfectoids form a basis of the topology on Xproét/X̃k , by passing to the associated sheaf, we
obtain the required morphism of sheaves of Ok-algebras Our

X |X̃k
→ Acris|X̃k

{〈u1, . . . , ud〉} sending Ti to
ui + [T

[
i ]. The last statement follows from the assignment θ ′(Ui )= 0 and the fact that θ([T [

i ])= Ti . �
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Proof of Proposition 2.13. As X̃k → X̃ is a covering in Xproét, it is enough to show that α|X̃k
is

an isomorphism. By Lemma 2.14, there exists a morphism of sheaves of Ok-algebras Our+
X |X̃k

→

Acris{〈u1, . . . , ud〉}|X̃k
sending Ti to ui + [T

[
i ]. By extension of scalars, we find the morphism

β :OAinf|X̃k
= (Our+

X ⊗Ok Ainf)|X̃k
→ Acris{〈u1, . . . , ud〉}|X̃k

which maps Ti ⊗ 1 to ui + [T
[

i ]. Consider the composite (with θ ′ as in Lemma 2.14)

θ ′|X̃k
◦β : OAinf|X̃k

→ Acris{〈u1, . . . , ud〉}|X̃k
→ Ô+X |X̃k

,

which is θX |X̃k
by Lemma 2.14. Therefore, β(ker(θX |X̃k

)) ⊂ ker(θ ′|X̃k
). Since ker(θ ′|X̃k

) has a PD-
structure, β extends to the PD-envelope OA0

cris|X̃k
of the source, and thus to OAcris|X̃k

as Acris{〈u1, . . . , ud〉}

is p-adically complete. Thus we obtain the morphism below, still denoted by β, sending Ti⊗1 to ui+[T
[

i ]:

β : OAcris|X̃k
→ Acris{〈u1, . . . , ud〉}|X̃k

.

The morphism β above preserves Fil1, hence all the Filr ’s. One shows that β and α are inverse to each
other, giving our proposition. �

Corollary 2.15. Keep the notations above. There are natural B+cris-linear and Bcris-linear isomorphisms
sending ui to Ti ⊗ 1− 1⊗[T [

i ],

B+cris{〈u1, . . . , ud〉}|X̃ −→
∼ OB+cris|X̃ and Bcris{〈u1, . . . , ud〉}|X̃ −→

∼ OBcris|X̃

which is strictly compatible with filtrations on both sides.

Corollary 2.16. Let X be a smooth formal scheme over Ok . Then OAcris has no p-torsion. In particular,
OAcris ⊂OB+cris.

Proof. This is a local question on X . Hence we may and do assume there is an étale morphism X →
Spf(Ok{T±1

1 , . . . , T±1
d }). So we reduces ourselves to the corresponding statement for Acris{〈u1, . . . , ud〉}.

As the latter is the p-adic completion of A0
cris〈u1, . . . , ud〉, one reduces further to the fact that A0

cris has
no p-torsion, as shown in Corollary 2.3 (1). �

An important feature of OAcris is that it has an Acris-linear connection on it. To see this, set �1,ur+
X/k :=

w−1�1
Xét/Ok

, which is locally free of finite rank over Our+
X . Let

�
i,ur+
X/k := ∧

i
Our+

X
�

1,ur+
X/k and �

i,ur
X/k :=�

1,ur+
X/k [1/p] ∀i ≥ 0.

Then OAinf admits a unique Ainf-linear connection ∇ : OAinf→ OAinf⊗Our+
X
�

1,ur+
X/k induced from the

usual one on OXét . This connection extends uniquely to OAcris

∇ : OAcris→OAcris⊗Our+
X
�

1,ur+
X/k ,
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which is Acris-linear. Inverting p (resp. t), we get also a B+cris-linear (resp. Bcris-linear) connection on
OB+cris (resp. on OBcris):

∇ : OB+cris→OB+cris⊗Our
X
�

1,ur
X/k and ∇ : OBcris→OBcris⊗Our

X
�

1,ur
X/k .

From Proposition 2.13, we obtain

Corollary 2.17 (crystalline Poincaré lemma). Let X be a smooth formal scheme of dimension d over Ok .
Then there is an exact sequence of proétale sheaves

0→ Acris→OAcris
∇
−→OAcris⊗Our+

X
�

1,ur+
X/k

∇
−→· · ·

∇
−→OAcris⊗Our+

X
�

d,ur+
X/k → 0,

which is strictly exact with respect to the filtration giving�i,ur+
X/k degree i . In particular, the connection∇ is

integrable and satisfies Griffiths transversality with respect to the filtration on OAcris, i.e., ∇(Fili OAcris)⊂

Fili−1 OAcris⊗Our+
X
�

1,ur+
X/k . Moreover, the similar results for OB+cris and OBcris hold.

Proof. It suffices to prove the assertion for OAcris. The question is local on X , so we assume there is
an étale morphism X → Spf(Ok{T±1

1 , . . . , T±1
d }). Under the isomorphism (2B.4) of Proposition 2.13,

Fili OAcris|X̃ is the p-adic completion of∑
i1,...id≥0

Fili−(i0+···+id ) Acris|X̃ u[i1]
1 · · · u

[id ]
d

with Ti ⊗ 1− 1⊗[T [
i ] sent to ui . Moreover ∇(u[n]i )= u[n−1]

i ⊗ dTi for any i, n ≥ 1, since the connection
∇ on OAcris is Acris-linear. The strict exactness and Griffiths transversality then follow. �

Using Proposition 2.13, we can establish an acyclicity result for OAcris as in Lemma 2.7. Let U=Spf(A)
be an affine open subset of X , admitting an étale morphism to T d

= Spf(Ok{T±1
1 , . . . , T±1

d }). Let U be
the generic fiber, and set Ũ :=U ×Td T̃d . Let V be an affinoid perfectoid of Xproét lying above Ũk . Write
V̂ = Spa(R, R+). Let OAcris(R, R+) be the p-adic completion of the PD-envelope OA0

cris(R, R+) of
A⊗Ok W (R[+) with respect to the kernel of the following morphism induced from θ(R,R+) by extending
scalars to A:

θA : A⊗Ok W (R[+)→ R+.

Set OB+cris(R, R+) :=OAcris(R, R+)[1/p] and OBcris(R, R+) :=OB+cris(R, R+)[1/t]. For r ∈ Z, define
Filr OAcris(R, R+) to be the closure inside OAcris(R, R+) for the p-adic topology of the r -th PD-ideal of
OA0

cris(R, R+). Finally, set Filr OB+cris(R, R+) := Filr OAcris(R, R+)[1/p] and Filr OBcris(R, R+) :=∑
s∈Z t−s Filr+s OB+cris(R, R+).

Lemma 2.18. There is a natural filtered morphism OAcris(R, R+)→OAcris(V ) of R+⊗Ok Acris-algebras,
inducing an almost isomorphism Filr OAcris(R, R+)/pn

−→∼ (Filr OAcris/pn)(V ) for each r, n ≥ 0. More-
over, H i (V,Filr OAcris/pn) is almost zero whenever i > 0.

Proof. Let ι be the composition of the two natural ring homomorphisms below

A⊗Ok W (R[+)→ A⊗Ok Acris(V )→OAcris(V ).
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Then, θX (V ) ◦ ι = θA, with θX (V ) the map obtained by taking sections at V of θX : OAcris→ Ô+X . So
ι(ker(θA))⊂ ker(θX (V )). As ker(θX (V )) has PD-structure, ι extends to OA0

cris(R, R+) and the resulting
morphism OA0

cris(R, R+)→OAcris(V ) respects the filtrations. Passing to p-adic completions, we obtain
a filtered morphism OAcris(R, R+)→OAcris(V ) of A⊗Ok Acris-algebras, still noted by ι in the following.

Let α(R,R+) : Acris(R, R+){〈u1, . . . , ud〉} →OAcris(R, R+) be the Acris(R, R+)-linear map, mapping
ui to Ti⊗1−1⊗[T [

i ]. As in Proposition 2.13, it is an isomorphism, strictly compatible with the filtrations.
Here Filr (Acris(R, R+){〈u1, . . . , ud〉}) is defined to be the p-adic completion of∑

i1,...,id≥0

Filr−(i1+···+id ) A0
cris(R, R+)u[i1]

1 · · · u
[id ]
d ⊂ Acris(R, R+){〈u1, . . . , ud〉}.

Therefore, we have the following commutative diagram

Acris(R, R+){〈u1, . . . , ud〉}
'

α(R,R+)

//

(2B.6)
��

OAcris(R, R+)

ι

��

Acris{〈u1, . . . , ud〉}(V )
'

α(V )
// OAcris(V )

,

whose horizontal arrows are filtered isomorphisms. To prove the first part of our lemma, it suffices to
show that (2B.6) induces an almost isomorphism

Filr Acris(R, R+){〈u1, . . . , ud〉}/pn
→ (Filr Acris{〈u1, . . . , ud〉}/pn)(V ) (2B.9)

for any r, n ≥ 0. By definition, the left-hand side of the morphism above is⊕
i1,...,id≥0

(Filr−i1−···−id Acris(R, R+)/pn) · u[i1]
1 · · · u

[id ]
d ,

while the right-hand side is given by (recall V is qcqs)⊕
i1,...,id≥0

(Filr−i1−···−id Acris/pn)(V ) · u[i1]
1 · · · u

[id ]
d .

Under these descriptions, the map (2B.9) is induced from the natural maps

Filr−i1−···−id Acris(R, R+)/pn
→ (Filr−i1−···−id Acris/pn)(V ), i1, . . . , id ≥ 0.

So, that (2B.9) is an almost isomorphism follows from Lemma 2.7.
It remains to prove H i (V,Filr OAcris/pn)a = 0 for i > 0 and n, r ≥ 0. Using the isomorphism α of

Proposition 2.13, we are reduced to the similar statement for Filr Acris{〈u1, . . . , ud〉}/pn . As V is qcqs,
we have

H i (V,Filr Acris{〈u1, . . . , ud〉}/pn)'
⊕

i1,...,id≥0

H i (V,Filr−i1−···−id Acris/pr ),

which vanishes by Lemma 2.7. �
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Corollary 2.19. Keep the notation of Lemma 2.18. Then the filtered morphism OAcris(R, R+) →
OAcris(V ) of Lemma 2.18 induces an isomorphism of R+⊗Ok Bcris-modules OBcris(R, R+)−→∼ OBcris(V ),
strictly compatible with filtrations. Moreover, H i (V,Filr OBcris)= H i (V,OBcris)= 0 for any i > 0 and
r ∈ Z.

Proof. The proof is the same as that of Corollary 2.8(2). Indeed, as OAcris(R, R+) and OAcris are p-adically
complete and flat over Zp, by Lemmas 2.6 and 2.18, the filtered morphism OAcris(R, R+)→OAcris(V )
induces a filtered morphism OBcris(R, R+)→OBcris(V ) of A⊗Ok Bcris-modules, with kernel and cokernel
killed by I2. Therefore, the latter is an isomorphism since I · (A⊗Ok Bcris)= A⊗Ok Bcris. To prove the
statements for Filr OBcris, as in the proof of Corollary 2.8, it suffices to establish the similar properties
(a) and (b) hold for OB+cris. Let s ≥ 0 be an integer. By Corollary 2.15, one checks that, over Xproét/Ũk ,
grs OB+cris is a free module over ÔX , with a basis given by the images of the elements

ξ i1ui1
1 · · · u

id
d , where i0, . . . , id ∈ N and i0+ · · ·+ id = s.

Similar observation holds for grs OB+cris(R, R+). Consequently, by [Scholze 2013, Lemma 4.10], the
canonical map grs OB+cris(R, R+)→ grs OB+cris(V ) is an isomorphism and H i (V, grr OB+cris) = 0 for
i > 0, as wanted. �

2C. Frobenius on crystalline period sheaves. We keep the notations in the previous subsection. So k
is absolutely unramified and X is a smooth formal scheme of dimension d over Ok . We want to endow
Frobenius endomorphisms on the crystalline period sheaves.

On Ainf =W (O[+
X ), we have the Frobenius map

ϕ : Ainf→ Ainf, (a0, a1, . . . , an, . . .) 7→ (a p
0 , a p

1 , . . . , a p
n , . . .).

Then for any a ∈ Ainf, we have ϕ(a)≡ a p mod p. Thus, ϕ(ξ)= ξ p
+ p · b with b ∈ Ainf|Xk

. In particular
ϕ(ξ) ∈ A0

cris|Xk
has all divided powers. As a consequence we obtain a Frobenius ϕ on A0

cris extending that
on Ainf. By continuity, ϕ extends to Acris and thus to B+cris. Note that ϕ(t)= log([ε p

])= pt . Consequently
ϕ is extended to Bcris by setting ϕ

( 1
t

)
=

1
pt .

To endow a Frobenius on OAcris, we first assume that the Frobenius of X0=X⊗Ok κ lifts to a morphism
σ on X , which is compatible with the Frobenius on Ok . Then for Y ∈Xét, consider the following diagram:

Yκ �
�

// Y

étale
��

Yκ �
�

//

absolute Frobenius

OO

Y //

∃σY

77

X σ
// X .

As the right vertical map is étale, there is a unique dotted morphism above making the diagram commute.
When Y varies in Xét, the σY ’s give rise to a σ -semilinear endomorphism on OXét whence a σ -semilinear
endomorphism ϕ on Our+

X .
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Remark 2.20. In general X does not admit a lifting of Frobenius. But as X is smooth over Ok , for each
open subset U ⊂ X admitting an étale morphism U → Spf(Ok{T±1

1 , . . . , T±1
d }), a similar argument as

above shows that there exists a unique lifting of Frobenius on U mapping Ti to T p
i .

We deduce from above a Frobenius on OAinf =Our+
X ⊗Ok Ainf given by ϕ⊗ϕ. Abusing notation, we

will denote it again by ϕ. An argument similar to the previous paragraphs shows that ϕ extends to OA0
cris,

hence to OAcris by continuity, and finally to OB+cris and OBcris. Moreover, under the isomorphism (2B.4),
the Frobenius on Acris{〈u1, . . . , ud〉} −→

∼ OAcris sends ui to ϕ(ui )= σ(Ti )− [T
[

i ]
p.

Lemma 2.21. Assume as above that the Frobenius of X0=X⊗Ok κ lifts to a morphism σ on X compatible
with the Frobenius on Ok . The Frobenius ϕ on OAcris is horizontal with respect to the connection
∇ : OAcris→OAcris⊗�

1,ur+
X/k . Similar assertions hold for OB+cris and for OBcris.

Proof. We need to check ∇ ◦ ϕ = (ϕ ⊗ dσ) ◦ ∇ on OAcris. It is enough to do this locally. Thus we
assume there exists an étale morphism X → Spf(Ok{T±1

1 , . . . , T±1
d }). Recall the isomorphism (2B.4).

By Acris-linearity, it suffices to check the equality on the u[n]i ’s. We have

(∇ ◦ϕ)(u[n]i )=∇(ϕ(ui )
[n])= ϕ(ui )

[n−1]
∇(ϕ(ui ))

Meanwhile, ϕ(ui )− σ(Ti )=−[T
[

i ]
p
∈ Acris, hence ∇(ϕ(ui ))= dσ(Ti ). Thus

((ϕ⊗ dσ) ◦∇)(u[n]i )= (ϕ⊗ dσ)(u[n−1]
i ⊗ dTi )= ϕ(ui )

[n−1]
⊗ dσ(Ti )= (∇ ◦ϕ)(u

[n]
i ),

as desired. �

The Frobenius on OAcris above depends on the initial lifting of Frobenius on X . For different choices
of liftings of Frobenius on X , it is possible to compare explicitly the resulting Frobenius endomorphisms
on OAcris with the help of the connection on it, at least when the formal scheme X admits an étale
morphism to Spf(Ok{T±1

1 , . . . , T±1
d }).

Lemma 2.22. Assume there is an étale morphism X → Spf(Ok{T±1
1 , . . . , T±1

d }). Let σ1 and σ2 be two
Frobenius liftings on X , and let ϕ1 and ϕ2 be the induced Frobenius maps on OAcris, respectively. Then
we have the following relation on OAcris:

ϕ2 =
∑

(n1,...,nd )∈Nd

( d∏
i=1

(σ2(Ti )− σ1(Ti ))
[ni ]

)(
ϕ1 ◦

( d∏
i=1

N ni
i

))
(2C.1)

where the Ni are the endomorphisms of OAcris such that ∇ =
∑d

i=1 Ni ⊗ dTi .

Proof. To simplify the notations, we will use the multiindex: for m = (m1, . . . ,md) ∈ Nd , set N m
:=∏d

i=1 N mi
i and |m| :=

∑
i mi . Let us first observe that the series on the right-hand side of (2C.1) gives a

well-defined map on OAcris. As OAcris is p-adically complete, it suffices to show that this is the case for
OAcris/pn for any n ≥ 1. Identify OAcris/pn with (Acris/pn)〈u1, . . . , ud〉 using Proposition 2.13. Thus,
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a local section a of OAcris/pn can locally be written as a finite sum

a =
∑

m∈Nd

bm · u[m], bm ∈ Acris/pn.

A calculation shows
N l(a)=

∑
m≥l

bmu[m−l]
=

∑
m∈Nd

bm+lu[m].

As there are only finitely many nonzero coefficients bm , N l(a)= 0 in OAcris/pn when |l|� 0. Meanwhile,
note that σ2(Ti )− σ1(Ti ) ∈ pOur+

X , hence their divided powers lie in Our+
X . Therefore the series of the

right-hand side of (2C.1) applied to a does make sense and gives a well-defined additive map on OAcris/pn .
Consequently, the series on the right-hand side of (2C.1) gives a well-defined additive map on OAcris,
which is also semilinear relative to the Frobenius on Acris.

It remains to verify the formula (2C.1). Since both sides of (2C.1) are semilinear relative to the
Frobenius of Acris, it suffices to check the equality for the u[m]’s. In fact, we have( ∑
(n1,...,nd )∈Nd

( d∏
i=1

(σ2(Ti )− σ1(Ti ))
[ni ]

)(
ϕ1 ◦

( d∏
i=1

N ni
i

)))
(u[m])

=

∑
n∈Nd

(σ2(T )− σ1(T ))[n](ϕ1(N n(u[m])))

=

∑
n∈Nd

(ϕ2(u)−ϕ1(u))[n](ϕ1(N n(u[m])))

=

∑
n∈Nd |n≤m

(ϕ2(u)−ϕ1(u))[n] ·ϕ1(u)[m−n]

= (ϕ2(u)−ϕ1(u)+ϕ1(u))[m]

= ϕ2(u[m]).

This finishes the proof. �

2D. Comparison with de Rham period sheaves. Let X be a locally noetherian adic space over Spa(k,Ok)

and recall the map θ in (2A.1). Set B+dR = lim
←−−

W (O[+
X )[1/p]/(ker θ)n , and BdR = B+dR[1/t]. For r ∈ Z,

let Filr BdR = tr B+dR. By its very definition, the filtration on BdR is decreasing, separated and exhaustive.
On the other hand, we can define the de Rham period sheaves with connection OB+dR and OBdR (see
the erratum to [Scholze 2013, Definition 6.8(iii)]). The filtration on OB+dR is decreasing, separated and
exhaustive. Moreover, as in [Brinon 2008, 5.2.8, 5.2.9], one shows that

OB+dR ∩Filr OBdR = Filr OB+dR,

implying that the filtration on OBdR is also decreasing, separated and exhaustive.
In the rest of this subsection, assume that k/Qp is absolutely unramified.
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Proposition 2.23. Let X be a smooth formal scheme over Ok .

(1) There are injective filtered morphisms B+cris ↪→ B+dR and OB+cris ↪→OB+dR. In this way, we view B+cris

and OB+cris respectively as a subsheaf of rings of B+dR and OB+dR.

(2) For any i ∈N, one has Fili B+cris= Fili B+dR∩B+cris and Fili OB+cris= Fili OB+dR∩OB+cris. In particular,
the filtrations on B+cris and on OB+cris are decreasing, separated and exhaustive. Furthermore, the
filtered morphisms in (1) induce isomorphisms gri B+cris −→

∼ gri B+dR, and gri OB+cris −→
∼ gri OB+dR.

Proof. (1) Recall that B+dR is a sheaf of Qp-algebras, so the natural morphism Ainf = W (O[+
X )→ B+dR

extends to the PD-envelope A0
cris of Ainf with respect to the kernel of the map θ in (2A.1). The resulting

map A0
cris→ B+dR respects the filtrations. On the other hand, for each n ∈ N, the composite

A0
cris→ B+dR→ B+dR/Filn B+dR =W (O[+

X )[1/p]/(ker(θ))n

extends to the p-adic completion Acris of A0
cris. Indeed, this is because the image of the composite above

is contained in 1
pn (W (O[+

X )/(ker(θ))n)⊂ B+dR/Filn B+dR and the latter is p-adically complete. On passing
to the projective limit relative to n, we obtain a filtered morphism Acris→ B+dR, whence the required
filtered morphism B+cris→ B+dR by inverting p ∈ Acris.

To define a natural filtered morphism OB+cris→OB+dR, observe that OB+dR is an algebra over OX ⊗Ok

W (O[+
X ), so we have a natural morphism

OAinf =Our+
X ⊗Ok W (O[+

X )→OB+dR,

which extends to the PD-envelope OA0
cris of OAinf relative to the kernel of the map θX in (2B.3). For

n ∈ N, consider the composed morphism

OA0
cris→OB+dR→OB+dR/Filn OB+dR. (2D.1)

As above, it extends to OAcris, the p-adic completion of OA0
cris. To check this assertion, assume that X is

affine and étale over Spf(Ok{T±1
1 , . . . , T±1

d }), and let X̃ be the affinoid perfectoid obtained by joining
to X a compatible family of pn-th roots of Ti for n ∈ N and 1≤ i ≤ d. It suffices to show that, for any
affinoid perfectoid V above X̃k , the restriction to V of (2D.1) extends in a uniquely way to a morphism
OAcris|V → (OB+dR/Filn OB+dR)|V , with image contained in a W (O[+

X )|V -submodule of finite type. By
[Scholze 2013, Proposition 6.10], we have OB+dR|V = B+dR|V [[u1, . . . , ud ]], with ui = Ti ⊗ 1− 1⊗[T [

i ].
So

(OB+dR/Filn OB+dR)|V =
⊕

m∈Nd ,|m|≤n

(W (O[+
X )[1/p]/(ξ)n−|m|)|V · um .

Through this identification, the image of (2D.1) (restricted to V ) is contained in

1
pa

( ⊕
m∈Nd ,|m|≤n

(W (O[+
X )/(ξ)

n−|m|)|V · um
)
⊂ (OB+dR/Filn OB+dR)|V
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for some a ∈N. Since the latter is p-adically complete, the restriction to V of (2D.1) extends to OAcris|V ,
and the image of this extension is contained in the W (O[+

X )-submodule of finite type above. If we have two
such extensions, the images of both extensions are contained in some W (O[+

X )-submodule of finite type
of the form above for some a (large enough). As the latter is p-adically complete, these two extensions
must coincide. This proves our assertion. So (2D.1) extends to a morphism OAcris→OB+dR/Filn OB+dR.
Passing to the projective limit relative to n, we obtain the required filtered morphism OAcris→OB+dR.

The two morphisms constructed above are compatible with the isomorphisms in Corollary 2.15 and its
de Rham analogue [Scholze 2013, Proposition 6.10]. To finish the proof of (1), we only need to show the
morphism B+cris→ B+dR constructed above is injective. This can be done in the same way as [Brinon 2008,
Proposition 6.2.1], and we omit the detail here.

(2) By (1), the corresponding statement for B+cris follows from the fact that the natural induced map

grr B+cris|Xk
= ÔXk

· (ξ r/r !)→ grr B+dR|Xk
= ÔXk

· ξ r

is an isomorphism. To show the statements for OB+cris, assume that X admits an étale map to
Spf(Ok{T±1

1 , . . . , T±1
d }). Then we conclude by Corollary 2.15 and its de Rham analogue, and by

what we have just shown for B+cris. �

Corollary 2.24. Let X be a smooth formal scheme over Ok . Then, over Xproét/Xk , the sheaves of
Acris-modules Acris,B+cris,OAcris and OB+cris have no t-torsion.

Proof. As Acris and OAcris have no p-torsion, they are included respectively in B+cris and OB+cris. Hence,
to prove our corollary, by Proposition 2.23, it is enough to show that, over Xproét/Xk , B+dR and OB+dR

have no t-torsion. These two statements are contained in [Scholze 2013, Remarks 6.2 and 6.9]. �

Corollary 2.25. Let X be a smooth formal scheme over Ok .

(1) There are natural inclusions Bcris ↪→ BdR and OBcris ↪→OBdR.

(2) For any i ∈ Z, we have Fili Bcris = Bcris
⋂

Fili BdR and Fili OBcris =OBcris
⋂

Fili OBdR. In partic-
ular, the filtrations on Bcris and on OBcris are decreasing, separated and exhaustive. Furthermore,
the inclusions in (1) induce isomorphisms gri Bcris −→

∼ gri BdR and gri OBcris −→
∼ gri OBdR.

Corollary 2.26. Let X be a smooth formal scheme over Ok , with X its generic fiber. Then w∗OBcris '

OXét[1/p].

Proof. Let ν : X∼proét→ X∼ét and ν ′ : X∼ét→X∼ét the natural morphisms of topoi. Then w= ν ′◦ν. Therefore
OXét[1/p] −→∼ ν ′

∗
OXét −→

∼ ν ′
∗
ν∗OX =w∗OX . By [Scholze 2013, Corollary 6.19], the natural map OXét→

ν∗OBdR is an isomorphism. Thus, w∗OBdR = ν
′
∗
(ν∗OBdR) ' ν

′
∗
OXét ' OXét[1/p]. On the other hand,

we have the injection of OXét[1/p]-algebras w∗OBcris ↪→w∗OBdR. Thereby OXét[1/p] −→∼ w∗OBcris. �
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3. Crystalline cohomology and proétale cohomology

In this section, assume that k is absolutely unramified. Let σ denote the Frobenius on Ok and on k, lifting
the Frobenius of the residue field κ . The ideal (p)⊂Ok is endowed with a PD-structure and Ok becomes
a PD-ring in this way.

3A. A reminder on convergent F-isocrystals. Let X0 be a κ-scheme of finite type. Let us begin with
some general definitions about crystals on the small crystalline site (X0/Ok)cris endowed with étale
topology. For basics of crystals, we refer to [Berthelot 1996; Berthelot and Ogus 1978]. Recall that a crystal
of OX0/Ok -modules is an OX0/Ok -module E on (X0/Ok)cris such that (i) for any object (U, T )∈ (X0/Ok)cris,
the restriction ET of E to the étale site of T is a coherent OT -module; and (ii) for any morphism
u : (U ′, T ′)→ (U, T ) in (X0/Ok)cris, the canonical morphism u∗ET −→

∼ ET ′ is an isomorphism.

Remark 3.1. Let X0 be the closed fiber of a smooth formal scheme X over Ok . The category of
crystals on (X0/Ok)cris is equivalent to that of coherent OX -modules M equipped with an integrable and
quasinilpotent connection ∇ :M→M⊗OX �

1
X/Ok

. Here the connection ∇ is said to be quasinilpotent
if its reduction modulo p is quasinilpotent in the sense of [Berthelot and Ogus 1978, Definition 4.10].

The absolute Frobenius F : X0→ X0 is a morphism over the Frobenius σ on Ok = W (κ), hence it
induces a morphism of topoi, still denoted by F :

F : (X0/Ok)
∼

cris→ (X0/Ok)
∼

cris.

An F-crystal on (X0/Ok)cris is a crystal E equipped with a morphism ϕ : F∗E→ E of OX0/Ok -modules,
which is nondegenerate, i.e., there exists a map V : E→ F∗E of OX0/Ok -modules such that ϕV = Vϕ= pm

for some m ∈ N. In the following, we will denote by F- Cris(X0,Ok) the category of F-crystals on
X0/Ok .

Before discussing isocrystals, let us observe the following facts.

Remarks 3.2. (1) Let X be a quasicompact smooth formal scheme over Ok . Let X rig be its rigid
generic fiber, which is a rigid analytic variety over k. Let Coh(OX [1/p]) denote the category of coherent
OX [1/p]-modules on X , or equivalently, the category of coherent sheaves on X up to isogeny. Denote
by Coh(X rig) the category of coherent sheaves on X rig. Then, we have the functor below, obtained by
taking the rigid generic fiber of a coherent OX [1/p]-module

Coh(OX [1/p])→ Coh(X rig).

This is an equivalence of categories. Indeed, it is a consequence of the fact that any coherent sheaf on
X rig extends to a coherent sheaf on X [Lütkebohmert 1990, Lemma 2.2].

(2) Let Y be a rigid analytic variety. Huber [1994, Proposition 4.3] constructed from Y an adic space
Y ad, together with a locally coherent morphism ρ : (|Y ad

|,OY ad)→ (|Y |,OY ) of ringed sites, satisfying
some universal property. We call Y ad the associated adic space of Y . The morphism ρ gives rise to an
equivalence between the category of sheaves on the Grothendieck site associated to Y and that of sheaves
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on the sober topological space Y ad [Huber 1996, 1.1.11]. Moreover, under this equivalence, the notion of
coherent sheaves on the ringed site Y = (|Y |,OY ) is the same as the one on Y ad

= (|Y ad
|,OY ad) since in

the case of Y = Sp A, with A a complete topologically finitely generated Tate algebra over k, both of
them are naturally equivalent to that of finite A-modules (see [Scholze 2013, Theorem 9.1]).

Let X0 be a κ-scheme of finite type, embedded as a closed subscheme into a smooth formal scheme P
over Ok . Let P be the adic generic fiber of P and ]X0[P ⊂ P the preimage of the closed subset X0 ⊂ P
under the specialization map. Following [Berthelot 1996, 2.3.2(i)] (with Remarks 3.2(2) in mind), the
realization on P of a convergent isocrystal on X0/Ok is a coherent O]X0[P -module E equipped with an
integrable and convergent connection ∇ : E→ E ⊗O]X0[P

�1
]X0[P/k (we refer to [loc. cit., 2.2.5] for the

definition of convergent connections). Being a coherent O]X0[P -module with integrable connection, E is
locally free of finite rank by [loc. cit., 2.2.3(ii)]. The category of realizations on P of convergent isocrystals
on X0/Ok is denoted by Isoc(X0/Ok,P), where the morphisms are morphisms of O]X0[P -modules which
commute with connections.

Let X0 ↪→ P ′ be a second embedding of X0 into a smooth formal scheme P ′ over Ok , and assume
there exists a morphism u : P ′→ P of formal schemes inducing identity on X0. The generic fiber of u
gives a morphism of adic spaces uk : ]X0[P ′→ ]X0[P , hence a natural functor

u∗k : Isoc(X0/Ok,P)→ Isoc(X0/Ok,P ′), (E,∇) 7→ (u∗kE, u∗k∇).

By [loc. cit., 2.3.2(i)], the functor u∗k is an equivalence of categories. Furthermore, for a second morphism
v : P ′ → P of formal schemes inducing identity on X0, the two equivalence u∗k , v

∗

k are canonically
isomorphic [loc. cit., 2.2.17(i)]. The category of convergent isocrystal on X0/Ok , denoted by Isoc(X0/Ok),
is defined as

Isoc(X0/Ok) := 2− lim
−−→
P

Isoc(X0/Ok,P),

where the limit runs through all smooth formal embeddings X0 ↪→ P of X0.

Remark 3.3. In general, X0 does not necessarily admit a global formal embedding. In this case, the
category of convergent isocrystals on X0/Ok can still be defined by a gluing argument (see [loc. cit.,
2.3.2(iii)]). But the definition recalled above will be enough for our purpose.

As for the category of crystals on X0/Ok , the Frobenius morphism F : X0→ X0 induces a natural
functor (see [loc. cit., 2.3.7] for the construction):

F∗ : Isoc(X0/Ok)→ Isoc(X0/Ok).

A convergent F-isocrystal on X0/Ok is a convergent isocrystal E on X0/Ok equipped with an isomorphism
F∗E −→∼ E in Isoc(X0/Ok). The category of convergent F-isocrystals on X0/Ok will be denoted in the
following by F- Isoc(X0/Ok).

Remark 3.4. The category F- Isoc(X0/Ok) has the isogeny category F- Cris(X0/Ok)⊗Q of F-crystals
E on (X0/Ok)cris as a full subcategory. To explain this, assume for simplicity that X0 is the closed fiber
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of a smooth formal scheme X over Ok . So ]X0[X = X , the generic fiber of X . Let (M,∇) be the
OX -module with integrable and quasinilpotent connection associated to the F-crystal E (Remark 3.1).
Let Ean denote the generic fiber of M, which is a coherent (hence locally free by [loc. cit., 2.3.2(ii)])
OXan-module equipped with an integrable connection ∇an

: Ean
→ Ean

⊗�1
Xan/k , which is nothing but the

generic fiber of ∇. Because of the F-crystal structure on E, the connection ∇an is convergent ([loc. cit.,
2.4.1]). In this way we obtain an F-isocrystal Ean on X0/Ok , whence a natural functor

(−)an
: F- Cris(X0/Ok)⊗Q→ F- Isoc(X0/Ok), E 7→ Ean.

By [loc. cit., 2.4.2], this analytification functor is fully faithful, and for E a convergent F-isocrystal
on X0/Ok , there exists an integer n ≥ 0 and an F-crystal E such that E −→∼ Ean(n), where for
F = (F,∇, ϕ : F∗F −→∼ F) an F-isocrystal on X0/Ok , F(n) denotes the Tate twist of F , given by(
F,∇, ϕpn : F∗F −→∼ F

)
[loc. cit., 2.3.8(i)].

Our next goal is to give a more explicit description of the Frobenius morphisms on convergent F-
isocrystals on X0/Ok . From now on, assume for simplicity that X0 is the closed fiber of a smooth formal
scheme X and we identify convergent isocrystals on X0/Ok with their realizations on X . Let X be the
adic generic fiber of X . The proof of the following lemma is obvious.

Lemma 3.5. Assume that the Frobenius F : X0→ X0 can be lifted to a morphism σ : X → X compatible
with the Frobenius on Ok . Still denote by σ the endomorphism on X induced by σ . Then there is an
equivalence of categories between

(1) the category F- Isoc(X0/Ok) of convergent F-isocrystals on X0/Ok ; and

(2) the category Modσ,∇OX
of OXan-vector bundles E equipped with an integrable and convergent connection

∇ and an OXan-linear horizontal isomorphism ϕ : σ ∗E→ E .

Consider two liftings of Frobenius σi (i = 1, 2) on X . By the lemma above, for i = 1, 2, both categories
Modσi ,∇

OX
are naturally equivalent to the category of convergent F-isocrystals on X0/Ok :

Modσ1,∇
OX
←−∼ F- Isoc(X0/Ok)−→

∼ Modσ2,∇
OX

.

Therefore we deduce an equivalence of categories

Fσ1,σ2 : Modσ1,∇
OX
→Modσ2,∇

OX
. (3A.1)

When our formal scheme X is small, we can explicitly describe this equivalence. Assume there is an
étale morphism X → T d

= Spf(Ok{T±1
1 , . . . , T±1

d }). So �1
Xan/k is a free OXan-module with a basis

given by dTi (i = 1, . . . , d). In the following, for ∇ a connection on an OXan-module E , let Ni be the
endomorphism of E (as an abelian sheaf) such that ∇ =

∑d
i=1 Ni ⊗ dTi .

Lemma 3.6 [Brinon 2008, Proposition 7.2.3]. Assume that X = Spf(A) is affine, admitting an étale
morphism X → T d as above. Let (E,∇, ϕ1) ∈ Modσ1,∇

OX
, with (E,∇, ϕ2) the corresponding object of
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Modσ2,∇
OX

under the equivalence Fσ1,σ2 . Then on E(X) we have

ϕ2 =
∑

(n1,...,nd )∈Nd

( d∏
i=1

(σ2(Ti )− σ1(Ti ))
[ni ]

)(
ϕ1 ◦

( d∏
i=1

N ni
i

))
.

Furthermore, ϕ1 and ϕ2 coincide on E(X)∇=0.

More generally, i.e., without assuming the existence of Frobenius lifts to X , for (E,∇) an OXan-module
with integrable and convergent connection, a compatible system of Frobenii on E consists of, for any open
subset U ⊂ X equipped with a lifting of Frobenius σU , a horizontal isomorphism ϕ(U,σU ) : σ

∗
UE|Uk → E|Uk

satisfying the following condition: for V ⊂ X another open subset equipped with a lifting of Frobenius
σV , the functor

FσU ,σV : ModσU ,∇OUk
⋂

Vk
→ModσV ,∇OUk

⋂
Vk

sends (E|Uk
⋂

Vk ,∇, ϕ(U,σU )|Uk
⋂

Vk ) to (E|Uk
⋂

Vk ,∇, ϕ(V,σV )|Uk
⋂

Vk ). We denote a compatible system of
Frobenii on E by the symbol ϕ, when no confusion arises. Let Modσ,∇OX

be the category of OXan-vector
bundles equipped with an integrable and convergent connection, and with a compatible system of Frobenii.
The morphism in Modσ,∇OX

are the morphisms of OXan-modules which commute with the connections, and
with the Frobenius morphisms on any open subset U ⊂ X equipped with a lifting of Frobenius.

Remark 3.7. Let E be a convergent isocrystal on X0/Ok . To define a compatible system of Frobenii
on E , we only need to give, for a cover X =

⋃
i Ui of X by open subsets Ui equipped with a lifting of

Frobenius σi , a family of horizontal isomorphisms ϕi : σ
∗

i E|Ui −→
∼ E|Ui such that ϕi |Ui

⋂
U j corresponds

to ϕ j |Ui
⋂

U j under the functor Fσi ,σ j : Modσi ,∇
OUi

⋂
U j
→Modσ j ,∇

OUi
⋂

U j
(Here U• := U•,k). Indeed, for U any

open subset equipped with a lifting of Frobenius σU , one can first use the functor Fσi ,σU of (3A.1) applied
to (E|Ui ,∇|Ui , ϕi )|Ui

⋂
U to obtain a horizontal isomorphism ϕU,i : (σ

∗
U (E|U ))|Ui

⋂
U → E|Ui

⋂
U . From

the compatibility of the ϕi ’s, we deduce ϕU,i |U ⋂
Ui
⋂

U j = ϕU, j |U
⋂

Ui
⋂

U j . Consequently we can glue
the ϕU,i (i ∈ I ) to get a horizontal isomorphism ϕU : σ

∗
U (E|U )→ E|U . One checks that these ϕU give the

desired compatible system of Frobenii on E .

Let E be a convergent F-isocrystal on X0/Ok . For U ⊂ X an open subset equipped with a lifting of
Frobenius σU , the restriction E|Uk gives rise to a convergent F-isocrystal on U0/k. Thus there exists a
∇-horizontal isomorphism ϕ(U,σU ) : σ

∗
UE|Uk → E|Uk . Varying (U, σU ) we obtain a compatible system of

Frobenii ϕ on E . In this way, (E,∇, ϕ) becomes an object of Modσ,∇OX
. Directly from the definition, we

have the following

Corollary 3.8. The natural functor F- Isoc(X0/Ok)→Modσ,∇OX
is an equivalence of categories.

In the following, denote by FModσ,∇OX
the category of quadruples (E,∇, ϕ,Fil•(E)) with (E,∇, ϕ) ∈

Modσ,∇OX
and a decreasing, separated and exhaustive filtration Fil•(E) on E by locally free direct summands,

such that ∇ satisfies Griffiths transversality with respect to Fil•(E), i.e., ∇(Fili (E)) ⊂ Fili−1(E)⊗OXan

�1
Xan/k . The morphisms are the morphisms in Modσ,∇OX

which respect the filtrations. We call the objects in
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FModσ,∇OX
filtered (convergent) F-isocrystals on X0/Ok . By analogy with the category F- Isoc(X0/Ok) of

F-isocrystals, we also denote the category of filtered F-isocrystals on X0/Ok by FF- Isoc(X0/Ok).

3B. Lisse Ẑ p-sheaves and filtered F-isocrystals. Let X be a smooth formal scheme over Ok with X
its adic generic fiber. Define Ẑp := lim

←−−
Z/pn and Q̂p := Ẑp[1/p] as sheaves on Xproét. Recall that a

lisse Zp-sheaf on Xét is an inverse system of abelian sheaves L• = (Ln)n∈N on Xét such that each Ln is
locally a constant sheaf associated to a finitely generated Z/pn-modules, and such that L• is isomorphic
in the procategory to such an inverse system for which Ln+1/pn

' Ln . A lisse Ẑp-sheaf on Xproét

is a sheaf of Ẑp-modules on Xproét, which is locally isomorphic to Ẑp ⊗Zp M where M is a finitely
generated Zp-module. By [Scholze 2013, Proposition 8.2] these two notions are equivalent via the functor
ν−1
: X∼ét → X∼proét. In the following, we use frequently the natural morphism of topoi

w : X∼proét
ν
−→ X∼ét → X∼ét .

Before defining crystalline sheaves, let us make the following observation.

Remarks 3.9. (1) Let M be a crystal on X0/Ok , viewed as a coherent OX -module admitting an inte-
grable connection. Then w−1M is a coherent Our+

X -module with an integrable connection w−1M→
w−1M⊗Our+

X
�

1,ur+
X/k . If furthermore M is an F-crystal, then w−1M inherits a system of Frobenii: for

any open subset U ⊂ X equipped with a lifting of Frobenius σU , there is naturally an endomorphism of
w−1M|U which is semilinear with respect to the Frobenius w−1σU on Our+

X |U (here U := Uk). Indeed,
the Frobenius structure on M gives a horizontal OU -linear morphism σ ∗UM|U →M|U , or equivalently,
a σU -semilinear morphism ϕU :M|U →M|U (as σU is the identity map on the underlying topological
space). So we obtain a natural endomorphism w−1ϕU of w−1M|U , which is w−1σU -semilinear.

(2) Let E be a convergent F-isocrystal on X0/Ok . By Remark 3.4, there exists an F-crystal M on
X0/Ok and n ∈ N such that E 'Man(n). By (1), w−1M is a coherent Our+

X -module equipped with
an integrable connection and a compatible system of Frobenii ϕ. Inverting p, we get an Our

X -module
w−1M[1/p] equipped with an integrable connection and a system of Frobenii ϕ/pn , which does not
depend on the choice of the formal model M or the integer n. For this reason, abusing notation, let
us denote w−1M[1/p] by w−1E , which is equipped with an integrable connection and a system of
Frobenii inherited from E . If furthermore E has a descending filtration {Fili E} by locally direct summands,
by Remarks 3.2(1), each Fili E has a coherent formal model E+i on X . Then {w−1E+i [1/p]} gives a
descending filtration by locally direct summands on w−1E .

Definition 3.10. We say a lisse Ẑp-sheaf L on Xproét is crystalline if there exists a filtered F-isocrystal E
on X0/Ok , together with an isomorphism of OBcris-modules

w−1E ⊗Our
X
OBcris ' L⊗

Ẑp
OBcris (3B.1)

which is compatible with connection, filtration and Frobenius. In this case, we say that the lisse Ẑp-sheaf
L and the filtered F-isocrystal E are associated.
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Remark 3.11. The Frobenius compatibility of the isomorphism (3B.1) means the following. Take any
open subset U ⊂ X equipped with a lifting of Frobenius σ : U → U . By the discussion in Section 2C,
we know that OBcris|Uk is naturally endowed with a Frobenius ϕ. Meanwhile, as E is an F-isocrystal,
by Remarks 3.9 w−1E|Uk is endowed with a w−1σ -semilinear Frobenius, still denoted by ϕ. Now the
required Frobenius compatibility means that when restricted to any such Uk , we have ϕ⊗ϕ = id⊗ϕ via
the isomorphism (3B.1).

Definition 3.12. For L a lisse Ẑp-sheaf and i ∈ Z, set

Dcris(L) := w∗(L⊗Ẑp
OBcris) and Fili Dcris(L) := w∗(L⊗Ẑp

Fili OBcris).

All of them are OX [1/p]-modules, and the Fili Dcris(L) give a separated exhaustive decreasing filtration
on Dcris(L) (as the same holds for the filtration on OBcris; see Corollary 2.25).

Next we shall compare the notion of crystalline sheaves with other related notions considered in
[Brinon 2008, Chapitre 8; Faltings 1989; Scholze 2013]. We begin with the following characterization of
crystalline sheaves, which is more closely related to the classical definition of crystalline representations
by Fontaine [1982] (see also [Brinon 2008, Chapitre 8]).

Proposition 3.13. Let L be a lisse Ẑp-sheaf on Xproét. Then L is crystalline if and only if the following
two conditions are verified:

(1) The OX [1/p]-modules Dcris(L) and Fili Dcris(L), i ∈ Z, are all coherent.

(2) The adjunction morphism w−1Dcris(L)⊗Our
X
OBcris → L⊗

Ẑp
OBcris is an isomorphism of OBcris-

modules.

Before proving this proposition, let us express locally the sheaf Dcris(L) = w∗(L⊗ OBcris) as the
Galois invariants of some Galois module. Consider U = Spf(A) ⊂ X a connected affine open subset
admitting an étale map U→ Spf(Ok{T±1

1 , . . . , T±1
d }). Write U the generic fiber of U . As U is smooth

and connected, A is an integral domain. Fix an algebraic closure � of Frac(A), and let A be the
union of finite and normal A-algebras B contained in � such that B[1/p] is étale over A[1/p]. Write
GU := Gal(A[1/p]/A[1/p]), which is nothing but the fundamental group of U = Uk . Let U univ be the
profinite étale cover of U corresponding to (A[1/p], A). One checks that U univ is affinoid perfectoid
(over the completion of k). As L is a lisse Ẑp-sheaf on X , its restriction to U corresponds to a continuous
Zp-representation VU (L) := L(U univ) of GU . Write Û univ = Spa(R, R+), where (R, R+) is the p-adic
completion of (A[1/p], A).

Lemma 3.14. Keep the notation above. Let L be a lisse Ẑp-sheaf on X. Then there exist natural
isomorphisms of A[1/p]-modules

Dcris(L)(U)−→∼ (VU (L)⊗Zp OBcris(R, R+))GU =: Dcris(VU (L))

and, for any r ∈ Z,

(Filr Dcris(L))(U)−→∼ (VU (L)⊗Zp Filr OBcris(R, R+))GU .
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Moreover, the A[1/p]-module Dcris(L)(U) is projective of rank at most that of VU (L)⊗Qp over Qp.

Proof. As L is a lisse Ẑp-sheaf, it becomes constant restricted to U univ. In other words, we have
L|U univ ' VU (L)⊗Zp Ẑp|U univ . For i ≥ 0 an integer, denote by U univ,i the (i+1)-fold product of U univ

over U . Then U univ,i
'U univ

×Gi
U , and it is again an affinoid perfectoid. We claim that there exists a

natural identification

H 0(U univ,i , L⊗
Ẑp

OBcris)=Mapcont(G
i
U , VU (L)⊗Zp OAcris(R, R+))[1/t],

where for T, T ′ two topological spaces, Mapcont(T, T ′) denotes the set of continuous maps from T
to T ′. To see this, write Û univ,i = Spa(Ri , R+i ). Then, by Corollary 2.19, H 0(U univ,i , L⊗

Ẑp
OBcris) =

VU (L)⊗Zp OBcris(Ri , R+i ), which is also

(lim
←−−

n
VU (L)⊗Zp OAcris(Ri , R+i )/pn)[1/t].

Since VU (L) is of finite type over Zp, it suffices to show that, for all n ∈ N, OAcris(Ri , R+i )/pn can be
identified with

Mapcont(G
i
U ,OAcris(R, R+)/pn)= lim

−−→
N

Mapcont(G
i
U/N ,OAcris(R, R+)/pn)

where N runs through the set of open normal subgroups of Gi
U . Since both OAcris(R, R+) and

OAcris(Ri , R+i ) are flat over Zp, one reduces to the case where n = 1, and thus to showing R[+i /(p p)=

Mapcont(G
i
U , R[+/(p p)) by the explicit descriptions of OAcris(R, R+)/p and OAcris(Ri , R+i )/p. As R[+i

and R[+ are flat over O[

Cp
, we finally reduces to showing R+i /p =Mapcont(G

i
U , R+/p). But this last

assertion is clear, giving our claim.
Consider the following spectral sequence associated to the cover U univ

→U :

E i, j
1 = H j (U univ,i , L⊗

Ẑp
OBcris)H⇒ H i+ j (U, L⊗

Ẑp
OBcris).

As E i, j
1 = 0 for j ≥ 1 (Corollary 2.19), we have En,0

2 = En,0
∞
' H n(U, L⊗

Ẑp
OBcris). Thus, by the

discussion in the paragraph above, we deduce a natural isomorphism

H j (U, L⊗
Ẑp

OBcris)−→
∼ H j

cont(GU , VU (L)⊗Zp OAcris(R, R+))[1/t]

where the right-hand side is the continuous group cohomology. Taking j = 0, we obtain our first assertion.
The isomorphism concerning Filr OBcris can be proved in the same way. The last assertion follows from
the first isomorphism and [Brinon 2008, Proposition 8.3.1], which gives the assertion for the right-hand
side. �

Corollary 3.15. Let L be a lisse Ẑp-sheaf on Xproét which satisfies the condition (1) of Proposition 3.13.
Let U = Spf(A) be a small connected affine open subset of X . Write U = Uk . Then for any V ∈ Xproét/U ,
we have

Dcris(L)(U)⊗A[1/p]OBcris(V )−→∼ (w−1Dcris(L)⊗Our
X
OBcris)(V ).
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Proof. By Lemma 3.14, the A[1/p]-module Dcris(L)(U) is projective of finite type, hence it is a direct
summand of a finite free A[1/p]-module. As Dcris(L) is coherent over OX [1/p] and as U is affine,
Dcris(L)|U is then a direct summand of a finite free OX [1/p]|U -module. The isomorphism in our corollary
then follows, since we have similar isomorphism when Dcris(L)|U is replaced by a free OX [1/p]|U -
module. �

Corollary 3.16. Let L be a lisse Ẑp-sheaf verifying the condition (1) of Proposition 3.13. Then the
condition (2) of Proposition 3.13 holds for L if and only if for any small affine connected open subset
U = Spf(A)⊂ X (with U := Uk), the GU -representation VU (L)⊗Zp Qp is crystalline in the sense that the
following natural morphism is an isomorphism [Brinon 2008, Chapitre 8]

Dcris(VU (L))⊗A[1/p]OBcris(R, R+)−→∼ VU (L)⊗Zp OBcris(R, R+),

where GU ,U univ, Û univ = Spa(R, R+) are as in the paragraph before Lemma 3.14.

Proof. If L satisfies in addition the condition (2) of Proposition 3.13, combining it with Corollary 3.15,
we find

Dcris(L)(U)⊗A[1/p]OBcris(U univ)−→∼ (w−1Dcris(L)⊗Our
X
OBcris)(U univ)

−→∼ (L⊗
Ẑp

OBcris)(U univ)

= VU (L)⊗Zp OBcris(U univ).

So, by Corollary 2.19 and Lemma 3.14, the GU -representation VU (L)⊗Qp is crystalline.
Conversely, assume that for any small connected affine open subset U = Spf(A) of X , the GU -

representation VU (L)⊗Zp Qp is crystalline. Together with Lemmas 2.18 and 3.14, we get

Dcris(L)(U)⊗A[1/p]OBcris(U univ)−→∼ VU (L)⊗Zp OBcris(U univ)

and the similar isomorphism after replacing U univ by any V ∈ Xproét/U univ. Using Corollary 3.15, we
deduce (w−1Dcris(L)⊗Our

X
OBcris)(V )−→∼ (L⊗

Ẑp
OBcris)(V ) for any V ∈ Xproét/U univ, i.e.,

(w−1Dcris(L)⊗Our
X
OBcris)|U univ −→∼ (L⊗

Ẑp
OBcris)|U univ .

When the small opens U’s run through a cover of X , the U univ’s form a cover of X in Xproét. Therefore,
w−1Dcris(L)⊗OBcris −→

∼ L⊗OBcris, as desired. �

Lemma 3.17. Let L be a lisse Ẑp-sheaf on X satisfying the two conditions of Proposition 3.13. Then (the
analytification of ) Dcris(L) has a natural structure of filtered convergent F-isocrystal on X0/Ok .

Proof. First of all, the Fili Dcris(L)’s (i ∈ Z) endow a separated exhaustive decreasing filtration on Dcris(L)

by Corollary 2.25, and the connection on Dcris(L)= w∗(L⊗OBcris) can be given by the composite of

w∗(L⊗OBcris)
w∗(id⊗∇)−−−−−→w∗(L⊗OBcris⊗Our

X
�

1,ur
X/k)−→

∼ w∗(L⊗OBcris)⊗OX [1/p]�
1
X/Ok
[1/p]

where the last isomorphism is the projection formula. That the connection satisfies the Griffiths transversal-
ity with respect to the filtration Fil• Dcris follows from the analogous assertion for OBcris (Corollary 2.17).
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Now consider the special case where X = Spf(A) is affine connected admitting an étale map X →
Spf(Ok{T±1

1 , . . . , T±1
d }), such that X is equipped with a lifting of Frobenius σ . As in the paragraph before

Lemma 3.14, let Xuniv be the universal profinite étale cover of X (which is an affinoid perfectoid). Write
X̂univ = Spa(R, R+) and G X the fundamental group of X . As X is affine, the category Coh(OX [1/p]) is
equivalent to the category of finite type A[1/p]-modules. Under this equivalence, Dcris(L) corresponds to
Dcris(VX (L)) := (VX (L)⊗OBcris(R, R+))G X , denoted by D for simplicity. So D is a projective A[1/p]-
module of finite type (Lemma 3.14) equipped with a connection ∇ : D→ D ⊗�1

A[1/p]/k . Under the
same equivalence, Fili Dcris(L) corresponds to Fili D := (VX (L)⊗Fili OBcris(R, R+))G X , by Lemma 3.14
again. By the same proof as in [Brinon 2008, 8.3.2], the graded quotient gri (D) is a projective module.
In particular, Fili D ⊂ D is a direct summand. Therefore, each Fili Dcris(L) is a direct summand of
Dcris(L). Furthermore, since X admits a lifting of Frobenius σ , we get from Section 2C a σ -semilinear
endomorphism ϕ on OBcris(Xuniv)'OBcris(R, R+), whence a σ -semilinear endomorphism on D, still
denoted by ϕ. Via Lemma 2.21, one checks that the Frobenius ϕ on D is horizontal with respect to
its connection. Thus Dcris(L) is endowed with a horizontal σ -semilinear morphism Dcris(L)→Dcris(L),
always denoted by ϕ in the following.

To finish the proof in the special case, one needs to show that (Dcris(L),∇, ϕ) gives an F-isocrystal
on X0/Ok . As D is of finite type over A[1/p], there is some n ∈ N such that D = D+[1/p] with
D+ := (VX (L)⊗Zp t−nOAcris(R, R+))G X . The connection on t−nOAcris(R, R+) induces a connection
∇
+
: D+ → D+ ⊗A �

1
A/Ok

on D+, compatible with that of Dcris(VX (L)). Moreover, let Ni be the
endomorphism of D+ so that ∇+ =

∑d
i=1 Ni ⊗ dTi . Then for any a ∈ D+, N m(a) ∈ p · D+ for all but

finitely many m ∈ Nd (as this holds for the connection on t−nOAcris, seen in the proof of Lemma 2.22).
Similarly, the Frobenius on OBcris(R, R+) induces a map (note that the Frobenius on OBcris(R, R+)
sends t to p · t)

ϕ : D+→ (VX (L)⊗ p−nt−nOAcris(R, R+))G X .

Thus ψ := pnϕ gives a well-defined σ -semilinear morphism on D+. One checks that ψ is horizontal with
respect to the connection ∇+ on D+ and it induces an R+-linear isomorphism σ ∗D+−→∼ D+. As a result,
the triple (D+,∇, ψ) will define an F-crystal on U0/Ok , once we know D+ is of finite type over A. The
required finiteness of D+ is explained in [Andreatta and Iovita 2013, Proposition 3.6], and for the sake of
completeness we recall briefly their proof here. As D is projective of finite type (Lemma 3.14), it is a
direct summand of a finite free A[1/p]-module T . Let T+ ⊂ T be a finite free A-submodule of T such
that T+[1/p] = T . Then we have the inclusion D⊗A[1/p]OBcris(R, R+) ↪→ T+⊗A OBcris(R, R+). As
VX (L) is of finite type over Zp and OBcris(R, R+)=OAcris(R, R+)[1/t], there exists m ∈N such that the
OAcris(R, R+)-submodule VX (L)⊗t−nOAcris(R, R+) of VX (L)⊗OBcris(R, R+)' D⊗OBcris(R, R+) is
contained in T+⊗At−mOAcris(R, R+). By taking GU -invariants and using the fact that A is noetherian, we
are reduced to showing that A′ := (t−mOAcris(R, R+))G X is of finite type over A. From the construction,
A′ is p-adically separated and A ⊂ A′ ⊂ A[1/p] = (OBcris(R, R+))G X . As A is normal, we deduce
pN A′ ⊂ A for some N ∈N. Thus pN A′ and hence A′ are of finite type over A. As a result, (D+,∇, ψ)
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defines an F-crystal D+ on U0/Ok . As D = D+[1/p] and ∇ = ∇+[1/p], the connection ∇ on Dcris(L)

is convergent; this is standard and we refer to [Berthelot 1996, 2.4.1] for detail. Consequently, the triple
(Dcris(L),∇, ϕ) is an F-isocrystal on X0/Ok , which is isomorphic to D+,an(n). This finishes the proof in
the special case.

In the general case, consider a covering X =
⋃

i Ui of X by connected small affine open subsets
such that each Ui admits a lifting of Frobenius σi and an étale morphism to some torus over Ok . By the
special case, each Fili Dcris(L)⊂ Dcris(L) is locally a direct summand, and the connection on Dcris(L) is
convergent [Berthelot 1996, 2.2.8]. Furthermore, each Dcris(L)|Ui is equipped with a Frobenius ϕi , and
over Ui∩U j , the two Frobenii ϕi , ϕ j on Dcris(L)|Ui

⋂
U j are related by the formula in Lemma 3.6 as it is the

case for ϕi , ϕ j on OBcris|Ui
⋂

U j (Lemma 2.22). So these local Frobenii glue together to give a compatible
system of Frobenii ϕ on Dcris(L) and the analytification of the quadruple (Dcris(L),Fil• Dcris(L),∇, ϕ) is
a filtered F-isocrystal on X0/Ok , as wanted. �

Proof of Proposition 3.13. If a lisse Ẑp-sheaf L on X is associated to a filtered F-isocrystal E on X , then
we just have to show E ' Dcris(L). By assumption, we have L⊗

Ẑp
OBcris ' w

−1E ⊗Our
X
OBcris. Then

w∗(L⊗Ẑp
OBcris)' w∗(w

−1E ⊗Our
X
OBcris)' E ⊗OXét [1/p]w∗OBcris ' E

where the second isomorphism has used Remark 3.11, and the last isomorphism is by the isomorphism
w∗OBcris 'OXét[1/p] from Corollary 2.26.

Conversely, let L be a lisse Ẑp-sheaf verifying the two conditions of our proposition. By Lemma 3.17,
Dcris(L) is naturally a filtered F-isocrystal. To finish the proof, we need to show that the isomorphism
in (2) is compatible with the extra structures. Only the compatibility with filtrations needs verification.
This is a local question, hence we shall assume X = Spf(A) is a small connected affine formal scheme.
As Fili Dcris(L) is coherent over OX [1/p] and is a direct summand of Dcris(L), the same proof as that of
Corollary 3.15 gives a natural isomorphism

Fili Dcris(L)(X )⊗A[1/p] Fil j OBcris(V )−→∼ (w−1 Fili Dcris(L)⊗Our
X

Fil j OBcris)(V )

for any V ∈ Xproét. Consequently, the isomorphism in Corollary 3.15 is strictly compatible with filtra-
tions. Thus, we reduce to showing that, for an affinoid perfectoid V ∈ Xproét/Xuniv, the isomorphism
Dcris(VX (L))⊗A[1/p]OBcris(V )−→∼ VX (L)⊗OBcris(V ) is strictly compatible with the filtrations in the
sense that its inverse respects also the filtrations on both sides, or equivalently, the induced morphisms
between the gradeds quotients are isomorphisms:⊕

i+ j=n

(gri Dcris(VX (L))⊗A[1/p] gr j OBcris(V ))→ VX (L)⊗ grn OBcris(V ). (3B.2)

When V = Xuniv, this follows from [Brinon 2008, 8.4.3]. For the general case, write X̂univ = Spa(R, R+)
and V̂ = Spa(R1, R+1 ). By [Scholze 2013, Corollary 6.15] and Corollary 2.25,

gr j OBcris ' ξ
j ÔX [U1/ξ, . . . ,Ud/ξ ] ⊂ gr•OBcris ' ÔX [ξ

±1,U1, . . . ,Ud ],
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where ξ and all Ui have degree 1. So gr j OBcris(Xuniv) ' ξ j R[U1/ξ, . . . ,Ud/ξ ] and gr j OBcris(V ) '
ξ j R1[U1/ξ, . . . ,Ud/ξ ]. As a result, the natural morphism gr j OBcris(Xuniv)⊗R R1 −→

∼ gr j OBcris(V ) is
an isomorphism. The required isomorphism (3B.2) for general V then follows from the special case for
Xuniv. �

Let Liscris
Ẑp
(X) denote the category of lisse crystalline Ẑp-sheaves on X , and Liscris

Q̂p
(X) the corresponding

isogeny category. The functor

Dcris : Liscris
Q̂p
(X)→ FF- Iso(X0/Ok), L 7→ Dcris(L)

allows us to relate Liscris
Q̂p
(X) to the category FF- Iso(X0/Ok) of filtered convergent F-isocrystals on

X0/Ok , thanks to Proposition 3.13. A filtered F-isocrystal E on X0/Ok is called admissible if it lies in
the essential image of the functor above. The full subcategory of admissible filtered F-isocrystals on
X0/Ok will be denoted by FF- Iso(X0/Ok)

adm.

Theorem 3.18. The functor Dcris above induces an equivalence of categories

Dcris : Liscris
Q̂p
(X)−→∼ FF- Iso(X0/Ok)

adm.

A quasiinverse of Dcris is given by

Vcris : E 7→ Fil0(w−1E ⊗Our
X
OBcris)

∇=0,ϕ=1

where ϕ denotes the compatible system of Frobenii on E as before.

Proof. Observe first that, for E a filtered convergent F-isocrystal, the local Frobenii on E∇=0 glue to give
a unique σ -semilinear morphism on E∇=0 (Lemma 3.6). In particular, the abelian sheaf Vcris(E) is well
defined. Assume moreover E is admissible, and let L be a lisse Ẑp-sheaf such that E 'Dcris(L). So L and
E are associated by Proposition 3.13. Hence L⊗

Ẑp
OBcris ' w

−1E ⊗Our
X
OBcris, and we find

L⊗
Ẑp

Q̂p −→
∼ L⊗

Ẑp
Fil0(OBcris)

∇=0,ϕ=1

−→∼ Fil0(L⊗
Ẑp

OBcris)
∇=0,ϕ=1

−→∼ Fil0(w−1E ⊗Our
X
OBcris)

∇=0,ϕ=1

= Vcris(E),

where the first isomorphism following from the fundamental exact sequence (by Lemma 2.7 and [Brinon
2008, Corollary 6.2.19])

0→Qp→ Fil0 Bcris
1−ϕ
−−−→Bcris→ 0.

In particular, Vcris(E) is the associated Q̂p-sheaf of a lisse Ẑp-sheaf. Thus Vcris(E) ∈ Liscris
Q̂p
(X) and the

functor Vcris is well defined. Furthermore, as we can recover the lisse Ẑp-sheaf up to isogeny, it follows
that Dcris is fully faithful, and a quasiinverse on its essential image is given by Vcris. �
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Remark 3.19. Using [Brinon 2008, Theorem 8.5.2], one can show that the equivalence above is an
equivalence of tannakian category.

Next we compare Definition 3.10 with the “associatedness” defined in [Faltings 1989]. Let E be a
filtered convergent F-isocrystal E on X0/Ok , and M an F-crystal on X0/Ok such that Man

= E(−n) for
some n ∈N (see Remark 3.4 for the notations). Let U = Spf(A) be a small connected affine open subset of
X , equipped with a lifting of Frobenius σ . Write U = Spa(A[1/p], A) the generic fiber of U . As before,
let A be the union of all finite normal A-algebras (contained in some fixed algebraic closure of Frac(A))
which are étale over A[1/p]. Let GU := Gal(A[1/p]/A[1/p]) and (R, R+) the p-adic completion of
(A[1/p], A). Then (R, R+) is an perfectoid affinoid algebra over Cp =

ˆk. So we can consider the period
ring Acris(R, R+). Moreover the composite of the following two natural morphisms

Acris(R, R+) θ
−→ R+ can

−→ R+/pR+, (3B.3)

defines a p-adic PD-thickening of Spec(R+/pR+). Evaluate our F-crystal M at it and write the resulting
Acris(R, R+)-module as M(Acris(R, R+)). As an element of GU defines a morphism of the PD-thickening
(3B.3) in the big crystalline site of X0/Ok and M is a crystal, M(A(R, R+)) is endowed naturally with
an action of GU . Similarly, the Frobenius on the crystal M gives a Frobenius ψ on M(Acris(R, R+)).
Set E(Bcris(R, R+)) :=M(Acris(R, R+))[1/t], which is a Bcris(R, R+)-module of finite type endowed
with a Frobenius ϕ = ψ/pn and an action of GU .

On the other hand, as U is small, there exists a morphism α : A→Acris(R, R+) of Ok-algebras, whose
composite with θ :Acris(R, R+)→ R+ is the inclusion A⊂ R+. For example, consider an étale morphism
U→ Spf(Ok{T±1

1 , . . . , T±1
d }). Let (T 1/pn

i ) be a compatible system of pn-th roots of Ti inside A ⊂ R+,
and T [

i the corresponding element of R[+ := lim
←−−x 7→x p R+/pR+. Then one can take α as the unique

morphism of Ok-algebras A→Acris(R, R+) sending Ti to [T [
i ], such that its composite with the projection

Acris(R, R+)→ R+/pR+ is just the natural map A→ R+/pR+ (such a morphism exists as A is étale
over Ok{T±1

1 , . . . , T±1
d } and because of (3B.3); see the proof of Lemma 2.14 for a similar situation). Now

we fix such a morphism α. So we obtain a morphism of PD-thickenings from U0 ↪→ U to the one defined
by (3B.3). Consequently we get a natural isomorphism M(Acris(R, R+)) 'M(U)⊗A,α Acris(R, R+),
whence

E(Bcris(R, R+))' E(U)⊗A[1/p],α Bcris(R, R+),

here E(U) :=M(U)[1/p]. Using this isomorphism, we define the filtration on E(Bcris(R, R+)) as the
tensor product of the filtration on E(U) and that on Bcris(R, R+).

Remark 3.20. It is well-known that the filtration on E(Bcris(R, R+)) does not depend on the choice
of α. More precisely, let α′ be a second morphism A→ Acris(R, R+) of Ok-algebras whose composite
with Acris(R, R+)→ R+ is the inclusion A ⊂ R+. Fix an étale morphism U→ Spf(Ok{T±1

1 , . . . , T±1
d }).

Denote β= (α, α′) : A⊗Ok A→Acris(R, R+) and by the same notation the corresponding map on schemes,
and write p1, p2 : Spec A× Spec A→ Spec A the two projections. We have a canonical isomorphism
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(p2 ◦β)
∗E −→∼ (p1 ◦β)

∗E , as E is a crystal. In terms of the connection ∇ on E , this gives (see [Berthelot
1996, 2.2.4]) the following Bcris(R, R+)-linear isomorphism

η : E(U)⊗A[1/p],α Bcris(R, R+)→ E(U)⊗A[1/p],α′ Bcris(R, R+)

sending e⊗1 to
∑

n∈Nd N n(e)⊗(α(T )−α′(T ))[n], with N the endomorphism of E such that ∇ = N⊗dT .
Here we use the multiindex to simplify the notations, and note that α(Ti )− α

′(Ti ) ∈ Fil1 Acris(R, R+)
hence the divided power (α(Ti )− α

′(Ti ))
[ni ] is well defined. Moreover, the series converge since the

connection on M is quasinilpotent. Now as the filtration on E satisfies Griffiths transversality, the
isomorphism η is compatible with the tensor product filtrations on both sides. Since the inverse η−1

can be described by a similar formula (one just switches α and α′), it is also compatible with filtrations
on both sides. Hence the isomorphism η is strictly compatible with the filtrations, and the filtration on
E(Bcris(R, R+)) does not depend on the choice of α.

Let L be a lisse Ẑp-sheaf on X , and write as before VU (L) the Zp-representation of GU corresponding
to the lisse sheaf L|U . Following [Faltings 1989], we say a filtered convergent F-isocrystal E on X0/Ok is
associated to L in the sense of Faltings if, for all small open subset U ⊂ X , there is a functorial filtered
isomorphism

E(Bcris(R, R+))−→∼ VU (L)⊗Qp Bcris(R, R+), (3B.4)

which is compatible with GU -action and Frobenius.

Proposition 3.21. If E is associated to L in the sense of Faltings then L is crystalline (not necessarily
associated to E) and there is an isomorphism Dcris(L) ' E compatible with filtration and Frobenius.
Conversely, if L is crystalline and if there is an isomorphism Dcris(L)' E of OX an-modules compatible
with filtration and Frobenius, then L and E are associated in the sense of Faltings.

Before giving the proof of Proposition 3.21, we observe first the following commutative diagram in
which the left vertical morphisms are all PD-morphisms:

A //

can
��

A/p A

��

OAcris(R, R+)
θA

// R+/pR+

Acris(R, R+) θ
//

can

OO

R+/pR+.

Therefore, we have isomorphisms

M(U)⊗A OAcris(R, R+)−→∼ M(OAcris(R, R+))←−∼ M(Acris(R, R+))⊗Acris(R,R+)OAcris(R, R+),

where the second term in the first row denotes the evaluation of the crystal M at the PD-thickening
defined by the PD-morphism θA in the commutative diagram above. Inverting t , we obtain a natural
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isomorphism

E(U)⊗A[1/p]OBcris(R, R+)−→∼ E(Bcris(R, R+))⊗OBcris(R, R+), (3B.5)

where the last tensor product is taken over Bcris(R, R+). This isomorphism is clearly compatible with
Galois action and Frobenius. By a similar argument as in Remark 3.20 one checks that (3B.5) is also
strictly compatible with the filtrations. Furthermore, using the identification

Acris(R, R+){〈u1, . . . , ud〉} −→
∼ OAcris(R, R+), ui 7→ Ti ⊗ 1− 1⊗[T [

i ]

we obtain a section s of the canonical map Acris(R, R+)→OAcris(R, R+):

s : OAcris(R, R+)→ Acris(R, R+), ui 7→ 0,

which is again a PD-morphism. Composing it with the inclusion A ⊂OAcris(R, R+), we get a morphism
α0 : R+→Acris(R, R+)whose composite with the projection Acris(R, R+)→ R+ is the inclusion A⊂ R+.

Proof of Proposition 3.21. Now assume that E is associated with L in the sense of Faltings. Extending
scalars to OBcris(R, R+) of the isomorphism (3B.4) and using the identification (3B.5), we obtain a
functorial isomorphism, compatible with filtration, GU -action, and Frobenius:

VU (L)⊗Zp OBcris(R, R+)−→∼ E(U)⊗A[1/p]OBcris(R, R+).

Therefore, VU (L)⊗Zp Qp is a crystalline GU -representation (Corollary 3.16), and we get by Lemma 3.14
an isomorphism E(U) −→∼ Dcris(L)(U) compatible with filtrations and Frobenius. As such small open
subsets U form a basis for the Zariski topology of X , we find an isomorphism E −→∼ Dcris(L) compatible
with filtrations and Frobenius, and that L is crystalline in the sense of Definition 3.10 (Corollary 3.16).

Conversely, assume L is crystalline with Dcris(L)' E compatible with filtrations and Frobenius. As in
the proof of Corollary 3.16, we have a functorial isomorphism

E(U)⊗A[1/p]OBcris(R, R+)−→∼ VU (L)⊗Zp OBcris(R, R+)

which is compatible with filtration, Galois action and Frobenius. Pulling it back via the section
OBcris(R, R+)→ Bcris(R, R+) obtained from s by inverting p, we obtain a functorial isomorphism

E(Bcris(R, R+))' E(U)⊗A[1/p],α0 Bcris(R, R+)−→∼ VU (L)⊗Zp Bcris(R, R+),

which is again compatible with Galois action, Frobenius and filtrations. Therefore L and E are associated
in the sense of Faltings. �

Finally we compare Definition 3.10 with its de Rham analogue considered in [Scholze 2013].

Proposition 3.22. Let L be a lisse Ẑp-sheaf on X and E a filtered convergent F-isocrystal on X0/Ok .
Assume that L and E are associated as defined in Definition 3.10, then L is de Rham in the sense of Scholze
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[2013, Definition 8.3]. More precisely, if we view E as a filtered module with integrable connection on X
(namely we forget the Frobenius), there exists a natural filtered isomorphism compatible with connections

L⊗
Ẑp

OBdR→ E ⊗OX OBdR.

Proof. Let U = Spf(R+)⊂X be a connected affine open subset, and denote by U (resp. U univ) the generic
fiber of U (resp. the universal étale cover of U ). Let V be a affinoid perfectoid lying above U univ. As L

and E are associated, there exits a filtered isomorphism compatible with connections and Frobenius

L⊗
Ẑp

OBcris −→
∼ w−1E ⊗Our

X
OBcris.

Evaluate this map at V ∈ Xproét and use the fact that the A[1/p]-module E(U) is projective, we deduce a
filtered isomorphism compatible with all extra structures:

VU (L)⊗Zp OBcris(V )−→∼ E(U)⊗A[1/p]OBcris(V ).

Taking tensor product −⊗OBcris(V )OBdR(V ) on both sides, we get a filtered isomorphism compatible
with connection

VU (L)⊗Zp OBdR(V )−→∼ E(U)⊗A[1/p]OBdR(V ).

Again, as E(U) is a projective A[1/p]-module and as E is coherent, the isomorphism above can be
rewritten as

(L⊗
Ẑp

OBdR)(V )−→∼ (E ⊗OX OBdR)(V ),

which is clearly functorial in U and in V . Varying U and V , we deduce that L is de Rham, giving our
proposition. �

3C. From proétale site to étale site. Let X be a smooth formal scheme over Ok . For O=OX , OX [1/p],
Our+

X , Our
X and a sheaf of O-modules F with connection, we denote the de Rham complex of F as

dR(F)= (0→ F ∇
−→F ⊗O�

1 ∇
−→· · · ).

Let w be the composite of natural morphisms of topoi (here we use the same notation to denote the object
in X∼proét represented by Xk ∈ Xproét)

X∼proét/Xk→ X∼proét
w
−→X∼ét .

The following lemma is a global reformulation of the main results of [Andreatta and Brinon 2013]. As
we shall prove a more general result later (Lemma 5.3), let us omit the proof here.

Lemma 3.23. Let X be smooth formal scheme over Ok . Then the natural morphism below is an isomor-
phism in the filtered derived category:

OX ⊗̂Ok Bcris→ Rw∗(OBcris).
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Here OX ⊗̂Ok Bcris := (OX ⊗̂Ok Acris)[1/t] with

OX ⊗̂Ok Acris := lim
←−−
n∈N

OX ⊗Ok Acris/pn,

and OX ⊗̂Ok Bcris is filtered by the subsheaves

O⊗̂Ok Filr Bcris := lim
−−→
n∈N

t−n(OX ⊗̂Ok Filr+n Acris), r ∈ Z,

with OX ⊗̂Ok Filr+n Acris := lim
←−−n OX ⊗Ok Filr+n Acris/pn .

Corollary 3.24. Let X be a smooth formal scheme over Ok . Let L be a crystalline lisse Ẑp-sheaf
associated with a filtered convergent F-isocrystal E . Then there exists a natural quasiisomorphism in the
filtered derived category

Rw∗(L⊗Ẑp
Bcris)−→

∼ dR(E ⊗OX OX ⊗̂Ok Bcris).

If moreover X is endowed with a lifting of Frobenius σ , then the isomorphism above is also compatible
with the Frobenii deduced from σ on both sides.

Proof. Using the Poincaré lemma (Corollary 2.17), we get first a quasiisomorphism which is strictly
compatible with filtrations

L⊗Bcris −→
∼ L⊗ dR(OBcris)= dR(L⊗OBcris).

As L and E are associated, there is a filtered isomorphism L⊗OBcris −→
∼ w−1E ⊗Our

X
OBcris compatible

with connection and Frobenius, from which we get the quasiisomorphisms in the filtered derived category

L⊗Bcris −→
∼ dR(L⊗OBcris)−→

∼ dR(w−1E ⊗OBcris). (3C.1)

On the other hand, as R jw∗OBcris = 0 for j > 0 (Lemma 3.23), we obtain using projection formula
that R jw∗(w

−1E ⊗ OBcris) = E ⊗ R jw∗OBcris = 0 (note that E is locally a direct factor of a finite
free OX [1/p]-module, hence one can apply projection formula here). In particular, each component of
dR(w−1E ⊗OBcris) is w∗-acyclic. Therefore,

dR(E ⊗w∗OBcris)−→
∼ w∗(dR(w−1E ⊗OBcris))−→

∼ Rw∗(dR(w−1E ⊗OBcris)).

Combining this with Lemma 3.23, we deduce the following quasiisomorphisms in the filtered derived
category

dR(E ⊗OX ⊗̂Bcris)−→
∼ dR(E ⊗w∗OBcris)−→

∼ Rw∗(dR(w−1E ⊗OBcris)). (3C.2)

The desired quasiisomorphism follows from (3C.1) and (3C.2). When moreover X admits a lifting of
Frobenius σ , one checks that both quasiisomorphisms are compatible with Frobenius, hence the last part
of our corollary. �
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Remark 3.25. Recall that Gk denotes the absolute Galois group of k. Each element of Gk defines
a morphism of Uk in the proétale site Xproét for any U ∈ Xproét with U := Uk . Therefore, the object
Rw∗(L⊗Bcris) comes with a natural Galois action of Gk . With this Galois action, one checks that the
quasiisomorphism in Corollary 3.24 is also Galois equivariant.

Assume moreover that X is proper over Ok . Let E be a filtered convergent F-isocrystal on X0/Ok , and
M an F-crystal on X0/Ok (viewed as a coherent OX -module equipped with an integrable connection)
such that E 'Man(n) for some n ∈N (Remark 3.4). The crystalline cohomology group H i

cris(X0/Ok,M)

is an Ok-module of finite type endowed with a Frobenius ψ . In the following, the crystalline cohomology
(or more appropriately, the rigid cohomology) of the convergent F-isocrystal E is defined as

H i
cris(X0/Ok, E) := H i

cris(X0/Ok,M)[1/p].

It is a finite dimensional k-vector space equipped with the Frobenius ψ/pn . Moreover, let u = uX0/Ok be
the morphism of topoi

(X0/Ok)
∼

cris→ X∼ét

such that u∗(F)(U) = H 0
cris(U0/Ok,F) for U ∈ Xét. With the étale topology replaced by the Zariski

topology, this is precisely the morphism uX0/Ŝ (with Ŝ = Spf(Ok)) considered in [Berthelot and Ogus
1978, Theorem 7.23]. By [loc. cit.], there exists a natural quasiisomorphism in the derived category

Ru∗M−→∼ dR(M), (3C.3)

which induces an isomorphism H i
cris(X0/Ok,M)−→∼ H i (X , dR(M)). Thereby

H i
cris(X0/Ok, E)−→∼ H i (X , dR(E)). (3C.4)

On the other hand, the de Rham complex dR(E) of E is filtered by its subcomplexes

Filr dR(E) := (Filr E ∇
−→ Filr−1 E ⊗�1

X/k
∇
−→· · · ).

So the hypercohomology H i (X , dR(E)) has a descending filtration given by

Filr H i (X , dR(E)) := Im(H i (X ,Filr dR(E))→ H i (X , dR(E))).

Consequently, through the isomorphism (3C.4), the k-space H i
cris(X0/Ok, E) is endowed naturally with a

decreasing filtration.

Theorem 3.26. Assume that the smooth formal scheme X is proper over Ok . Let E be a filtered convergent
F-isocrystal on X0/Ok and L a lisse Ẑp-sheaf on Xproét. Assume that E and L are associated. Then there
is a natural filtered isomorphism

H i (Xk,proét, L⊗
Ẑp

Bcris)−→
∼ H i

cris(X0/Ok, E)⊗k Bcris (3C.5)

of Bcris-modules, which is compatible with Frobenius and Galois action.



1550 Fucheng Tan and Jilong Tong

Proof. By Corollary 3.24, we have the natural Galois equivariant quasiisomorphism in the filtered derived
category:

R0(Xk,proét, L⊗Bcris)= R0(X , Rw∗(L⊗Bcris))−→
∼ R0(X , dR(E ⊗OX ⊗̂Bcris)).

We claim that the natural morphism in the filtered derived category

R0(X , dR(E))⊗Ok Acris→ R0(Xét, dR(E ⊗OX OX ⊗̂Ok Acris)) (3C.6)

is an isomorphism. Let M be an F-crystal on X0/Ok with E =Man(n). Then, the similar natural
morphism below is an isomorphism:

R0(X , dR(M))⊗Ok Acris→ R0(Xét, dR(M⊗OX OX ⊗̂Ok Acris)). (3C.7)

Indeed, as Acris is flat over Ok , M⊗OX OX ⊗̂Ok Acris 'M⊗̂Ok Acris. So dR(M⊗OX OX ⊗̂Ok Acris) =

dR(M⊗̂Ok Acris), and (3C.7) is an isomorphism by Lemma B.2. Thus, to prove our claim, it suffices to
check that (3C.6) induces quasiisomorphisms on gradeds. Further filtering the de Rham complex by its
naive filtration, we are reduced to checking the following isomorphism for A a coherent OX -module:

R0(X ,A)⊗Ok OCp −→
∼ R0(X ,A⊗OX ⊗̂OkOCp)' R0(X ,A⊗̂OkOCp),

which holds because again OCp is flat over Ok (Lemma B.2). Consequently, inverting t we obtain an
isomorphism in the filtered derived category

R0(X , dR(E))⊗k Bcris→ R0(Xét, dR(E ⊗OX OX ⊗̂Ok Bcris)).

Thus we get a Galois equivariant quasiisomorphism in the filtered derived category

R0(Xk,proét, L⊗Bcris)−→
∼ R0(X , dR(E))⊗k Bcris.

Combining it with (3C.4), we obtain the isomorphism (3C.5) verifying the required properties except for
the Frobenius compatibility.

To check the Frobenius compatibility, it suffices to check that the restriction to H i
cris(X0/Ok, E) ↪→

H i
cris(X0/Ok, E)⊗k Bcris of the inverse of (3C.5) is Frobenius-compatible. Let M be an F-crystal on

X0/Ok with E =Man(n). Via the identification H i
cris(X0/Ok, E)= H i

cris(X0/Ok,M)[1/p], the restriction
map in question is induced from the following composed morphism at the level of derived category:

Ru∗M[1/p] −→∼ dR(M)[1/p] −→∼ dR(E)→ dR(E ⊗OX ⊗̂k Bcris)−→
∼ Rw∗(L⊗Bcris),

where the first morphism is (3C.3), and the last one is the inverse in the derived category of the quasiiso-
morphism in Corollary 3.24. Let us denote by θ the composite of these morphisms. Let ψ and ϕ be the
induced Frobenius on Ru∗M and Rw∗(L⊗Bcris), respectively. One needs to check that ϕ ◦ θ = 1

pn θ ◦ψ .
This can be done locally on X . So let U ⊂X be a small open subset equipped with a lifting of Frobenius σ .
Thus M|U and E|U admit naturally a Frobenius, which we denote by ψU and ϕU , respectively. Then all
the morphisms above except the second one are Frobenius-compatible (see Corollary 3.24 for the last



Crystalline comparison isomorphisms in p -adic Hodge theory 1551

quasiisomorphism). But by definition, under the identification M[1/p]|U ' E|U , the Frobenius ϕU on E
corresponds exactly to ψU/pn on M[1/p]. This gives the desired equality ϕ ◦ θ = 1

pn θ ◦ψ on U , from
which the Frobenius compatibility in (3C.5) follows. �

4. Primitive comparison on the proétale site

Let X be a proper smooth formal scheme over Ok , with X (resp. X0) its generic (resp. closed) fiber. Let
L be a lisse Ẑp-sheaf on Xproét. In this section, we will construct a primitive comparison isomorphism for
any lisse Ẑp-sheaf L on the proétale site Xproét (Theorem 4.3). In particular, this primitive comparison
isomorphism also holds for noncrystalline lisse Ẑp-sheaves, which may lead to interesting arithmetic
applications. On the other hand, in the case that L is crystalline, such a result and Theorem 3.26 together
give rise to the crystalline comparison isomorphism between étale cohomology and crystalline cohomology
(Theorem 4.5).

We shall begin with some preparations.

Lemma 4.1. Let (Fn)n∈N be a projective system of abelian sheaves on a site T . Then for any object
Y ∈ T and any i ∈ Z, there exists a natural exact sequence

0→ R1 lim
←−−

H i−1(Y,Fn)→ H i (Y, R lim
←−−

Fn)→ lim
←−−

H i (Y,Fn)→ 0.

Proof. This is essentially [Jannsen 1988, (1.6) Proposition]. Let Sh denote the category of abelian sheaves
on T and ShN the category of projective systems of abelian sheaves indexed by N. Let Ab denote the
category of abelian groups. Consider the functor

τ : ShN
→ Ab, (Gn) 7→ lim

←−−
0(Y,Gn).

Then τ is left-exact, and we can consider its right derived functor Rτ(Fn). By [Jannsen 1988, (1.6) Propo-
sition], we have a short exact sequence for each i ∈ Z

0→ R1 lim
←−−

H i−1(Y,Fn)→ Riτ(Fn)→ lim
←−−

H i (Y,Fn)→ 0.

One the other hand, write τ as the composite of the following two functors

ShN
lim
←− // Sh

0(Y,−)
//// Ab .

The functor lim
←−−
: ShN

→ Sh admits an exact left-adjoint given by sending a sheaf to its associated
constant projective system, so it sends injectives to injectives. Thus R0(Y, R lim

←−−
Fn) ' Rτ(Fn), and

H i (Y, R lim
←−−

Fn) ' Riτ(Fn) for each i . Together with the short exact sequence above, we obtain our
lemma. �

Lemma 4.2. Let L be a lisse Ẑp-sheaf on Xk,proét and Ln := L/pn for n ∈ N. Then, for i ∈ Z,
H i (Xk,proét, L) −→∼ lim

←−−n H i (Xk,proét, Ln). Moreover, H i (Xk,proét, L) is a Zp-module of finite type, and
H i (Xk,proét, L)= 0 whenever i /∈ [0, 2 dim(X)].
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Proof. All the cohomology groups below are computed in the proétale site, so we shall omit the subscript
“proét” from the notations.

Thanks to [Scholze 2013, Proposition 8.2], R j lim
←−−n Ln = 0 for j > 0. So L−→∼ R lim

←−−n Ln . Furthermore,
by [loc. cit., Theorem 5.1], H i−1(Xk, Ln) is finite for all n∈N. So R1 lim

←−−
H i−1(Xk, Ln)=0. Consequently,

by Lemma 4.1, the morphism

H i (Xk, L)→ lim
←−−

H i (Xk, Ln)

is an isomorphism, giving the first part of our lemma. In particular, H i (Xk, L) = 0 whenever i /∈
[0, 2 dim(X)] according to [loc. cit., Theorem 5.1].

Let Ltor be the torsion subsheaf of L. The remaining part of our lemma follows from the corresponding
statements for Ltor and for L/Ltor. Therefore, we assume that L is either of torsion or locally free of finite
rank. In the first case, we reduce to the finiteness statement of Scholze [2013, Theorem 5.1]. So it suffices
to consider the case where L is locally free. Then, we have the exact sequence

0→ L
pn
−→ L→ Ln→ 0,

inducing the following short exact sequence

0→ H i (Xk, L)/pn
→ H i (Xk, Ln)→ H i+1(Xk, L)[pn

] → 0. (4A.1)

By the first part of our lemma, H i+1(Xk, L)−→∼ lim
←−−

H i+1(Xk, Ln) is a pro-p abelian group, hence it does
not contain any element infinitely divisible by p. Thus, lim

←−−
(H i+1(Xk, L)[pn

])= 0 (the transition map is
multiplication by p). From the exactness of (4A.1), we deduce a canonical isomorphism

lim
←−−
(H i (Xk, L)/pn)−→∼ lim

←−−
H i (Xk, Ln).

So H i (Xk, L)−→∼ lim
←−−n H i (Xk, L)/pn , and H i (Xk, L) is p-adically complete. Thus it can be generated

as a Zp-module by a family of elements whose images in H i (Xk, L)/p generate it as an Fp-vector space.
The latter is finite dimensional over Fp: recall the inclusion H i (Xk, L)/p ↪→ H i (Xk, L1) by (4A.1). So
the Zp-module H i (Xk, L) is of finite type, as desired. �

The primitive form of the crystalline comparison isomorphism on the proétale site is as follows.

Theorem 4.3. Let L be a lisse Ẑp-sheaf on Xproét. Then the natural morphism of Bcris-modules below is a
filtered isomorphism

H i (Xk,proét, L)⊗Zp Bcris −→
∼ H i (Xk,proét, L⊗

Ẑp
Bcris), (4A.2)

compatible with Galois action and Frobenius.

Proof. In the following, all the cohomologies are computed on the proétale site, so we omit the subscript
“proét” from the notations.

If L is of torsion, our theorem is obvious since both sides of (4A.2) are trivial. Therefore, it suffices to
consider the case where L is locally a free lisse Ẑp-module. Let Ln = L/pn , n ∈N. So, we have the short
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exact sequence (4A.1), from which we deduce a short exact sequence of projective systems since Acris is
flat over Zp

0→ (H i (Xk, L)⊗ Acris/pn)n→ (H i (Xk, Ln)⊗ Acris)n→ ((H i+1(Xk, L)[pn
])⊗ Acris)n→ 0.

Because H i+1(Xk, L) is a finite Zp-modules, lim
←−−n(H

i+1(Xk, L)[pn
]⊗ Acris)= 0 (the transition map is

multiplication by p). Thus, we get

H i (Xk, L)⊗ Acris ' lim
←−−

n
H i (Xk, L)⊗ Acris/pn

−→∼ lim
←−−

n
(H i (Xk, Ln)⊗ Acris). (4A.3)

Here we have the first identification since H i (Xk, L)⊗ Acris is p-adically complete thanks to the fact that
H i (Xk, L) is a finite Zp-module.

Next, we claim that, for all i ≥ 0, the canonical map of Acris/pn-modules

H i (Xk, Ln)⊗Zp Acris→ H i (Xk, Ln ⊗Ẑp
Acris) (4A.4)

is an almost isomorphism. Since Acris and Acris are flat respectively over Zp and Ẑp, by induction on n, it
suffices to show that the natural map of Acris/p-modules

H i (Xk,K)⊗Zp Acris→ H i (Xk,K⊗
Ẑp

Acris)

is an almost isomorphism, where K is an Fp-local system on Xproét. In this case, one can rewrite the
morphism above as

H i (Xk,K)⊗Fp Acris/p→ H i (Xk,K⊗Fp Acris/p). (4A.5)

Recall the following identification of Acris/p (see [Brinon 2008, Proposition 6.1.2])

Acris/p −→∼ (O[

Cp
/(p[)p)[δi : i ∈ N]/(δ

p
i : i ∈ N),

with δi the image of ξ [p
i+1
]. Similarly, on Xproét/Xk , we have

Acris/p −→∼ (O[+
X /(p

[)p)[δi : i ∈ N]/(δ
p
i : i ∈ N).

As Xk is qcqs, to show that (4A.5) is an almost isomorphism, it suffices to check that it is the case for the
map

H i (Xk,K)⊗Fp O
[

Cp
/(p[)p

→ H i (Xk,K⊗Fp O
[+
X /(p

[)p).

Using the p[-adic filtration on O[

Cp
/(p[)p and on O[+

X /(p
[)p, one reduces further to showing that the

natural map

H i (Xk,K)⊗Fp O
[

Cp
/(p[)→ H i (Xk,K⊗Fp O

[+
X /(p

[)),

is an almost isomorphism. But this is proved in [Scholze 2013, Theorem 5.1] since O[

Cp
/p[ ' OCp/p

and O[+
X /p[ 'O+X/p: recall that the almost-setting adopted here for Acris/p-modules is the same as the

one used by Scholze. Consequently, the map (4A.4) is an almost isomorphism. Varying n in (4A.4), we
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obtain a morphism of projective systems of Acris-modules, with kernel and cokernel killed by I. Passing
to limits relative to n and using (4A.3), one deduces a natural morphism of Acris-modules

H i (Xk, L)⊗Zp Acris ' lim
←−−

n
H i (Xk, Ln)⊗Zp Acris→ lim

←−−
n

H i (Xk, Ln ⊗Ẑp
Acris),

with kernel and cokernel killed by I2. Moreover, we have I · R1 lim
←−−n H i (Xk, Ln ⊗ Acris) = 0 since

R1 lim
←−−
(H i (Xk, Ln)⊗ Acris)= 0.

Then, we claim that the Acris-module R j lim
←−−
(Ln⊗Ẑp

Acris) is killed by I2 for j > 0. The question being
local on Xproét, we may and do assume L= M⊗Zp Ẑp with M a finitely generated free Zp-module (recall
that we have assumed that L is locally free over Ẑp). So our claim in this case follows from Lemma 2.6.
As a result, in the spectral sequence below

E i, j
2 = H i (Xk, R j lim

←−−
(Ln ⊗Acris))⇒ H i+ j (Xk, R lim

←−−
(Ln ⊗Acris)),

we have I2
· E i, j

2 = 0 for j > 0 and E i,0
∞
= E i,0

i+1. Moreover, the natural surjection E i,0
2 → E i,0

∞
has kernel

killed by I2i−2. It follows that the canonical map

H i (Xk, L⊗
Ẑp

Acris)→ H i (Xk, R lim
←−−
(Ln ⊗Ẑp

Acris))

has kernel killed by I2i−2 and cokernel killed by I2i . On the other hand, by Lemma 4.1, the kernel of the
canonical surjective morphism

H i (Xk, R lim
←−−

n
(Ln ⊗Ẑp

Acris))→ lim
←−−

n
H i (Xk, Ln ⊗Ẑp

Acris)

is R1 lim
←−−n H i−1(Xk, Ln ⊗Ẑp

Acris), thus is killed by I by what we have shown above. Therefore, the
kernel and cokernel of the composed map

H i (Xk, L⊗Acris)→ H i (Xk, R lim
←−−

n
(Ln ⊗Acris))→ lim

←−−
n

H i (Xk, Ln ⊗Acris)

are killed by I2i . Finally, from the commutative square

H i (Xk, L)⊗ Acris
∼

(4A.3)
//

��

lim
←−−
(H i (Xk, Ln)⊗ Acris)

iso. up to I2lim
←−n (4A.4)

��

H i (Xk, L⊗Acris)
iso. up to I2i

// lim
←−−

H i (Xk, Ln ⊗Acris)

,

we deduce that the natural map below has kernel and cokernel killed by I2i+2, hence by t2i+2

H i (Xk, L)⊗Zp Acris→ H i (Xk, L⊗
Ẑp

Acris).

Inverting t , we get the required isomorphism (4A.2).
We still need to check that (4A.2) is compatible with the extra structures. Clearly only the strict

compatibility with filtrations needs verification, and it suffices to check this on gradeds. So we reduce to
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showing that the natural morphism is an isomorphism:

H i (Xk, L)⊗Zp Cp( j)→ H i (Xk, L⊗ ÔX ( j)).

Twisting, one reduces to j = 0, which is given by the following lemma. �

Lemma 4.4. Let L be a lisse Ẑp-sheaf on Xk,proét. Then the following natural morphism is an isomorphism:

H i (Xk,proét, L)⊗Zp Cp −→
∼ H i (Xk,proét, L⊗

Ẑp
ÔX ),

where ÔX is the completed structural sheaf of Xk,proét and Cp =
ˆk.

Proof. It suffices to show that the natural morphism of OCp -modules

H i (Xk,proét, L)⊗Zp OCp → H i (Xk,proét, L⊗
Ẑp

Ô+X )

has kernel and cokernel annihilated by some power of IOCp . The proof is similar to that of the first part
of Theorem 4.3, so we omit the details here. �

Recall that the notion of lisse Zp-sheaf on Xét and lisse Ẑp-sheaf on Xproét are equivalent. Combining
Theorem 3.26 and Theorem 4.3, we finally deduce the following crystalline comparison theorem:

Theorem 4.5. Let X be a proper smooth formal scheme over Ok , with X (resp. X0) its generic (resp.
closed) fiber. Let L be a lisse Ẑp-sheaf on Xproét, associated to a filtered F-isocrystal E on X0/Ok . Then
there exists a functorial filtered isomorphism

H i (Xk,ét, L)⊗Zp Bcris −→
∼ H i

cris(X0/Ok, E)⊗Ok Bcris

of Bcris-modules, compatible with Galois action and Frobenius.

5. Comparison isomorphism in the relative setting

Let f : X → Y be a smooth morphism between two smooth formal schemes over Spf(Ok) of relative
dimension d ≥ 0. The induced morphism between the generic fibers will be denoted by fk : X→ Y . We
shall denote by wX and wY the natural morphism of topoi X∼proét→ X∼ét and Y∼proét→ Y∼ét . By abuse of
notation, the morphism of topoi X∼proét→ Y∼proét will be still denoted by fk .

Let ∇X/Y : OAcris,X → OAcris,X ⊗Our+
X
�

1,ur+
X/Y be the natural relative derivation, where �1,ur+

X/Y :=

w∗X�
1
X/Y .

Proposition 5.1. (1) (relative Poincaré lemma) The following sequence of proétale sheaves is exact and
strict with respect to the filtration giving �i,ur+

X/Y degree i :

0→ Acris,X ⊗̂ f −1
k Acris,Y

f −1
k OAcris,Y →OAcris,X

∇X/Y−−−→OAcris,X ⊗Our+
X
�

1,ur+
X/Y

∇X/Y−−−→· · ·

· · ·
∇X/Y−−−→OA+cris,X ⊗Our+

X
�

d,ur+
X/Y → 0.

In particular, the connection ∇X/Y is integrable and satisfies Griffiths transversality with respect to
the filtration, i.e., ∇X/Y (Fili OAcris,X )⊂ Fili−1 OAcris,X ⊗�

1,ur+
X/Y .
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(2) Suppose the Frobenius on X0 (resp. Y0) lifts to a Frobenius σX (resp. σY ) on the formal scheme X
(resp. Y) and they commute with f . Then the induced Frobenius ϕX on OAcris,X is horizontal with
respect to ∇X/Y .

Proof. The proof is routine (see Proposition 2.13), so we omit the detail here. �

For the relative version of the crystalline comparison, we shall need the following primitive comparison
in the relative setting.

Proposition 5.2. Let f : X → Y be a proper smooth morphism between two smooth formal schemes over
Ok . Let L be a lisse Ẑp-sheaf on Xproét. Suppose that Ri fk∗L is a lisse Ẑp-sheaf for all i ≥ 0. Then, the
canonical morphism

(Ri fk∗L)⊗Ẑp
Bcris,Y → Ri fk∗(L⊗Ẑp

Bcris,X ) (5A.1)

is a filtered isomorphism, compatible with Frobenius. Similarly, the natural morphism

(Ri fk∗L)⊗Ẑp
OBcris,Y → Ri fk∗(L⊗Ẑp

Acris,X ⊗̂ f −1
k Acris,Y

f −1
k OAcris,Y [1/t]) (5A.2)

is a filtered isomorphism, compatible with Frobenius and connections.

Proof. The proof is similar to that of Theorem 4.3, so we shall only give a sketch here. As in the proof of
Theorem 4.3, to show our proposition, it suffices to consider the case where L is locally free over Ẑp. Let
Ln = L/pn , n ∈ N. Since L has no p-torsion, we have short exact sequences of lisse Ẑp-sheaves on Y

0→ Ri fk∗(L)/pn
→ Ri fk∗(Ln)→ Ri+1 fk∗(L)[pn

] → 0, n ∈ N,

inducing an exact sequence of projective systems as Acris,Y is flat over Ẑp

0→ (Ri fk∗(L)⊗Acris,Y /pn)n→ (Ri fk∗(Ln)⊗Acris,Y )n→ (Ri+1 fk∗(L)[pn
]⊗Acris,Y )n→ 0.

Because Ri+1 fk∗(L) is a lisse Ẑp-module, there exists N ∈N such that pN kills Ri+1 fk∗(L)[pn
] for all n.

Thus, the composed transition map in the last projective system of the sequence above is zero:

Ri+1 fk∗(L)[pn+N
]⊗Acris,Y → Ri+1 fk∗(L)[pn

]⊗Acris,Y , x 7→ pN x .

Therefore, R j lim
←−−n(R

i+1 fk∗(L)[pn
]⊗Acris,Y )= 0 for every j ∈ Z, and thus

R j lim
←−−

n
(Ri fk∗(L)⊗Acris,Y /pn)−→∼ R j lim

←−−
n
(Ri fk∗(Ln)⊗Acris,Y )

for all j ∈ Z. In particular,

Ri fk∗(L)⊗Acris,Y ' lim
←−−

n
(Ri fk∗(L)⊗Acris,Y /pn)−→∼ lim

←−−
n
(Ri fk∗(Ln)⊗Acris,Y ), (5A.3)

and R j lim
←−−n(R

i fk∗(Ln)⊗Acris,Y ) ' R j lim
←−−n(R

i fk∗(L)⊗Acris,Y /pn) is killed by I2 whenever j > 0 as
this is the case for R j lim

←−−n(Acris,Y /pn) by Corollary 2.8 and as Ri fk∗(L) is a lisse Ẑp-sheaf.
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Next, with the help of [Scholze 2013, Corollary 5.11], the same argument as in the proof of Theorem 4.3
yields almost isomorphisms

Ri fk∗(Ln)⊗Acris,Y −→
∼ Ri fk∗(Ln ⊗Acris,X ), n ∈ N. (5A.4)

So, the kernel and the cokernel of the natural map below are killed by I2:

lim
←−−

n
(Ri fk∗(Ln)⊗Acris,Y )→ lim

←−−
n

Ri fk∗(Ln ⊗Acris,X ). (5A.5)

Moreover, for j > 0, from (5A.4), we find

I4
· R j lim

←−−
n

Ri fk∗(Ln ⊗Acris,X )= 0

since I2
· R j lim

←−−n(R
i fk∗(Ln)⊗Acris,Y )= 0 as observed at the end of the last paragraph. Therefore, by a

standard argument using the spectral sequence

Ea,b
2 = Ra lim

←−−
n

Rb fk∗(Ln ⊗Acris,X )H⇒Ha+b(R lim
←−−

n
R fk∗(Ln ⊗Acris,X )),

one checks that the kernel and the cokernel of the map

Hi (R lim
←−−

n
R fk∗(Ln ⊗Acris,X ))' Ri fk∗(R lim

←−−
n
(Ln ⊗Acris,X ))→ E0,i

2 = lim
←−−

n
Ri fk∗(Ln ⊗Acris,X )

are killed by some power of I. On the other hand, as shown in the proof of Theorem 4.3, if j > 0 then
I2
· R j lim

←−−n(Ln ⊗Acris,X )= 0. So the kernel and the cokernel of

Ri fk∗(L⊗Acris,X )→ Ri fk∗(R lim
←−−

n
(Ln ⊗Acris,X ))

are killed by some power of I. Consequently, the kernel and cokernel of the map

Ri fk∗(L⊗Acris,X )→ lim
←−−

n
Ri fk∗(Ln ⊗Acris,X ) (5A.6)

are killed by some power of I. Combining the morphisms (5A.3), (5A.5) and (5A.6), we deduce that the
kernel and the cokernel of the map

Ri fk∗(L)⊗Acris,Y → Ri fk∗(L⊗Acris,X )

are killed by some power of I, thus also killed by some power of t . Inverting t , we obtain the desired
isomorphism (5A.1).

We need to verify the compatibility of the isomorphism (5A.1) with the extra structures. It clearly
respects Frobenius structures. To check the strict compatibility with respect to filtrations, by taking
grading quotients, we just need to show that for each r ∈ N, the natural morphism

Ri fk∗L⊗ ÔY (r)→ Ri fk∗(L⊗ ÔX (r))
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is an isomorphism: it is a local question, hence it suffices to show this after restricting the latter morphism
to Yk . As ÔX (r)|Xk

' ÔX |Xk
and ÔY (r)|Yk

' ÔY |Yk
, we then reduce to the case where r = 0. The proof

of the latter statement is similar as above, so we omit the details here.
Finally, using Proposition 2.13, a similar proof as above shows that the map (5A.2) is a filtered

isomorphism compatible with Frobenius and connections. �

For a sheaf of OX -modules F with an OY -linear connection ∇ : F → F ⊗�1
X/Y , we denote the

de Rham complex of F as

dRX/Y (F) := (· · · → 0→ F ∇
−→F ⊗OY �

1
X/Y

∇
−→· · · ).

The same rule applies if we consider an Oun
X -module endowed with an Oun

Y -linear connection, etc.
In the lemma below, assume Y = Spf(A) is affine and is étale over a torus S = Spf(Ok{S±1

1 , . . . , S±1
δ }).

For each 1≤ j ≤ δ, let (S1/pn

j )n∈N be a compatible family of p-power roots of S j . As in Proposition 2.13,
set

Ỹ := (Y ×Sk Spa(k{S±1/pn

1 , . . . , S±1/pn

δ },Ok{S
±1/pn

1 , . . . , S±1/pn

δ }))n∈N ∈ Yproét.

Lemma 5.3. Let V ∈ Yproét be an affinoid perfectoid which is proétale over Ỹk , with V̂ = Spa(R, R+).
Let wV be the composite of natural morphisms of topoi

wV : X∼proét/XV → X∼proét
w
−→X∼ét .

(1) For any j > 0, we have R jwV∗OBcris = 0, and the natural morphism

OX ⊗̂AOBcris,Y (V )→ wV∗(OBcris,X )

is an isomorphism.

(2) For any r ∈ Z and any j > 0, we have R jwV∗(Filr OBcris)= 0. Moreover, the natural morphism

OX ⊗̂A Filr OBcris,Y (V )→ wV∗(Filr OBcris,X )

is an isomorphism.

Here OX ⊗̂AOBcris,Y (V ) := (OX ⊗̂AOAcris,Y (V ))[1/t] with

OX ⊗̂AOAcris,Y (V ) := lim
←−−
(OX ⊗A OAcris,Y (V )/pn),

and

OX ⊗̂A Filr OBcris,Y (V ) := lim
−−→
n∈N

t−n(OX ⊗̂A Filr+n OAcris,Y (V )).

In particular, if we filter OX ⊗̂AOBcris,Y (V ) using {OX ⊗̂A Filr OBcris,Y (V )}r∈Z, the natural morphism

OX ⊗̂AOBcris,Y (V )→ RwV∗(OBcris,X )

is an isomorphism in the filtered derived category.
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Proof. Recall first that, for F a proétale sheaf on X and for j ≥ 0, R jwV∗F is the associated sheaf on
Xét of the presheaf sending U ∈ Xét to H i (UV ,F), where UV := Uk ×X XV . Take U = Spf(B) ∈ Xét to be
affine such that the composition U→ X → Y can be factored as

U→ T → Y,

where the first morphism is étale and T := Spf(A{T±1
1 , . . . , T±1

d }). Write TV = Tk ×Y V . Then TV =

Spa(S, S+) with S+ = R{T±1
1 , . . . , T±1

d } and S = S+[1/p]. Write UV = Spa(S̃, S̃+). For each 1≤ i ≤ d ,
let (T 1/pn

i )n∈N be a compatible family of p-power roots of Ti . Set

S+
∞
:= R+{T±1/p∞

1 , . . . , T±1/p∞
d }, S̃+

∞
:= B⊗̂A{T±1

1 ,...,T
±1

d }
S+
∞
, S∞ := S+

∞
[1/p] and S̃∞ := S̃+

∞
[1/p].

Then (S∞, S+
∞
) and (S̃∞, S̃+

∞
) are affinoid perfectoid algebras over (ˆk,Oˆk). Let ŨV ∈ Xproét (resp.

T̃V ∈ Tk proét) be the affinoid perfectoid corresponding to (S̃∞, S̃+
∞
) (resp. to (S∞, S+

∞
)). We have the

following commutative diagram of ringed spaces

ˆ̃UV = Spa(S̃∞, S̃+
∞
)

0
//

��

ŨV = Spa(S̃, S̃+)

��

// U = Spf(B)

��
ˆ̃TV = Spa(S∞, S+

∞
) // T̃V = Spa(S, S+) //

��

T

��

V̂ = Spa(R, R+) // Y = Spf(A).

The morphism ŨV → UV is a profinite Galois cover, with Galois group 0 ' Zp(1)d . For q ∈N, let Ũq
V be

the (q + 1)-fold fiber product of ŨV over UV . So Ũq
V ' ŨV ×0

q is an affinoid perfectoid.

(1) As in the proof of Lemma 3.14, there is a natural isomorphism of Bcris-modules

Hq(0,OAcris(S̃∞, S̃+
∞
))[1/t] −→∼ Hq(UV ,OBcris,X ),

where the first group is the continuous group cohomology and OAcris(S̃∞, S̃+
∞
) is endowed with the

p-adic topology. So, by Theorem A.12, Hq(UV ,OBcris,X ) = 0 whenever q > 0, and there is a natural
isomorphism

B⊗̂AOBcris(R, R+)−→∼ H 0(UV ,OBcris,X ). (5A.7)

On the other hand, V being affinoid perfectoid with V̂ = Spa(R, R+), the maps

OAcris(R, R+)/pn
→OAcris,Y (V )/pn, n ∈ N,

and thus the maps

B⊗A OAcris(R, R+)/pn
→ B⊗A OAcris,Y (V )/pn, n ∈ N,
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are almost isomorphisms (Lemma 2.18). Passing to projective limits, it follows that the kernel and the
cokernel of the induced map

B⊗̂AOAcris(R, R+)→ B⊗̂AOAcris,Y (V )

are killed by I2, hence also by t2. Inverting t , we deduce B⊗̂AOBcris(R, R+)−→∼ B⊗̂AOBcris,Y (V ), and
an isomorphism from (5A.7)

OX (U)⊗̂AOBcris,Y (V )= B⊗̂AOBcris,Y (V )−→∼ H 0(UV ,OBcris,X ).

To conclude the proof of (1), it remains to check that the canonical morphism

OX (U)⊗̂AOBcris,Y (V )→ (OX ⊗̂AOBcris,Y (V ))(U)

is an isomorphism. In fact, we have

OX (U)⊗̂AOAcris,Y (V )= lim
←−−

n
OX (U)⊗A OAcris,Y (V )/pn

−→∼ lim
←−−

n
((OX ⊗A OAcris,Y (V )/pn)(U))

−→∼ (OX ⊗̂AOAcris,Y (V ))(U).

Therefore, as U is quasicompact and quasiseparated, we find

OX (U)⊗̂AOBcris,Y (V )= (OX (U)⊗̂AOAcris,Y (V ))[1/t]

−→∼ ((OX ⊗̂AOAcris,Y (V ))(U))[1/t]

−→∼ (OX ⊗̂AOAcris,Y (V )[1/t])(U)

= (OX ⊗̂AOBcris,Y (V ))(U),

as required.

(2) We shall only prove (2) when r = 0; the general case can be deduced by twisting. As in (1), there
exists a natural isomorphism

lim
−−→
s≥0

Hq(0,Fils OAcris(S̃∞, S̃+
∞
))→ Hq(UV ,Fil0 OBcris,X ).

By definition, the first group is Hq(0,Fil0 OBcris(S̃∞, S̃+
∞
)) computed in Appendix A. So, according to

Proposition A.14 and Corollary A.16, Hq(UV ,Fil0 OBcris,X )= 0 if q > 0, and we have an isomorphism

B⊗̂Fil0 OBcris(R, R+) := lim
−−→
s≥0

B⊗̂Fils OAcris(R, R+)−→∼ H 0(UV ,Fil0 OBcris,X ).

To go further, one has to identify B⊗̂Fil0OBcris(R,R+)with B⊗̂Fil0OBcris(V ):=lim
−−→s≥0 B⊗̂FilsOAcris(V ).

As V is an affinoid perfectoid proétale over Ỹk , by Lemmas 2.6 and 2.18, the kernels and cokernels of the
natural maps

Fils OAcris(R, R+)→ Fils OAcris,Y (V ), s ∈ N,
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are killed by I2, and I3
· H 1(V,Fils OAcris,Y )= 0. In particular, the kernels and cokernels of

grs OAcris(R, R+)→ grs OAcris,Y (V ), s ∈ N,

are killed by some power of I(Acris/ ker(θ)) = IOCp , thus by p1/pN
for every N ∈ N. Moreover, we

have the following commutative diagram with exact rows:

0 // B⊗̂A Fils+1 OAcris(R, R+) //

��

B⊗̂A Fils OAcris(R, R+) //

��

B⊗̂A grs OAcris(R, R+) //

iso. up to p-torsion
��

0

0 // B⊗̂A Fils+1 OAcris,Y (V ) // B⊗̂A Fils OAcris,Y (V ) // B⊗̂A grs OAcris,Y (V )

By the observations above, the kernels and cokernels of the first two vertical maps are killed by some
power of I, thus by some power of t , and the last vertical map becomes an isomorphism after inverting p.
So, by a similar argument as in the proof of Corollary 2.8 (2), we find B⊗̂A Fil0 OBcris(R, R+) −→∼

B⊗̂A Fil0 OBcris,Y (V ). We get finally a natural isomorphism

B⊗̂A Fil0 OBcris,Y (V )−→∼ H 0(UV ,Fil0 OBcris,X ).

The remaining part of (2) can be done similarly as in the last part of the proof of (1), so we omit the
details here. �

From now on, assume f : X → Y is a proper smooth morphism (between smooth formal schemes)
over Ok . Its closed fiber gives rise to a morphism between the crystalline topoi,

fcris : (X0/Ok)
∼

cris→ (Y0/Ok)
∼

cris.

Let E be a filtered convergent F-isocrystal on X0/Ok , and M an F-crystal on X0/Ok such that E'Man(n)
for some n ∈ N (see Remark 3.4). Then M can be viewed naturally as a coherent OX -module endowed
with an integrable and quasinilpotent Ok-linear connection M→M⊗�1

X/Ok
.

In the following we consider the higher direct image Ri fcris ∗M of the crystal M. One can determine
the value of this abelian sheaf on Y0/Ok at the p-adic PD-thickening Y0 ↪→ Y in terms of the relative
de Rham complex dRX/Y (M) of M. To state this, take V = Spf(A) an affine open subset of Y , and put
XA := f −1(V). We consider A as a PD-ring with the canonical divided power structure on (p) ⊂ A.
In particular, we can consider the crystalline site (XA,0/A)cris of XA,0 := X ×Y V0 relative to A. By
[Berthelot 1996, Lemme 3.2.2], the latter can be identified naturally to the open subset of (X0/Ok)cris

whose objects are objects (U, T ) of (X0/Ok)cris such that f (U )⊂V0 and such that there exists a morphism
α : T → Vn := V ⊗A A/pn+1 for some n ∈ N, making the square below commute

U �
�

//

can
��

T

α

��

V0
� � // Vn.
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Using [Berthelot 1996, Corollaire 3.2.3] and a limit argument, one finds

Ri fcris ∗(M)(V0,V)−→∼ H i
cris(XA,0/A,M)

where we denote again by M the restriction of M to (XA,0/A)cris. Let

u = uXA,0/A : (XA,0/A)∼cris→ X∼A ét

be the morphism of topoi such that u∗(F)(U)= H 0
cris(U0/A,F) for U ∈ XA ét. By [Berthelot and Ogus

1978, Theorem 7.23], there is a natural quasiisomorphism Ru∗M−→∼ dRX/Y (M) in the derived category,
inducing an isomorphism

H i
cris(XA,0/A,M)−→∼ H i (XA, dRX/Y (M)).

Passing to associated sheaves, we deduce Ri fcris ∗(M)Y −→∼ Ri f∗(dRX/Y (M)). On the other hand, as
f : X→Y is proper and smooth, Ri f∗(dRX/Y (E)), viewed as a coherent sheaf on the adic space Y , is the
i-th relative convergent cohomology of E with respect to the morphism f0 : X0→ Y0. Thus, by [Berthelot
1986, Théorème 5] (see also [Tsuzuki 2003, Theorem 4.1.4]), if we invert p, the OY [1/p]-module
Ri f∗(dRX/Y (E))' Ri f∗(dRX/Y (M))[1/p], together with the Gauss–Manin connection and the natural
Frobenius structure inherited from Ri fcris ∗(M)Y ' Ri f∗(dRX/Y (M)), is a convergent F-isocrystal on
Y0/Ok , denoted by Ri fcris ∗(E) in the following (this is an abuse of notation, a more appropriate notation
should be Ri f0 conv ∗(E)). Using the filtration on E , one sees that Ri fcris ∗(E) has naturally a filtration,
and it is well-known that this filtration satisfies Griffiths transversality with respect to the Gauss–Manin
connection.

Proposition 5.4. Let X → Y be a proper smooth morphism of smooth p-adic formal schemes over Ok .
Let E be a filtered convergent F-isocrystal on X0/Ok and L a lisse Ẑp-sheaf on Xproét. Assume that E and
L are associated.

(1) For every i ∈ Z, Ri fcris ∗E is a filtered convergent F-isocrystal on Y0/Ok , with, for r ∈ Z, gradeds
Ri f∗(grr dRX/Y (E)).

(2) There is a natural filtered isomorphism of OBcris,Y -modules

Ri fk∗(L⊗Ẑp
Acris,X ⊗̂ f −1

k Acris,Y
f −1
k OAcris,Y [1/t])−→∼ w−1

Y (Ri fcris ∗(E))⊗OBcris,Y (5A.8)

which is compatible with Frobenius and connection.

Proof. (1) We have observed above that Ri fcris ∗E is naturally a convergent F-isocrystal. To complete
the proof of (1), it suffices to check that the filtration on Ri fcris ∗E is given by locally direct summands.
By Proposition 3.22, the lisse Ẑp-sheaf L is de Rham with associated filtered OX -module with integrable
connection E . Therefore the Hodge-to-de Rham spectral sequence

E i, j
1 = Ri+ j f∗(gri (dRX/Y (E)))⇒ Ri+ j f∗(dRX/Y (E))
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degenerates at E1. Moreover, E i, j
1 , the relative Hodge cohomology of E in [Scholze 2013, Theorem 8.8], is

a locally free OY -module of finite rank for all i, j by [loc. cit.]. Thereby the filtration on Ri f∗(dRX/Y (E))=
Ri fcris ∗(E), which is the same as the one induced by the spectral sequence above, is given by locally
direct summands, with gradeds Ri f∗(grr (dRX/Y (E))), r ∈ Z.

(2) Using Proposition 5.1(1) and the fact that L and E are associated, we have the following filtered
isomorphisms compatible with connection:

Ri fk∗(L⊗Acris,X ⊗̂ f −1
k OAcris,Y [1/t])−→∼ Ri fk∗(L⊗ dRX/Y (OBcris,X ))

−→∼ Ri fk∗(dRX/Y (L⊗OBcris,X ))

−→∼ Ri fk∗(dRX/Y (w
−1
X E ⊗OBcris,X )). (5A.9)

On the other hand, the morphism below given by adjunction respects the connections on both sides:

w−1
Y Ri f∗(dRX/Y (E))⊗OBcris,Y → Ri fk∗(dRX/Y (w

−1
X E ⊗OBcris,X )). (5A.10)

We claim that (5A.10) is a filtered isomorphism. This is a local question, we may and do assume that
Y = Spf(A) is affine and is étale over some torus over Ok . Let V ∈ Yproét be an affinoid perfectoid proétale
over Ỹk . As Ri f∗(dRX/Y (E))= Ri fcris ∗(E) is a locally free OY [1/p]-module on Y , we have

(w−1
Y Ri f∗(dRX/Y (E))⊗OBcris,Y )(V )' H i (X , dRX/Y (E))⊗A OBcris,Y (V ).

So we only need to check that the natural morphism below is a filtered isomorphism

H i (X , dRX/Y (E))⊗A OBcris,Y (V )→ H i (XV , dRX/Y (w
−1
X E ⊗OBcris,X )).

By Lemma 5.3, one has further identifications strictly compatible with filtrations:

H i (XV , dRX/Y (w
−1
X E ⊗OBcris,X ))' H i (X , RwV∗(dRX/Y (w

−1
X E ⊗OBcris,X )))

' H i (X , dRX/Y (E ⊗OX ⊗̂AOBcris,Y (V )).

Write V̂ = Spa(R, R+). So OBcris(R, R+)−→∼ OBcris,Y (V ) by Corollary 2.19. Thus, to prove our claim,
it suffices to show that the canonical morphism

H i (X , dRX/Y (E))⊗A OB+cris(R, R+)→ H i (X , dRX/Y (E ⊗OX ⊗̂AOB+cris(R, R+)))

is a filtered isomorphism. One only needs to check this on the gradeds. Since the gradeds of OB+cris(R, R+)
are finite free R-modules, we are reduced to showing that for every r ∈ Z, the natural map

H i (X , grr dRX/Y (E))⊗A R→ H i (X , grr (dRX/Y (E))⊗OX ⊗̂A R) (5A.11)

is an isomorphism. This follows from Proposition B.3 by taking B = R+. More precisely, let F be a
bounded complex of coherent sheaves on X , such that F[1/p] = grr dRX/Y (E). So, for each term F i

of F , F i
[1/p] is locally a direct factor of a finite free OX [1/p]-module. In particular, the kernel and
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cokernel of the natural map F ⊗OX ⊗̂A R+→ F⊗̂A R+ is killed by some bounded power of p. So

H i (X ,F ⊗OX ⊗̂A R+)[1/p] −→∼ H i (X ,F⊗̂A R+)[1/p]. (5A.12)

Moreover, by (1), Ri f∗ grr dRX/Y (E) is a graded piece of the filtered isocrystal

Ri fcris ∗(E)= Ri f∗(dRX/Y (E)).

As Y = Spf(A) is affine, taking global sections, we see that H i (X , dRX/Y (E)) is projective over A[1/p],
and H i (X , grr dRX/Y (E)) is locally a direct factor of H i (X , dRX/Y (E)). Therefore,

H i (X , grr (dRX/Y (E)))= H i (X ,F)[1/p]

is flat over A[1/p]. By Proposition B.3, the kernel and the cokernel of the map

H i (X ,F)⊗A R+→ H i (X ,F⊗̂A R+)

are killed by some power of p. Inverting p and combining (5A.12), we obtain that (5A.11) is an
isomorphism, completing the proof of our claim.

Composing the isomorphisms in (5A.9) with the inverse of (5A.10), we get the desired filtered
isomorphism (5A.8) that is compatible with connections on both sides. It remains to check the Frobenius
compatibility of (5A.8). For this, we may and do assume again that Y = Spf(A) is affine and is étale over
some torus over Ok , and let V ∈ Yproét some affinoid perfectoid proétale over Ỹ . In particular, A admits a
lifting of the Frobenius on Y0, denoted by σ . Let M be an F-crystal on X0/Ok such that E =Man(n)
for some n ∈ N (Remark 3.4). Then the crystalline cohomology H i

cris(X0/A,M) is endowed with a
Frobenius which is σ -semilinear. We just need to check the Frobenius compatibility of composition of
the maps below (here the last one is induced by the inverse of (5A.8)):

H i
cris(X0/A,M)→ H i

cris(X0/A,M)[1/p] −→∼ H i (X , dRX/Y (E))

→ (w−1
Y (Ri fcris ∗(E))⊗OBcris,Y )(V )→ H i (XV , L⊗Acris,X ⊗̂ f −1

k OAcris,Y [1/t]),

which can be done in the same way as in the proof of Theorem 3.26. �

The relative crystalline comparison theorem then can be stated as follows:

Theorem 5.5. Let L be a crystalline lisse Ẑp-sheaf on X associated to a filtered F-isocrystal E on X0/Ok .
Assume that, for any i ∈ Z, Ri fk∗L is a lisse Ẑp-sheaf on Y . Then Ri fk∗L is crystalline and is associated
to the filtered convergent F-isocrystal Ri fcris ∗E .

Proof. We have seen in Proposition 5.4(1) that Ri fcris ∗E is a filtered convergent F-isocrystal on Y0/Ok .
To complete the proof, we need to find filtered isomorphisms that are compatible with Frobenius and
connections

Ri fk∗(L)⊗OBcris,Y −→
∼ w−1

Y Ri fcris ∗(E)⊗OBcris,Y , i ∈ Z.

For this, it suffices to combine Proposition 5.2 and Proposition 5.4(2). �
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Appendix A: Geometric acyclicity of OBcris

In this section, we extend the main results of [Andreatta and Brinon 2013] to the setting of perfectoids.
The generalization is rather straightforward. Although one may see here certain difference from the
arguments in [loc. cit.], the strategy and technique are entirely theirs.

Let f : X = Spf(B)→ Y = Spf(A) be a smooth morphism of smooth affine formal schemes over Ok .
Write X and Y for the generic fiber of X and Y . By abuse of notation the morphism X → Y induced
from f is still denoted by f .

Assume that Y is étale over the torus S := Spf(Ok{S±1
1 , . . . , S±1

δ }) defined over Ok and that the
morphism f : X → Y can factor as

X étale
−−−→ T → Y,

where T = Spf(C) is a torus over Y and the first morphism X → T is étale.
Write C = A{T±1

1 , . . . , T±1
d }. For each 1 ≤ i ≤ d (resp. each 1 ≤ j ≤ δ), let {T 1/pn

i }n∈N (resp.
{S1/pn

j }n∈N) be a compatible family of p-power roots of Ti (resp. of S j ). As in Proposition 2.13, we
denote by Ỹ the following fiber product over the generic fiber Sk of S:

Ỹ = Y ×Sk Spa(k{S±1/p∞

1 , . . . , S±1/p∞
δ },Ok{S

±1/p∞

1 , . . . , S±1/p∞
δ }).

Let V ∈ Yproét be an affinoid perfectoid over Ỹk with V̂ = Spa(R, R+). Let TV = Spa(S, S+) be the base
change Tk ×Y V and XV = Spa(S̃, S̃+) the base change X ×Y V . Thus S+ = R+{T±1

1 , . . . , T±1
d } and

S = S+[1/p]. Set

S+
∞
= R+{T±1/p∞

1 , . . . , T±1/p∞
d }, S̃+

∞
:= B⊗̂C S+

∞
,

S∞ := S+
∞
[1/p] and S̃∞ := S̃+

∞
[1/p]. Then (S∞, S+

∞
) and (S̃∞, S̃+

∞
) are affinoid perfectoids and

S[+
∞
= R[+{(T [

1 )
±1/p∞, . . . , (T [

d )
±1/p∞

},

where T [
i := (Ti , T 1/p

i , T 1/p2

i , . . .) ∈ S[+∞ . The inclusions S+ ⊂ S+
∞

and S̃+ ⊂ S̃+
∞

define two profinite
Galois covers. Their Galois groups are the same, denoted by 0, which is a profinite group isomorphic to
Zp(1)d . One can summarize these notations in the following commutative diagram

S̃+
∞

S̃+0
oo Boo

S+
∞

OO

S+

OO

0
oo C

étale

OO

oo

R+{T±1/p∞

1 , . . . , T±1/p∞
d } R+{T±1

1 , . . . , T±1
d }

0
oo A{T±1

1 , . . . , T±1
d }

oo

R+

OO

A

OO

oo
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The group 0 acts naturally on the period ring OBcris(S̃∞, S̃+
∞
) and on its filtration Filr OBcris(S̃∞, S̃+

∞
).

The aim of this appendix is to compute the group cohomology

Hq(0,OBcris(S̃∞, S̃+
∞
)) := Hq

cont(0,OAcris(S̃∞, S̃+
∞
))[1/t]

and
Hq(0,Filr OBcris(S̃∞, S̃+

∞
)) := lim

−−→
n≥|r |

Hq
cont
(
0, 1

tn Filr+n OAcris(S̃∞, S̃+
∞
)
)

for q, r ∈ Z.
In the following, we will omit systematically the subscript “cont” whenever there is no confusion arising.

Moreover, we shall use multiindices to simplify the notation: for example, for a= (a1, . . . , ad)∈Z[1/p]d ,
T a
:= T a1

1 · T
a2

2 · · · T
ad

d .

A1. Cohomology of OBcris. We will first compute Hq(0,OAcris(S∞, S+
∞
)/pn) up to (1−[ε])∞-torsion

for all q, n ∈ N (Corollary A.9). From these computations, we deduce from the results about the
cohomology groups Hq(0,OBcris(S̃∞, S̃+

∞
)), q ∈ Z (Theorem A.12).

Lemma A.1. For n ∈ Z≥1, there are natural isomorphisms

Acris(R, R+)/pn
⊗W (R[+)/pn W (S[+

∞
)/pn
−→∼ Acris(S∞, S+

∞
)/pn

and
(Acris(S∞, S+

∞
)/pn
⊗OAcris(R, R+)/pn)〈u1, . . . , ud〉 −→

∼ OAcris(S∞, S+
∞
)/pn,

sending ui to Ti − [T
[

i ]. Here the tensor product in the second isomorphism above is taken over
Acris(R, R+)/pn . Moreover, the natural morphisms

Acris(R, R+)/pn
→ Acris(S∞, S+

∞
)/pn, OAcris(R, R+)/pn

→OAcris(S∞, S+
∞
)/pn

are both injective.

Proof. Recall ξ = [p[] − p. We know that Acris(S∞, S+
∞
) is the p-adic completion of

A0
cris(S∞, S+

∞
) :=W (S[+

∞
)

[
ξm

m!
| m = 0, 1, . . .

]
=

W (S[+∞ )[X0, X1, . . .]

(m!Xm − ξm : m ∈ Z≥0)
.

Note that we have the same expression with R in place of S∞. We then have

A0
cris(S∞, S+

∞
)←−∼ W (S[+

∞
)⊗W (R[+)

W (R[+)[X0, X1, . . .]

(m!Xm − ξm | m ∈ Z≥0)
=W (S[+

∞
)⊗W (R[+) A0

cris(R, R+).

The first isomorphism follows.
Secondly, as V lies above Ỹk , by Proposition 2.13 we have

Acris(R, R+){〈w1, . . . , wδ〉} −→
∼ OAcris(R, R+), w j 7→ S j − [S

[
j ]

where S[j := (S j , S1/p
j , S1/p2

j , . . .) ∈ R[+. Similarly, we have

Acris(S∞, S+
∞
){〈u1, . . . , ud , w1, . . . , wδ〉} −→

∼ OAcris(S∞, S+
∞
), ui 7→ Ti − [T

[
i ], w j 7→ S j − [S

[
j ].
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Thus (the isomorphisms below are all the natural ones)

OAcris(S∞, S+
∞
)

pn ←−∼

(
Acris(S∞, S+

∞
)

pn

)
〈u1, . . . , ud , w1, . . . , wδ〉

←−∼
Acris(S∞, S+

∞
)

pn ⊗Acris(R,R+)/pn

(
Acris(R, R+)

pn 〈u1, . . . , ud , w1, . . . , wδ〉

)
−→∼

Acris(S∞, S+
∞
)

pn ⊗Acris(R,R+)/pn

(
OAcris(R, R+)

pn 〈u1, . . . , ud〉

)
−→∼

(
Acris(S∞, S+

∞
)

pn ⊗Acris(R,R+)/pn
OAcris(R, R+)

pn

)
〈u1, . . . , ud〉.

So our second isomorphism is obtained.
Next we prove that the natural morphism Acris(R, R+)/pn

→ Acris(S∞, S+
∞
)/pn is injective. When

n = 1, we are reduced to showing the injectivity of

(R[+/(p[)p)[X1, X2, . . .]

(X p
1 , X p

2 , . . .)
→

(S[+/(p[)p)[X1, X2, . . .]

(X p
1 , X p

2 , . . .)
,

or equivalently the injectivity of

R[+/(p[)p
→ S[+/(p[)p

= (R[+/(p[)p)[(T [

1 )
±1/p∞, . . . , (T [

d )
±1/p∞

],

which is clear. The general case follows easily since Acris(S∞, S+
∞
) is p-torsion free. One deduces also

the injectivity of OAcris(R,+ )/pn
→OAcris(S∞, S+

∞
)/pn by using the natural isomorphisms

OAcris(R, R+)/pn
' (Acris(R, R+)/pn)〈w1, . . . , wδ〉,

and

OAcris(S∞, S+
∞
)/pn
' (Acris(S∞, S+

∞
)/pn)〈u1, . . . , ud , w1, . . . , wδ〉.

This concludes the proof of our lemma. �

Proposition A.2. Acris(S∞, S+
∞
)/pn is free over Acris(R, R+)/pn with a basis given by {[T [

]
a
| a ∈

Z[1/p]d}.

Proof. By Lemma A.1, Acris(S∞, S+
∞
)/pn is generated over Acris(R, R+)/pn by elements of the form [x]

with x ∈ S[+∞ = R[+{(T [

1 )
±1/p∞, . . . , (T [

d )
±1/p∞

}. Write Bn ⊂Acris(S∞, S+
∞
)/pn for the Acris(R, R+)/pn-

submodule generated by elements of the form [x] with x ∈ S := R[+[(T [

1 )
±1/p∞, . . . , (T [

d )
±1/p∞

] ⊂ S[+∞ .
We claim that Bn = Acris(S∞, S+

∞
)/pn .

Since S[+∞ is the p[-adic completion of S, for each x ∈ S[+ we can write x = y0+ p[x ′ with x ′ ∈ S.
Iteration yields

x = y0+ p[y1+ · · ·+ (p[)p−1 yp−1+ (p[)px ′′
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with yi ∈ S and x ′′ ∈ S[+∞ . Then in W (S[+∞ )

[x] ≡ [y0] + [p[][y1] + · · · + [(p[)p−1
][yp−1] + [(p[)p

][x ′′] mod pW (S[+
∞
)

≡ [y0] + ξ [y1] + · · · + ξ
p−1
[yp−1] + ξ

p
[x ′′] mod pW (S[+

∞
).

As ξ ∈Acris(S∞, S+
∞
) has divided power, ξ p

= p! · ξ [p] ∈ pAcris(S∞, S+
∞
). So we obtain in Acris(S∞, S+

∞
)

[x] ≡ [y0] + ξ [y1] + · · · + ξ
p−1
[yp−1] mod pAcris(S∞, S+

∞
).

For any α ∈ Acris(S∞, S+
∞
)/pn
= Acris(R, R+)/pn

⊗W (R[+)/pn W (S[+∞ )/pn , we may write

α =

m∑
i=0

λi [xi ] + pα′, xi ∈ S[+
∞
, λi ∈ Acris(R, R+)/pn, α′ ∈ Acris(S∞, S+

∞
)/pn.

The observation above tells us that one can write

α = β0+ pα′′, β0 ∈ Bn, α
′′
∈ Acris(S∞, S+

∞
)/pn.

By iteration again, we find

α = β0+ pβ1+ · · ·+ pn−1βn−1+ pnα̃, β0, . . . , βn−1 ∈ Bn, α̃ ∈ Acris(S∞, S+
∞
)/pn.

Thus

α = β0+ pβ1+ · · ·+ pn−1βn−1 ∈ Bn ⊂ Acris(S∞, S+
∞
)/pn.

This shows the claim, i.e., Acris(S∞, S+
∞
)/pn is generated over Acris(R, R+)/pn by the elements of the

form [x] with x ∈ S= R[+[(T [

1 )
±1/p∞, . . . , (T [

d )
±1/p∞

] ⊂ S[+∞ . Furthermore, as for any x, y ∈ S[+∞

[x + y] ≡ [x] + [y] mod pW (S[+
∞
),

a similar argument shows that Acris(S∞, S+
∞
)/pn is generated over Acris(R, R+)/pn by the family of

elements {[T [
]
a
| a ∈ Z[1/p]d}.

It remains to show the freeness of the family {[T [
]
a
| a ∈ Z[1/p]d} over Acris(R, R+)/pn . For this,

suppose there exist λ1, . . . , λm ∈ Acris(R, R+) and distinct elements a1, . . . , am ∈ Z[1/p]d such that

m∑
i=1

λi [T [
]
ai ∈ pnAcris(S∞, S+

∞
).

One needs to prove λi ∈ pnAcris(R, R+) for each i . Modulo p we find

m∑
i=1

λi · (T [)ai = 0 in Acris(S∞, S+
∞
)/p,
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with λi ∈ Acris(R, R+)/p the reduction modulo p of λi . On the other hand, the family of elements
{(T [)a : a ∈ Z[1/p]d} in

Acris(S∞, S+
∞
)/p '

S[+/((p[)p)[δ2, δ3, . . .]

(δ
p
2 , δ

p
3 , . . .)

'
R[+/((p[)p)[(T [

1 )
±1/p∞, . . . , (T [

d )
±1/p∞, δ2, δ3, . . .]

(δ
p
2 , δ

p
3 , . . .)

is free over Acris(R, R+)/p' (R[+/((p[)p)[δ2, δ3, . . .])/(δ
p
2 , δ

p
3 , . . .). Therefore, λi = 0, or equivalently,

λi = pλ′i for some λ′i ∈ Acris(R, R+). In particular,

m∑
i=1

λi [T [
]
ai = p ·

( m∑
i=1

λ′i [T
[
]
ai

)
∈ pnAcris(S∞, S+

∞
).

But Acris(S∞, S+
∞
) is p-torsion free, which implies that

m∑
i=1

λ′i [T
[
]
ai ∈ pn−1Acris(S∞, S+

∞
).

This way, we may find λi = pnλ̃i for some λ̃i ∈Acris(R, R+), which concludes the proof of the freeness. �

Recall that 0 is the Galois group of the profinite cover (S∞, S+
∞
) of (S, S+). Let ε= (ε(0), ε(1), . . .)∈O[

ˆk
be a compatible system of p-power roots of unity such that ε(0) = 1 and that ε(1) 6= 1. Let {γ1, . . . , γd}

be a family of generators such that for each 1≤ i ≤ d , γi acts trivially on the variables T j for any index j
different from i and that γi (T

[
i )= εT [

i .

Lemma A.3. Let 1≤ i ≤ d be an integer. Then one has γi ([T
[

i ]
pn
)= [T [

i ]
pn

in OAcris(S∞, S+
∞
)/pn .

Proof. By definition, γi ([T
[

i ]
pn
)= [ε]p

n
[T [

i ]
pn

in OAcris(S∞, S+
∞
). So our lemma follows from the fact

that [ε]p
n
− 1= exp(pnt)− 1=

∑
r≥1 pnr t [r ] ∈ pn Acris. �

Let An be the OAcris(R, R+)-subalgebra of OAcris(S∞, S+
∞
)/pn generated by [T [

i ]
±pn

for 1≤ i ≤ d.
The previous lemma shows that 0 acts trivially on An . Furthermore, by the second isomorphism of
Lemma A.1 and by Proposition A.2, we have

OAcris(S∞, S+
∞
)

pn −→∼

( ⊕
a∈Z[1/p]d∩[0,pn)d

An[T [
]
a
)
〈u1, . . . , ud〉, Ti − [T

[
i ] 7→ ui .

Transport the Galois action of 0 on OAcris(S∞, S+
∞
)/pn to the right-hand side of this isomorphism. It

follows that

γi (ui )= ui + (1− [ε])[T
[

i ].

Therefore,

γi (u
[n]
i )= u[n]i +

n∑
j=1

[T [
i ]

j (1− [ε])[ j]u[n− j]
i .
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For other index j 6= i , γi (u j )= u j and hence γi (u
[n]
j )= u[n]j for any n. Set

Xn :=
⊕

a∈(Z[1/p]∩[0,pn))d\Zd

An[T [
]
a, and An :=

⊕
a∈Zd∩[0,pn)d

An[T [
]
a.

Then we have the following decomposition, which respects the 0-actions:

OAcris(S∞, S+
∞
)/pn
= Xn〈u1, . . . , ud〉⊕An〈u1, . . . , ud〉.

The following result can be proven similarly as [Andreatta and Brinon 2013, Proposition 16].

Proposition A.4. For any q ∈ N, Hq(0,Xn〈u1, . . . , ud〉) is killed by (1− [ε]1/p)2.

The computation of Hq(0,An〈u1, . . . , ud〉) is more subtle. Note that we have the following decompo-
sition

An〈u1, . . . , ud〉 =

d⊗
i=1

(OAcris(R, R+)/pn)[[T [
i ]
±1
]〈ui 〉,

where the tensor products above are taken over OAcris(R, R+)/pn .
We shall first treat the case where d = 1. We set T := T1, u := u1 and γ := γ1. Let A(m)n be the

An-submodule of OAcris(S∞, S+
∞
)/pn generated by the u[m+a]/[T [

]
a’s with m+ a ≥ 0 and 0≤ a < pn .

Then
An〈u〉 = An[[T [

]]〈u〉 =
∑

m>−pn

A(m)n .

Consider the following complex:

An[[T [
]]〈u〉 γ−1
−−−→ An[[T [

]]〈u〉, (A1.1)

which computes Hq(0,An〈u〉)= Hq(0, An[[T [
]]〈u〉).

Again, the following lemma can be proven in a completely analogous way as is done in the proof of
[Andreatta and Brinon 2013, Proposition 20].

Lemma A.5. The cokernel of (A1.1), and hence Hq(0,An〈u〉) for any q > 0, are killed by 1− [ε].

One still needs to compute H 0(0,An〈u〉). Note first that we have the following isomorphism

(OAcris(R, R+)/pn)[T±1
]〈u〉 −→∼ An〈u〉 = (OAcris(R, R+)/pn)[[T [

]]〈u〉

sending T to u + [T [
]. Endow an action of 0 on (OAcris(R, R+)/pn)[T±1

]〈u〉 via the isomorphism
above. So H 0(0,An〈u〉) is naturally isomorphic to the kernel of the morphism

γ − 1 : (OAcris(R, R+)/pn)[T±1
]〈u〉 → (OAcris(R, R+)/pn)[T±1

]〈u〉,

and there is a natural injection

C ⊗A OAcris(R, R+)/pn
= (OAcris(R, R+)/pn)[T±1

] ↪→ H 0(0,An〈u〉).

The proof of [Andreatta and Brinon 2013, Lemme 29] applies to this case. We have
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Lemma A.6. The cokernel of the last map is killed by 1− [ε].

Now we are ready to prove

Proposition A.7. For any d > 0, n > 0 and q > 0, Hq(0,An〈u1, . . . , ud〉) is killed by (1− [ε])2d−1.
Moreover, the natural morphism

C ⊗A OAcris(R, R+)/pn
→ H 0(0,An〈u1, . . . , ud〉), Ti 7→ ui + [T

[
i ] (A1.2)

is injective with cokernel killed by (1− [ε])2d−1.

Proof. Recall that we have the decomposition

An〈u1, . . . , ud〉 =

d⊗
i=1

(OAcris(R, R+)/pn)[[T [
i ]
±1
]〈ui 〉.

We shall proceed by induction on d. The case d = 1 comes from the previous two lemmas. For integer
d > 1, one uses the Hochschild–Serre spectral sequence

E i, j
2 = H i (0/01, H j (01,An〈u1, . . . , ud〉))H⇒ H i+ j (0,An〈u1, . . . , ud〉).

Using the decomposition above, the group H j (01,An〈u1, . . . , ud〉) is isomorphic to

H j (01,OAcris(R, R+)/pn
[[T [

1 ]
±1
]〈u1〉)⊗ (⊗

d
i=2(OAcris(R, R+)/pn)[[T [

i ]
±1
]〈ui 〉).

So by the calculation done for the case d= 1, we find that, up to (1−[ε])-torsion, H j (01, An〈u1, . . . , ud〉)

is zero when j > 0, and is equal to

(OAcris(R, R+)/pn)[T±1
1 ]⊗ (⊗

d
i=2(OAcris(R, R+)/pn)[[T [

i ]
±1
]〈ui 〉)

when j = 0. Thus, up to (1− [ε])-torsion, E i, j
2 = 0 when j > 0 and E i,0

2 is equal to

(OAcris(R, R+)/pn)[T±1
1 ]⊗ H i (0/01, (⊗

d
i=2(OAcris(R, R+)/pn)[[T [

i ]
±1
]〈ui 〉)).

Using the induction hypothesis, we get that, up to (1− [ε])2(d−1)−1+1-torsion, E i,0
2 = 0 when i > 0 and

E0,0
2 = (OAcris(R, R+)/pn)[T±1

1 , . . . , T±1
d ] = C ⊗A OAcris(R, R+)/pn.

As E i, j
2 = 0 for j > 1, we have short exact sequence

0→ Eq,0
∞
→ Hq(0,An〈u1, . . . , ud〉)→ Eq−1,1

∞
→ 0.

By what we have shown above, Eq−1,1
∞ is killed by (1− [ε]) (as this is already the case for Eq−1,1

2 ), and
Eq,0
∞ is killed by (1− [ε])2d−2 for q > 0 (as this is the case for Eq,0

2 ), thus Hq(0,An〈u1, . . . , ud〉) is
killed by (1−[ε])2d−1. For q = 0, H 0(0,An〈u1, . . . , ud〉)' E0,0

∞
= E0,0

2 . So the cokernel of the natural
injection

C ⊗A OAcris(R, R+)/pn
→ H 0(0,An〈u1, . . . , ud〉)

is killed by (1− [ε])2d−2, hence by (1− [ε])2d−1. �
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Remark A.8. With more efforts, one may prove that Hq(0,An〈u1, . . . , ud〉) is killed by (1−[ε])d for
q > 0 [Andreatta and Brinon 2013, Proposition 21], and that the cokernel of the morphism (A1.2) is
killed by (1− [ε])2 [Andreatta and Brinon 2013, Proposition 30].

Corollary A.9. For any n ≥ 0 and any q > 0, Hq(0,OAcris(S∞, S+
∞
)/pn) is killed by (1 − [ε])2d .

Moreover, the natural morphism

C⊗̂AOAcris(R, R+)/pn
→ H 0(0,OAcris(S∞, S+

∞
)/pn)

is injective, with cokernel killed by (1− [ε])2d .

Recall that we want to compute Hq(0,OBcris(S̃∞, S̃+
∞
)). For this, one needs

Lemma A.10. Keep the notations above and assume that the morphism f : X → Y is étale; thus
V = Spa(R, R+) and X ×Y V = Spa(S̃, S̃+)= Spa(S̃∞, S̃+

∞
). The natural morphism

B⊗̂AOAcris(R, R+)→OAcris(S̃∞, S̃+
∞
)

is an isomorphism.

Proof. By Lemma 2.18 we are reduced to showing that the natural map (here w j = S j − [S
[
j ])

B⊗̂AAcris(R, R+){〈w1, . . . , wδ〉} → Acris(S̃, S̃+){〈w1, . . . , wδ〉}

is an isomorphism. Since both sides of the previous maps are p-adically complete and without p-torsion,
we just need to check that its reduction modulo p

B/p⊗A/p (Acris(R, R+)/p)〈w1, . . . , wδ〉 → (Acris(S̃, S̃+)/p)〈w1, . . . , wδ〉

is an isomorphism. Note that we have the following expression

(Acris(R, R+)/p)〈w1, . . . , wδ〉 '
(R[+/((p[)p))[δm, wi , Zim]1≤i≤δ,m∈N

(δ
p
m, w

m
i , Z p

im)1≤i≤δ,m∈N

,

and the similar expression for (Acris(S̃, S̃+)/p)〈w1, . . . , wδ〉, where δm is the image of γ m+1(ξ) with
γ : x 7→ x p/p. One sees that both sides of the morphism above are p[-adically complete (in fact p[ is
nilpotent). Moreover R[+ has no p[-torsion. So we are reduced to showing that the morphism

B/p⊗A/p
(R[+/p[)[δm, wi , Zim]1≤i≤δ,m∈N

(δ
p
m, w

p
i , Z p

im)1≤i≤δ,m∈N

→
(S̃[+/p[)[δm, wi , Zim]1≤i≤δ,m∈N

(δ
p
m, w

p
i , Z p

im)1≤i≤δ,m∈N

is an isomorphism. But R[+/p[ ' R+/p and S̃[+/p[ ' S̃+/p, so we just need to show that the following
morphism is an isomorphism:

α : B/p⊗A/p
(R+/p)[δm, wi , Zim]1≤i≤δ,m∈N

(δ
p
m, w

p
i , Z p

im)1≤i≤δ,m∈N

→
(S̃+/p)[δm, wi , Zim]1≤i≤δ,m∈N

(δ
p
m, w

p
i , Z p

im)1≤i≤δ,m∈N

.
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To see this, we consider the following diagram

S̃+/p[δm ,wi ,Zim ]1≤i≤δ,m∈N

(δ
p
m ,w

p
i ,Z

p
im)1≤i≤δ,m∈N

B/p

00

// B/p⊗A/p
R+/p[δm ,wi ,Zim ]1≤i≤δ,m∈N

(δ
p
m ,w

p
i ,Z

p
im)1≤i≤δ,m∈N

α
44

A/p

étale

OO

// R+/p[δm ,wi ,Zim ]1≤i≤δ,m∈N

(δ
p
m ,w

p
i ,Z

p
im)1≤i≤δ,m∈N

étale

??

étale

OO

.

It follows that α is étale. To see that α is an isomorphism, we just need to show that this is the case
after modulo some nilpotent ideals of both sides of α. Hence we are reduced to showing that the natural
morphism

B/p⊗A/p R+/p→ S̃+/p

is an isomorphism, which is clear from the definition. �

Apply the previous lemma to the étale morphism f : X → T , we find a canonical 0-equivariant
isomorphism

B⊗̂COAcris(S∞, S+
∞
)−→∼ OAcris(S̃∞, S̃+

∞
).

In particular, we find

Hq(0, B⊗̂COAcris(S∞, S+
∞
))−→∼ Hq(0,OAcris(S̃∞, S̃+

∞
)).

Now consider the following spectral sequence

E i, j
2 = Ri lim

←−−
n

H j (0, B⊗C OAcris(S∞, S+
∞
)/pn)H⇒ H i+ j (0, B⊗̂COAcris(S∞, S+

∞
))

which induces a short exact sequence for each i :

0→ R1 lim
←−−

n
H i−1(0, B⊗C OAcris(S∞, S∞)/pn)→ H i (0, B⊗̂COAcris(S∞, S+

∞
))

→ lim
←−−

n
H i (0, B⊗C OAcris(S∞, S∞)/pn)→ 0. (A1.3)

As B is flat over C , it can be written as a filtered limit of finite free C-modules by Lazard’s theorem
[1969, Théorème 1.2] and, as 0 acts trivially on B, the following natural morphism is an isomorphism
for each i :

B⊗C H i (0,OAcris(S∞, S∞)/pn)−→∼ H i (0, B⊗C OAcris(S∞, S∞)/pn).
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Therefore, for i ≥ 1, H i (0, B⊗C OAcris(S∞, S+
∞
)/pn) is killed by (1−[ε])2d by Corollary A.9. Moreover,

by the same corollary, we know that the following morphism is injective with cokernel killed by (1−[ε])2d :

C ⊗A OAcris(R, R+)/pn
→ H 0(0,OAcris(S∞, S+

∞
)/pn).

Thus the same holds if we apply the functor B⊗C − to the morphism above

B⊗A OAcris(R, R+)/pn
→ B⊗C H 0(0,OAcris(S∞, S+

∞
)/pn).

Passing to limits we obtain an injective morphism

B⊗̂AOAcris(R, R+)→ lim
←−−

n
(B⊗C H 0(0,OAcris(S∞, S+

∞
)/pn)),

whose cokernel is killed by (1− [ε])2d , and that

R1 lim
←−−

n
(B⊗C H 0(0,OAcris(S∞, S+

∞
)/pn))

is killed by (1− [ε])2d . As a result, using the short exact sequence (A1.3), we deduce that for i ≥ 1,
H i (0, B⊗̂COAcris(S∞, S+

∞
)) ' H i (0,OAcris(S̃∞, S̃+

∞
)) is killed by (1− [ε])4d , and that the canonical

morphism

B⊗̂AOAcris(R, R+)→ H 0(0, B⊗̂COAcris(S∞, S+
∞
))' H 0(0,OAcris(S̃∞, S̃+

∞
))

is injective with cokernel killed by (1− [ε])2d . One can summarize the calculations above as follows:

Proposition A.11. (i) For any n ≥ 0 and q > 0, Hq(0,OAcris(S̃∞, S̃+
∞
)/pn) is killed by (1− [ε])2d ,

and the natural morphism

B⊗A OAcris(R, R+)/pn
→ H 0(0,OAcris(S̃∞, S̃+

∞
))/pn

is injective with cokernel killed by (1− [ε])2d .

(ii) For any q > 0, Hq(0,OAcris(S∞, S+
∞
)) is killed by (1− [ε])4d and the natural morphism

B⊗̂AOAcris(R, R+)→ H 0(0,OAcris(S̃∞, S̃+
∞
))

is injective, with cokernel killed by (1− [ε])2d .

Theorem A.12. Keep the notations above. Then Hq(0,OBcris(S̃∞, S̃+
∞
))= 0 for q ≥ 1, and the natural

morphism
B⊗̂AOBcris(R, R+)→ H 0(0,OBcris(S̃∞, S̃+

∞
))

is an isomorphism.

Proof. By the previous proposition, we just need to remark that to invert 1−[ε] one just needs to invert t ,
as

t = log([ε])=−
∑
n≥1

(n− 1)! · (1− [ε])[n] =−(1− [ε])
∑
n≥1

(n− 1)! ·
(1− [ε])[n]

1− [ε]
.
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Here, by [Andreatta and Brinon 2013, Lemme 18], (1− [ε])[n]/(1− [ε]) ∈ ker(Acris
θ
−→ Ôk), hence the

last summation above converges in Acris. �

A2. Cohomology of Filr OBcris. With Proposition A.11 in hand, the following results on the cohomology
of Filr OBcris can be shown in exactly the same way as is done in [Andreatta and Brinon 2013, Section 5].
We thus only state these results, and refer to [loc. cit.] for the detailed proofs.

Lemma A.13 [Andreatta and Brinon 2013, Proposition 32]. Let q ∈ N>0, and n ∈ Z≥4d+r . The Acris-
module Hq(0,Filr OAcris(S∞, S+

∞
)) is killed by tn .

Proof. Let grr OAcris := Filr OAcris/Filr+1 OAcris. As θ(1− [ε])= 0, grr OAcris is killed by 1− [ε]. So
using the tautological short exact sequence below

0→ Filr+1 OAcris→ Filr OAcris→ grr OAcris→ 0

and by induction on the integer r ≥ 0, one shows that Hq(0,Filr OAcris) is killed by (1− [ε])4d+r ;
the r = 0 case being Proposition A.11(ii). So the multiplication-by-tn with n ≥ 4d + r is zero for
Hq(0,OAcris). �

Then, as in [Andreatta and Brinon 2013, Proposition 34], we have

Proposition A.14. Hq(0,Filr OBcris(S̃∞, S̃+
∞
))= 0 for any q > 0.

It remains to compute the 0-invariants of Filr OBcris(S∞, S∞). We shall first show

H 0(0,Filr OAcris(S∞, S+
∞
))= B⊗̂A Filr OAcris(R, R+)

in the way of the proof of [Andreatta and Brinon 2013, Proposition 41].

Proposition A.15. For each r ∈ N, the natural injective map

ιr : B⊗̂A Filr OAcris(R, R+)→ H 0(0,Filr OAcris(S∞, S+
∞
))

is an isomorphism.

Corollary A.16. The natural morphism

B⊗̂A Filr OBcris(R, R+)→ H 0(0,Filr OBcris(S∞, S+
∞
))

is an isomorphism, where

B⊗̂A Filr OBcris(R, R+) := lim
−−→
n≥0

B⊗̂A Filr+n OAcris(R, R+)

with transition maps given by multiplication by t.
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Appendix B: Base change for cohomology of formal schemes

The aim of this appendix is to establish a base change result for cohomology of formal schemes
(Proposition B.3) that is used in the proof of relative comparison theorem.

Lemma B.1. Let A be a noetherian ring that is p-adically complete, i.e., the natural morphism A→
lim
←−−

A/pn is an isomorphism. Let B be a flat A-module, and F a finite A-module. Then, if B is p-adically
complete, so is F ⊗A B.

Proof. Let Bn := B/pn . So B −→∼ lim
←−−n Bn . Since B is A-flat, Bn is flat over A/pn . Moreover, the

canonical map Bn+1→ Bn is clearly surjective. Therefore, by [Stacks 2005–, Lemma 0912], for F a
finite A-module, we have F⊗ B ' lim

←−−n(F⊗ Bn)' lim
←−−n(F⊗ B)/pn . In other words, F⊗ B is p-adically

complete. �

Lemma B.2. Let A be a p-adically complete noetherian ring, and B a flat A-module that is p-adically
complete. Let X → Spf(A) be a proper morphism of p-adic formal schemes. Let F be a coherent sheaf
on X . Then, for every i ∈ Z, the natural morphism

H i (X ,F)⊗A B→ H i (X ,F⊗̂A B)

is an isomorphism.

Proof. If F is a coherent sheaf annihilated by some power of p, F⊗̂A B =F⊗A B. Then, our proposition
follows from the standard flat base change result. Indeed, by a theorem of Lazard [1969, Théorème 1.2],
B can be written as a filtered inductive limit of finite free A-modules. As X is quasicompact and
quasiseparated, one only needs to prove our assertion when B is finite and free over A. But in this case
our assertion is obvious. In general, let G ⊂ F be the subsheaf formed by elements killed by some power
of p. As F is coherent and as X is quasicompact, G is killed by a large power of p. Therefore G and the
quotient F/G are coherent sheaves on X . Since F/G is p-torsion free, the same holds for (F/G)⊗A B
as B is flat over A. Using the tautological exact sequence

0→ G⊗A B→ F ⊗A B→ (F/G)⊗A B→ 0, (B0.1)

we get a short exact sequence of projective systems

0→ (G⊗A B/pn)n≥0→ (F ⊗A B/pn)n≥0→ ((F/G)⊗A B/pn)n≥0→ 0.

Because pnG = 0 and thus pn(G⊗A B)= 0 for large n, we find

G⊗A B/pn+1
−→∼ G⊗A B/pn, for n� 0.

So R1 lim
←−−n((G⊗A B)/pn)= 0. Passing to projective limits in (B0.1), we obtain a short exact sequence

0→ G⊗̂A B→ F⊗̂A B→ (F/G)⊗̂A B→ 0,
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from which we get a commutative diagram with exact rows

· · · // H i (X ,G)⊗ B //

'

��

H i (X ,F)⊗ B //

can
��

H i (X ,F/G)⊗ B //

can
��

· · ·

· · · // H i (X ,G⊗̂B) // H i (X ,F⊗̂B) // H i (X , (F/G)⊗̂B) // · · · .

Consequently, to prove our proposition for F , it suffices to show it for F/G. Therefore, replacing F by
F/G if needed, we assume that F is p-torsion free.

Let Fn = F/pn . By flat base change, for all n ≥ 0, the natural morphisms

H i (X ,Fn)⊗A B→ H i (X ,Fn ⊗A B), i ∈ Z,

are isomorphisms. Passing to projective limits, we obtain isomorphisms

α : lim
←−−

n
(H i (X ,Fn)⊗A B)→ lim

←−−
n

H i (X ,Fn ⊗A B), i ∈ Z.

As A is noetherian, the projective system (H i−1(X ,Fn))n≥0 satisfies the (ML)-condition [EGA III1 1961,
Corollaire 3.4.4], hence so does (H i−1(X ,Fn)⊗A B)n≥0. Thus

R1 lim
←−−

n
(H i−1(X ,Fn)⊗A B)= R1 lim

←−−
n

H i−1(X ,Fn ⊗A B)= 0.

Using the set of affine open formal subschemes of X and [Scholze 2013, Lemma 3.18], one checks that
R j lim
←−−n(Fn ⊗A B)= 0 whenever j > 0. So H i (X ,F⊗̂A B)' H i (X , R lim

←−−
(Fn ⊗A B)), and the natural

morphism

β : H i (X ,F⊗̂A B)→ lim
←−−

H i (X ,Fn ⊗A B).

is surjective with kernel isomorphic to R1 lim
←−−n H i−1(X ,Fn ⊗A B)= 0 (Lemma 4.1). In other words, β

is an isomorphism.
Next, consider the tautological exact sequence (recall that F has no p-torsion)

0→ F pn
−→F→ Fn→ 0.

We obtain a short exact sequence

0→ H i (X ,F)/pn
→ H i (X ,Fn)→ H i+1(X ,F)[pn

] → 0,

and thus the one below as B is flat over A:

0→ H i (X ,F)⊗A B/pn γn−→ H i (X ,Fn)⊗A B→ H i+1(X ,F)[pn
]⊗A B→ 0.

Because H i+1(X ,F) is an A-module of finite type and A is noetherian, the A-submodule H i+1(X ,F)p-tor⊂

H i+1(X ,F) of elements killed by some power of p is finitely generated over A. In particular, there exists
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a ∈ N such that pa kills H i+1(X ,F)p- tor and thus H i+1(X ,F)[pn
] for all n ∈ N. It follows that the

transition map below is trivial for every n:

H i+1(X ,F)[pn+a
] → H i+1(X ,F)[pn

], x 7→ pax .

Thus the projective systems (H i+1(X ,F)[pn
])n and (H i+1(X ,F)[pn

]⊗A B)n satisfy the (ML)-condition.
So one deduces an isomorphism γ := lim

←−−
γn

γ : H i (X ,F)⊗A B = lim
←−−
(H i (X ,F)⊗A B/pn)−→∼ lim

←−−
(H i (X ,Fn)⊗A B).

Here we have the first equality because H i+1(X ,F) is of finite type over A, and B is flat and p-adically
complete (Lemma B.1).

Finally from the commutative diagram

H i (X ,F)⊗A B can
//

γ '

��

H i (X ,F⊗̂A B)

β'

��

lim
←−−
(H i (X ,Fn)⊗A B) α

'

// lim
←−−

H i (X ,Fn ⊗A B),

we obtain that the upper horizontal morphism is an isomorphism, as required. �

Proposition B.3. Let A be a p-adically complete noetherian ring. Let B be an A-module that is p-
adically complete. Assume that A and B are flat over Zp. Let X → Spf(A) be a proper flat morphism
between p-adic formal schemes. Let F be a bounded complex of coherent sheaves on X , such that for
every term F i of F , F i

[1/p] is locally a direct factor of a finite free OX [1/p]-module.

(1) For every i ∈ Z, there is a natural map

H i (R0(X ,F)⊗L
A B)→ H i (X ,F⊗̂A B)

whose kernel and cokernel are killed by some power of p.

(2) If moreover the finite A[1/p]-modules H j (X ,F)[1/p], j ∈ Z, are flat over A[1/p], the kernel and
the cokernel of the natural map

H i (X ,F)⊗ B→ H i (X ,F⊗̂B)

are annihilated by some power of p. In particular, we have isomorphisms

H i (X ,F)⊗ B[1/p] −→∼ H i (X ,F⊗̂B[1/p]), ∀ i ∈ Z.

Proof. (1) We claim first that B has a resolution B•→ B by p-adically complete and flat A-modules.
Indeed, let F •→ B be a resolution of B by free A-modules. As A is flat over Zp, each F i is p-torsion
free. Since B is flat over Zp, it is also p-torsion free. Therefore, the induced complex

· · · → F−1/p→ F0/p→ B/p→ 0→ · · · , (B0.2)
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and thus the complex

· · · → F̂−1
→ F̂0

→ B→ 0→ · · ·

are exact. Therefore, we get a resolution B• := F̂ • of B by flat A-modules [Stacks 2005–, Lemma 06LE]
that are p-adically complete [Stacks 2005–, Lemma 05GG]. In particular, by Lemma B.2, we obtain an
isomorphism in the derived category

R0(X ,F)⊗A B• −→∼ R0(X ,F⊗̂B•). (B0.3)

Consider the morphism R0(X ,X )⊗L B→ R0(X ,F⊗̂B) in the derived category of abelian sheaves
on X defined by the commutative diagram below

R0(X ,F)⊗L B // R0(X ,F⊗̂B)

R0(X ,F)⊗ B• '

(B0.3)
//

'

OO

R0(X ,F⊗̂B•).

OO
(B0.4)

Here the left vertical map is an isomorphism as B•→ B is a flat resolution of B. To complete the proof
of (1), it remains to show that the upper horizontal map of (B0.4) induces a morphism

H i (R0(X ,F)⊗L
A B)→ H i (X ,F⊗̂A B) (B0.5)

whose kernel and cokernel are annihilated by some power of p. Using the naive truncations of F and
by induction on the length of the bounded complex F , we reduce to the case where F is a complex
concentrated in degree 0, i.e., a coherent sheaf on X , such that F[1/p] is locally a direct factor of a finite
free OX [1/p]-module.

Consider the complex

· · · → F⊗̂A B−1
→ F⊗̂A B0

→ F⊗̂A B→ 0→ · · · . (B0.6)

We claim that there exists N ∈N such that pN kills all its cohomologies. This is a local question on X , so
assume that F[1/p] is a direct factor of the finite free OX [1/p]-module Od

X [1/p]. Because F is coherent,
there exist morphisms f : F → Od

X and g : Od
X → F with g ◦ f = pN

· idF for some N ∈ N. By the
functoriality of the complex (B0.6) relative to F , we have the following commutative diagram

· · · // F⊗̂A B−1 //

f ⊗̂ idB−1
��

F⊗̂A B0 //

f ⊗̂ idB0
��

F⊗̂A B //

f ⊗̂ idB
��

0 //

0
��

· · ·

· · · // Od
X ⊗̂A B−1 //

g⊗̂ idB−1
��

Od
X ⊗̂A B0 //

g⊗̂ idB0
��

Od
X ⊗̂A B //

g⊗̂ idB
��

0 //

0
��

· · ·

· · · // F⊗̂A B−1 // F⊗̂A B0 // F⊗̂A B // 0 // · · ·

.
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Because (g⊗̂ idB) ◦ ( f ⊗̂ idB)= pN and (g⊗̂ idBi ) ◦ ( f ⊗̂ idBi )= pN for every i , to prove our claim, it
suffices to show that the complex in the second row

· · · →Od
X ⊗̂A B−1

→Od
X ⊗̂A B0

→Od
X ⊗̂A B→ 0→ · · · (B0.7)

is exact. Since X is flat over A, we obtain from (B0.2) a similar exact sequence

· · · →Od
X ⊗A B−1/p→Od

X ⊗A B0/p→Od
X ⊗A B/p→ 0→ · · · .

Because the sheaves Od
X ⊗A Bi ’s and Od

X ⊗A B are p-torsion free, we deduce as above the exactness of
(B0.7), completing the proof of our claim.

Let C be the complex of abelian sheaves concentrated in degrees ≤ 0 given by the following distin-
guished triangle

F⊗̂B•→ F⊗̂B→ C +1
−→ .

By what we have shown above, there exists some N ∈ N such that pN
·Hi (C)= 0 for every i ∈ Z. In

particular, the cohomology groups of R0(X ,C), which is also the mapping cone of the right vertical
map of (B0.4), are annihilated by some power of p. Consequently, the kernel and the cokernel of the map
(B0.5) are killed by some power of p, as required by (1).

(2) Consider the spectral sequence

Ea,b
2 = Tor−a

A (H b(X ,F), B)⇒ Ha+b(R0(X ,F)⊗L
A B).

Observe that, for M a finite A-module such that M[1/p] is flat, thus locally free, over A[1/p], and
Tor−a

A (M, B) is killed by some power of p whenever a < 0. In particular, Ea,b
2 is killed by some power

of p for a < 0. Thus, the kernel and the cokernel of

E0,i
2 = H i (X ,F)⊗ B→ H i (R0(X ,F)⊗L B)

are annihilated by some power of p. Combining the first statement of our proposition, we obtain that the
natural map

H i (X ,F)⊗ B→ H i (X ,F⊗̂B)

has its kernel and cokernel killed by some power of p. Inverting p. we deduce

H i (X ,F)⊗ B[1/p] −→∼ H i (X ,F⊗̂B)[1/p] ' H i (X ,F⊗̂B[1/p]),

as desired in (2). �
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