Open Access
Translator Disclaimer
2018 Local root numbers and spectrum of the local descents for orthogonal groups: $p$-adic case
Dihua Jiang, Lei Zhang
Algebra Number Theory 12(6): 1489-1535 (2018). DOI: 10.2140/ant.2018.12.1489

Abstract

We investigate the local descents for special orthogonal groups over p -adic local fields of characteristic zero, and obtain explicit spectral decomposition of the local descents at the first occurrence index in terms of the local Langlands data via the explicit local Langlands correspondence and explicit calculations of relevant local root numbers. The main result can be regarded as a refinement of the local Gan–Gross–Prasad conjecture (2012).

Citation

Download Citation

Dihua Jiang. Lei Zhang. "Local root numbers and spectrum of the local descents for orthogonal groups: $p$-adic case." Algebra Number Theory 12 (6) 1489 - 1535, 2018. https://doi.org/10.2140/ant.2018.12.1489

Information

Received: 1 October 2017; Revised: 29 December 2017; Accepted: 15 April 2018; Published: 2018
First available in Project Euclid: 25 October 2018

zbMATH: 06973918
MathSciNet: MR3864205
Digital Object Identifier: 10.2140/ant.2018.12.1489

Subjects:
Primary: 11F70
Secondary: 11S25 , 20G25 , 22E50

Keywords: generic local Arthur packet , local Gan–Gross–Prasad conjecture , local Langlands correspondence , local root numbers , restriction and local descent

Rights: Copyright © 2018 Mathematical Sciences Publishers

JOURNAL ARTICLE
47 PAGES


SHARE
Vol.12 • No. 6 • 2018
MSP
Back to Top