A NOTE ABOUT INVARIANTS OF ALGEBRAIC CURVES

LEONID BEDRATYUK Department of Applied Mathematics, Khmelnitskiy National University, Khmelnitskiy, Ukraine. Email: leonid.uk@gmail.com

Webpage: http://sites.google.com/site/bedratyuklp/

ABSTRACT. Let G be the group generated by the transformations $x = \alpha \tilde{x} +$ $b, y = \tilde{y}, \alpha \neq 0, \alpha, b \in \mathbf{k}$, char **k** of the affine plane \mathbf{k}^2 . For affine algebraic plane curves of the form $y^n=f(x)$ we reduce a calculation of its G-invariants to calculation of the intersection of kernels of some locally nilpotent derivations. We compute a complete set of independent invariants and then reconstruct a curve from given values of these invariants.

1. Introduction

Consider an affine algebraic curve

$$C: F(x,y) = \sum_{i+j \le d} a_{i,j} x^i y^j = 0, a_{i,j} \in \mathbf{k},$$

defined over field \mathbf{k} , char $\mathbf{k} = 0$. Let $\mathbf{k}[C]$ and $\mathbf{k}(C)$ be the algebras of polynomial and rational functions of coefficients of the curve C. Those affine transformations of plane which preserve the algebraic form of equation F(x,y) generate a group G which is a subgroup of the group of affine plane transformations. A function $\phi(a_{0,0}, a_{1,0}, \ldots, a_{d,0}) \in \mathbf{k}(C)$ is called G-invariant if $\phi(\tilde{a}_{0,0}, \tilde{a}_{1,0}, \ldots, \tilde{a}_{d,0}) =$ $\phi(a_{0,0},a_{1,0},\ldots,a_{d,0})$ where $\tilde{a}_{0,0},\,\tilde{a}_{1,0},\ldots,\,\tilde{a}_{d,0}$ are defined from the condition

$$F(gx, gy) = \sum_{i+j \le d} a_{i,j} (gx)^{i} (gy)^{j} = \sum_{i+j \le d} \tilde{a}_{i,j} x^{i} y^{j},$$

for all $g \in G$. The curves C and C' are said to be G-isomorphic if they lies on the same G-orbit.

²⁰⁰⁰ Mathematics Subject Classification. 14H99, 20F10, 30F10. Key words and phrases. algebraic curves, automorphisms, invariants.

The algebras of all G-invariant polynomials and rational functions we denote by $\mathbf{k}[C]^G$ and by $\mathbf{k}(C)^G$, respectively. One way to find elements of the algebra $\mathbf{k}[C]^G$ is the specification of invariants of associated ternary form of order d. In fact, consider a vector space T_d generated by the ternary forms $\sum_{i+j\leq d}b_{i,j}x^{d-(i+j)}y^iz^j$,

 $b_{i,j} \in \mathbf{k}$ endowed with the natural action of the group $GL_3 := GL_3(\mathbf{k})$. Given GL_3 -invariant function f of $\mathbf{k}(T_d)^{GL_3}$, a specification f of the form $b_{i,j} \mapsto a_{i,j}$ or $b_{i,j} \mapsto 0$ in the case when $a_{i,j} \notin \mathbf{k}(C)$, gives us an element of $\mathbf{k}(C)^G$.

But SL_3 -invariants (thus and GL_3 -invariants) of ternary forms are known only for the cases $d \leq 4$, see [1]. Furthermore, analyzing of the Poincare series of the algebra of invariants of ternary forms, [2], we see that the algebras are very complicated and there is no chance to find theirs minimal generating set.

Since $\mathbf{k}(T_d)^{GL_3}$ coincides with $\mathbf{k}(T_d)^{\mathfrak{gl}_3}$ it implies that the algebra of invariants is the intersection of kernels of some derivations of the algebra $\mathbf{k}(T_d)$. Then in place of the specification of coefficients of the form we may use a "specification" of those derivations.

First, consider a motivating example. Let

$$C_3: y^2 + a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0,$$

and let G_0 be the group generated by the translations $x \mapsto \alpha \tilde{x} + b$. It is easy to show that j-invariant of the curve C_3 equals ([3], p. 46):

$$j(C_3) = 6912 \frac{\left(a_0 a_2 - a_1^2\right)^3}{a_0^2 \left(4 a_1^3 a_3 - 6 a_3 a_0 a_1 a_2 - 3 a_1^2 a_2^2 + a_3^2 a_0^2 + 4 a_0 a_2^3\right)}.$$

Up to constant factor $j(C_3)$ equal to $\frac{S^3}{T}$ where S and T are the specification of two SL_3 -invariants of ternary cubic, see [4], p.173.

From another viewpoint a direct calculation yields that the following is true: $\mathcal{D}(j(C_3)) = 0$ and $\mathcal{H}(j(C_3)) = 0$ where \mathcal{D} , \mathcal{H} denote the following derivations of the algebra of rational functions $\mathbf{k}(C_3) = \mathbf{k}(a_0, a_1, a_2, a_3)$:

$$\mathcal{D}(a_i) = ia_{i-1}, \mathcal{H}(a_i) = (3-i)a_i, i = 0, 1, 2, 3.$$

From the computational point of view, the calculation of $\ker \mathcal{D} \cap \ker \mathcal{H}$ is more effective than the calculating of the algebra of invariants of the ternary cubic. We will derive further that

$$\ker \mathcal{D}_3 \cap \ker H_3 = \mathbf{k} \left(\frac{\left(a_0 a_2 - a_1^2 \right)^3}{a_0^3}, \frac{a_3 a_0^2 + 2 a_1^3 - 3 a_1 a_2 a_0}{a_0^2} \right).$$

In section 2, we give a full description of the algebras of polynomial and rational invariants for the curve $y^n = f(x)$. We compute a complete set of independent invariants and then reconstruct a curve from given values of these invariants.

2. Invariants of curves
$$y^n = f(x)$$
.

Consider the curve

$$C_{n,d}: y^n = a_0 x^d + da_1 x^{d-1} + \dots + a_d = \sum_{i=0}^d a_d \binom{d}{i} x^{d-i}, n \ge 1,$$

and let G be the group generated by the following transformations

$$x = \alpha \tilde{x} + b, y = \tilde{y}, \alpha \neq 0.$$

It is clear that G is isomorphic to the group of the affine transformations of the complex line \mathbf{k}^1 .

The algebra $\mathbf{k}(C_{n,d})^G$ consists of functions $\phi(a_0, a_1, \dots, a_d)$ that have the invariance property

$$\phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d) = \phi(a_0, a_1, \dots, a_d).$$

Here \tilde{a}_i denote the coefficients of the curve $\tilde{C}_{n,d}$:

$$\tilde{C}_{n,d}: \sum_{i=0}^{d} a_d \binom{d}{i} (\alpha \tilde{x} + b)^{d-i} = \sum_{i=0}^{d} \tilde{a}_d \binom{d}{i} \tilde{x}^{d-i}.$$

The coefficients \tilde{a}_i are given by the formulas

(1)
$$\tilde{a}_i = \alpha^{n-i} \sum_{k=0}^i \binom{i}{k} a_{i-k} b^k.$$

The following statement holds

Theorem 2.1. We have

$$\mathbf{k}(C_{n,d})^G = \ker \mathcal{D}_d \cap \ker \mathcal{E}_d$$

where \mathcal{D}_d , \mathcal{E}_d denote the following derivations of the algebra $\mathbf{k}(C_{n,d})$:

$$\mathcal{D}_d(a_i) = ia_{i-1}, \mathcal{E}_d(a_i) = (d-i)a_i. \tag{2}$$

A linear map $D: \mathbf{k}(C_{n,d}) \to \mathbf{k}(C_{n,d})$ is called a derivation of the algebra $\mathbf{k}(C_{n,d})$ if D(fg) = D(f)g + fD(g), for all $f, g \in \mathbf{k}(C_{n,d})$. The subalgebra $\ker D := \{f \in \mathbf{k}(C_{n,d}) \mid D(f) = 0\}$ is called the kernel of the derivation D. The above derivation \mathcal{D}_d is called the basic Weitzenböck derivation.

Proof. Following the arguments of Hilbert [7],page 26, we differentiate with respect to b both sides of the equality

$$\phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d) = \phi(a_0, a_1, \dots, a_d),$$

and obtain in this way

$$\frac{\partial \phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d)}{\partial \tilde{a}_0} \frac{\partial \tilde{a}_0}{\partial b} + \frac{\partial \phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d)}{\partial \tilde{a}_1} \frac{\partial \tilde{a}_1}{\partial b} + \dots + \frac{\partial \phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d)}{\partial \tilde{a}_d} \frac{\partial \tilde{a}_d}{\partial b} = 0.$$

Substitute $\alpha = 1$, b = 0 to $\phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d)$ and taking into account that $\frac{\partial \tilde{a}_i}{\partial b}\Big|_{b=0} = ia_{i-1}$, we get:

$$\tilde{a}_0 \frac{\partial \phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d)}{\partial \tilde{a}_1} + 2\tilde{a}_1 \frac{\partial \phi(\tilde{a}_0, \dots, \tilde{a}_d)}{\partial \tilde{a}_2} + \dots d\tilde{a}_{d-1} \frac{\partial \phi(\tilde{a}_0, \dots, \tilde{a}_d)}{\partial \tilde{a}_d} = 0$$

Since the function $\phi(\tilde{a}_0, \ldots, \tilde{a}_d)$ depends on the variables \tilde{a}_i in the exact same way as the function $\phi(a_0, a_1, \ldots, a_d)$ depends on the a_i then it implies that $\phi(a_0, a_1, \ldots, a_d)$ satisfies the differential equation

$$a_0 \frac{\partial \phi(a_0, a_1 \dots, a_d)}{\partial a_1} + 2a_1 \frac{\partial \phi(a_0, a_1 \dots, a_d)}{\partial a_2} + da_{d-1} \frac{\partial \phi(a_0, a_1 \dots, a_d)}{\partial a_d} = 0.$$

Thus, $\mathcal{D}_d(\phi) = 0$. Now we differentiate with respect to α both sides of the same equality

$$\frac{\phi(\tilde{a}_0,\tilde{a}_1,\ldots,\tilde{a}_d)=\phi(a_0,a_1,\ldots,a_d)}{\partial \tilde{a}_0}\frac{\partial \tilde{a}_0}{\partial \alpha}+\frac{\partial \phi(\tilde{a}_0,\tilde{a}_1,\ldots,\tilde{a}_d)}{\partial \tilde{a}_1}\frac{\partial \tilde{a}_1}{\partial \alpha}+\cdots+\frac{\partial \phi(\tilde{a}_0,\tilde{a}_1,\ldots,\tilde{a}_d)}{\partial \tilde{a}_d}\frac{\partial \tilde{a}_d}{\partial \alpha}=0.$$

Substitute $\alpha = 1, b = 0$, to $\phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d)$ and taking into account

$$\left. \frac{\partial \tilde{a}_i}{\partial \alpha} \right|_{\alpha = 1} = (d - i)a_i,$$

we get:

$$\tilde{a}_0 \frac{\partial \phi(\tilde{a}_0, \tilde{a}_1, \dots, \tilde{a}_d)}{\partial \tilde{a}_0} + (d-1)\tilde{a}_1 \frac{\partial \phi(\tilde{a}_0, \dots, \tilde{a}_d)}{\partial \tilde{a}_1} + \dots + \tilde{a}_{d-1} \frac{\partial \phi(\tilde{a}_0, \dots, \tilde{a}_d)}{\partial \tilde{a}_{d-1}} = 0$$

It implies that $\mathcal{E}_d(\phi(a_0, a_1 \dots, a_d)) = 0$.

The formulas (1) define a representation of two-parametric Lie group G on the polynomial algebra $\mathbf{k}[a_0, a_1, \ldots, a_d]$. By construction of the operators \mathcal{D}_d and $\ker \mathcal{E}_d$ the formulas (2) define a representation of the corresponding Lie algebra of the group G. It is well-known fact of the representation theory that algebras of invariants of Lie group coincide with the algebra of invariant of its Lie algebra, see [8]. Thus

$$\mathbf{k}(C_{n,d})^G = \ker \mathcal{D}_d \cap \ker \mathcal{E}_d.$$

The derivation \mathcal{E}_d sends the monomial $a_0^{m_0} a_1^{m_1} \cdots a_d^{m_d}$ to the term

$$(m_0d + m_1(d-1) + \cdots + m_{d-1})a_0^{m_0}a_1^{m_1} \cdots a_d^{m_d}.$$

Let the number $\omega\left(a_0^{m_0}a_1^{m_1}\cdots a_d^{m_d}\right):=m_0d+m_1(d-1)+\cdots m_{d-1}$ be called the weight of the monomial $a_0^{m_0}a_1^{m_1}\cdots a_d^{m_d}$. In particular $\omega(a_i)=d-i$.

A homogeneous polynomial $f \in \mathbf{k}[C_{n,d}]$ be called *isobaric* if all their monomial have equal weights. A weight $\omega(f)$ of an isobaric polynomial f is called a weight of its monomials. Since $\omega(f) > 0$, then $\mathbf{k}[C_{n,d}]^{\mathcal{E}_d} = 0$. It implies that $\mathbf{k}[C_{n,d}]^G = 0$.

If f, g are two isobaric polynomials then

$$\mathcal{E}_d\left(\frac{f}{g}\right) = (\omega(f) - \omega(g))\frac{f}{g}.$$

Therefore the algebra $k(C_{n,d})^{\mathcal{E}_d}$ is generated by rational functions which both denominator and numerator has equal weight.

The kernel of the derivation \mathcal{D}_d also is well-known, see [5], [6]. It is given by

$$\ker \mathcal{D}_d = \mathbf{k}(a_0, z_2, \dots, z_d),$$

where

$$z_i := \sum_{k=0}^{i-2} (-1)^k \binom{i}{k} a_{i-k} a_1^k a_0^{i-k-1} + (i-1)(-1)^{i+1} a_1^i, i = 2, \dots, d.$$

In particular, for d = 5 we get

$$z_2 = a_2 a_0 - a_1^2$$

$$z_3 = a_3 a_0^2 + 2 a_1^3 - 3 a_1 a_2 a_0$$

$$z_4 = a_4 a_0^3 - 3 a_1^4 + 6 a_1^2 a_2 a_0 - 4 a_1 a_3 a_0^2$$

$$z_5 = a_5 a_0^4 + 4 a_1^5 - 10 a_1^3 a_2 a_0 + 10 a_1^2 a_3 a_0^2 - 5 a_1 a_4 a_0^3.$$

It is easy to see that $\omega(z_i) = i(n-1)$. The following element $\frac{z_i^d}{a_0^{i(d-1)}}$ has the zero weight for any i. Therefore, the statement holds:

Theorem 2.2.

$$\mathbf{k}(C_{n,d})^G = \mathbf{k} \left(\frac{z_2^d}{a_0^{2(d-1)}}, \frac{z_3^d}{a_0^{3(d-1)}}, \cdots, \frac{z_d^d}{a_0^{d(d-1)}} \right).$$

For the curve

$$C_{n,d}^0: y^n = x^d + da_1 x^{d-1} + \dots + a_d = x^d + \sum_{i=1}^d a_d {d \choose i} x^{d-i}.$$

and for the group G_0 generated by translations $x = \tilde{x} + b$, the algebra of invariants becomes simpler:

$$\mathbf{k} \left(C_d^0 \right)^{G_0} = \mathbf{k} (z_2, z_3, \dots, z_d).$$

Theorem 2.3. (i) For arbitrary set of d-1 numbers j_2, j_3, \ldots, j_d there exists a curve C such that $z_i(C) = j_i$.

(ii) For two curves C and C' the equalities $z_i(C) = z_i(C')$ hold for $2 \le i \le d$, if and only if these curves are G_0 -isomorphic.

Proof. (i). Consider the system of equations

$$\begin{cases} a_2 - a_1^2 = j_2 \\ a_3 + 2a_1^3 - 3a_1a_2 = j_3 \\ a_4 - 3a_1^4 + 6a_1^2a_2 - 4a_1a_3 = j_4 \\ \dots \\ a_d + \sum_{k=1}^{d-2} (-1)^k \binom{d}{k} a_{d-k} a_1^k + (d-1)(-1)^{d+1} a_1^d = j_d \end{cases}$$

Put $a_1 = 0$ we get $a_n = j_n$, i.e., the curve

$$C: y^n = x^d + {d \choose 2} j_2 x^{d-2} + \dots + j_d,$$

has the required property $z_i(C) = j_i$.

(ii). We may assume, without loss of generality, that the curve C has the form

$$C: y^2 = x^d + {d \choose 2} j_2 x^{d-2} + \dots + j_d.$$

Suppose that for a curve

$$C': y^2 = x^d + da_1 x^{d-1} + \dots + a_d = x^d + \sum_{i=1}^d a_d \binom{d}{i} x^{d-i}.$$

holds $z_i(C') = z_i(C) = j_i$.

By solving the above system we obtain

(2)
$$a_i = j_i + a_1^i + \sum_{s=1}^{i-2} {i \choose s} a_1^s j_{i-s}, i = 2, 3, \dots, d.$$

Comparing (3) with (1) we deduce that the curve C' is obtained from the curve C by the translation $x + a_1$.

3. Acknowledgments

The author would like to thank the referee for many valuable suggestions that improved the paper.

References

- $[1] \ A. \ Brower, Invariants of the ternary quartic, http://www.win.tue.nl/\sim aeb/math/ternary_quartic.html$
- [2] L. Bedratyuk, G.Xin, MacMahon Partition Analysis and the Poincaré series of the algebras of invariants of ternary and quaternary forms, *Linear and Multilinear Algebra*, V.59. No 7, (2011), 789–799
- [3] J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, 1986.
- [4] B. Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation. Wien: Springer, 2008.
- [5] A. Nowicki, Polynomial derivation and their Ring of Constants.–UMK: Torun,–1994.
- [6] L. Bedratyuk, On complete system of invariants for the binary form of degree 7, J. Symb. Comput., 42, (2007), 935-947.
- [7] D. Hilbert, Theory of Algebraic Invariants, Cambridge University Press, 1993.
- [8] W. Fulton, J. Harris. Representation theory: a first course, 1991.