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GENUS CALCULATIONS FOR TOWERS OF FUNCTION FIELDS

ARISING FROM EQUATIONS OF Cab CURVES

CALEB MCKINLEY SHOR

Abstract. We give a generalization of error-correcting code construction from

Cab curves by working with towers of algebraic function fields. The towers
are constructed recursively, using defining equations of Cab curves. In order

to estimate the parameters of the corresponding one-point Goppa codes, one

needs to calculate the genus. Instead of using the Hurwitz genus formula, for
which one needs to know about ramification behavior, we use the Riemann-

Roch theorem to get an upper bound for the genus by counting the number
of Weierstrass gap numbers associated to a particular divisor. We provide a

family of examples of towers which meet the bound.

1. Introduction

Let K be a perfect field, and let a and b be positive integers with a > b and
gcd (a, b) = 1. Consider the polynomial f ∈ K[x, y] given by

f(x, y) = αa,0x
a + α0,by

b +
∑
i,j

αi,jx
iyj ,

where αi,j ∈ K, αa,0α0,b 6= 0, and the summation is taken over non-negative
integers i and j such that aj + bi < ab. The plane curve C defined by the equation
f = 0 is called a Cab curve. Such curves can be thought of as generalizations of the
Weierstrass form of elliptic and hyperelliptic curves.

One has the following results (see Section 3.3 in [4], Proposition 4.6 in [5], or
[3]). C is irreducible, with a single point at infinity. Let F/K be the associated
function field, so F = K(x, y)/(f). (We will use the function field notation of [8].)
Let P∞ be the unique place at infinity. If the affine points of C are non-singular,
then the genus of C is (a − 1)(b − 1)/2, and the Riemann-Roch space L(mP∞) is
generated by monomials of the form xiyj where aj + bi ≤ m. (In fact, a basis is
{xiyj : 0 ≤ i, 0 ≤ j < b, aj + bi ≤ m}.)

We will be concerned with the case where K = Fq, the finite field with q elements.
For the construction of geometric Goppa codes (as in [8], Chapter II), one uses a
function field F/Fq of transcendence degree 1. For some divisor D, one needs to
calculate a basis of functions for L(D) and then evaluate these functions at other
rational places in the function field. A lower bound for the sum of the dimension
and minimum distance of a Goppa code is known in terms of the genus of F . Since
we can calculate a basis for L(mP∞) and know the genus of the function field of a
non-singular Cab curve, constructing a code with a Cab curve essentially amounts
to calculating rational places. Importantly, decoding methods exist for such curves,
as is seen in [7].

c©2011 Aulona Press (Albanian J. Math.)

31



32 CALEB MCKINLEY SHOR

In this paper, we present towers of function fields that give a generalization of
the Cab curve code constructions. These towers arise recursively from the defining
equations of Cab curves, which is explained in Section 2. Because of the way these
towers are constructed, bases for the spaces L(mP∞) are easy to calculate. In
Section 3, we explain why these bases consist of only monomials and then proceed
to calculate an upper bound for the genus by counting the number of Weierstrass
gap numbers. These results are summarized in Theorem 6. Examples of families of
towers that achieve the bound are also given in Theorem 7.

2. Equations and valuations

Let C be a Cab curve given by equation f = 0, for f ∈ K[x, y]. For each n ≥ 0,
let

Cn =
{

(p0, p1, . . . , pn) ∈ P1 × · · · × P1 : (pj−1, pj) ∈ C for j = 1, . . . , n
}
.

Consider the associated tower of function fields F = (F0, F1, . . . ), where F0 =
K(x0) and Fn = Fn−1(xn) for n ≥ 1. The xk are related by the equation

f(xk−1, xk) = 0

for k = 1, . . . , n.
F0 is a rational function field. The divisor associated to the function x0 is

P0 − P∞, where

P0 =

{
x0 · f(x0)

g(x0)
: f(x0), g(x0) ∈ K[x0], x0 - g(x0)

}
and

P∞ =

{
f(x0)

g(x0)
: deg g > deg f

}
.

To each place, we have an associated valuation. For the purposes of this paper,
we are only interested in the valuation associated to P∞, which is defined as

v∞

(
f(x)

g(x)

)
= deg g − deg f.

Proposition 1. Let Pn
∞ denote a place in PFn

lying above P∞, and let vn∞ be the
valuation associated to that place. Then Pn

∞ is the only place in PFn
above P∞ and

vn∞(xn) = −an.

Proof For induction, suppose n = 0. The statement holds because we have
F0 = K(x0), so P 0

∞ is the unique place at infinity in the rational function field and
v0∞(x0) = −1.

Now, suppose the statement is true for n = k. Since xk and xk+1 satisfy the
equation

αa,0x
a
k + α0,bx

b
k+1 +

∑
aj+bi<ab

αi,jx
i
kx

j
k+1 = 0,

we have

avk+1
∞ (xk) = vk+1

∞ (αa,0x
a
k)

= vk+1
∞

α0,bx
b
k+1 +

∑
aj+ib<ab

αi,jx
i
kx

j
k+1


≥ min

(
{bvk+1
∞ (xk+1)} ∪ {ivk+1

∞ (xk) + jvk+1
∞ (xk+1) : aj + ib < ab}

)
,
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by the triangle inequality. For the sake of contradiction, suppose

ivk+1
∞ (xk) + jvk+1

∞ (xk+1) ≤ bvk+1
∞ (xk+1)

for some non-negative i, j with aj + bi < ab such that the left-hand side of the
inequality is minimal. Then

vk+1
∞ (xk)

vk+1
∞ (xk+1)

≥ b− j
i

,

and since aj + bi < ab, we have b−j
i > b

a , so

vk+1
∞ (xk)

vk+1
∞ (xk+1)

>
b

a
,

which means
a

b
>
vk+1
∞ (xk+1)

vk+1
∞ (xk)

.

On the other hand, if

ivk+1
∞ (xk) + jvk+1

∞ (xk+1) ≤ bvk+1
∞ (xk+1)

for i and j with aj + bi < ab such that the left-hand side is minimal, then by the
triangle inequality above,

avk+1
∞ (xk) ≥ ivk+1

∞ (xk) + jvk+1
∞ (xk+1).

This implies

a− i
j
≤ vk+1

∞ (xk+1)

vk+1
∞ (xk)

.

Since aj + bi < ab, we have a
b <

a−i
j . So

a

b
<
vk+1
∞ (xk+1)

vk+1
∞ (xk)

.

We have a contradiction to our initial assumption. Therefore, we must have

bvk+1
∞ (xk+1) < ivk+1

∞ (xk) + jvk+1
∞ (xk+1)

for all i, j with aj + bi < ab. Using the strict triangle inequality, we see that

avk+1
∞ (xk) = bvk+1

∞ (xk+1).

Since gcd(a, b) = 1, b must divide vk+1
∞ (xk). Let e denote the ramification degree

of P k+1
∞ over P k

∞, so

e =
vk+1
∞ (f)

vk∞(f)

for any f ∈ P k
∞. Taking f = xk, we have evk∞(xk) = vk+1

∞ (xk). By the inductive
hypothesis, vk∞(xk) = −ak, so b must divide e. However, since Fk+1/Fk is an
extension of degree b, the ramification degree is at most b. Therefore, e = b, so
P k+1
∞ is totally ramified over P k

∞. Since ramification behaves well in towers, P k+1
∞

is totally ramified over P 0
∞, and thus unique.

From the formula for the ramification index,

vk+1
∞ (xk) = evk∞(xk)

= b(−ak).
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Then, since avk+1
∞ (xk) = bvk+1

∞ (xk+1), we have

vk+1
∞ (xk+1) = −ak+1,

as desired.
By induction, the statement is true for all non-negative integers n. �

Corollary 2. For n ≥ k,
vn∞(xk) = −akbn−k.

Proof By the formula for the ramification index, we have

e(Pn
∞|P k

∞) =
vn∞(xk)

vk∞(xk)
,

so
vn∞(xk) = −akbn−k.

From the previous proposition, we know Pn
∞ is totally ramified over P k

∞ for all
k < n because ramification works transitively in towers. Thus, e(Pn

∞|P k
∞) = [Fn :

Fk] = bn−k. We also know vk∞(xk) = −ak. The result follows immediately. �

3. Calculating the genera

In order to calculate the genera, we will count the number of Weierstrass gap
numbers of Pn

∞ in Fn/K. We do so by considering the pole orders of monomials. In
the first subsection, which is motivated by Proposition 14 in [6], we show that the
set of pole orders of polynomials is the same as the set of pole orders of monomials.
In the second subsection, we show that under certain conditions, one obtains no
new pole orders with rational functions. In the third subsection, assuming certain
conditions, we calculate the number of Weierstrass gap numbers resulting from
monomials, which gives us the genus of the function field. In the fourth subsection,
we give examples of towers which satisfy the conditions and hence for which the
genus formula applies.

3.1. Valuations of polynomials. Let

In = (f(x0, x1), . . . , f(xn−1, xn)) ⊂ Fn

be the ideal of the curve Cn, and let

Γ = K[x0, . . . , xn]/In

be the coordinate ring of Cn. For notation, let Rb = {0, 1, . . . , b− 1} be the set of
residues mod b.

Claim 1. Any polynomial g(x0, . . . , xn) ∈ Γ can be written as

g(x0, . . . , xn) =
∑

e∈Z≥0×(Rb)n

λex
e0
0 . . . xenn ,

for e = (e0, e1, . . . , en) and λe ∈ k. In particular, for i = 1, . . . , n, one has 0 ≤
ei < b.

Proof Given the polynomial g, one can first reduce all powers of xn to be less
than b using the relation f(xn−1, xn) = 0. One can then reduce all powers of xn−1
to be less than b using the relation f(xn−2, xn−1) = 0. As this does not affect
powers of xn, one can continue on to reduce all powers of xn−2, . . . , x1, giving the
resulting form. �

We will call a polynomial written in this form b-reduced.
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Claim 2. Let g(x0, . . . , xn) = xe00 . . . xenn and h(x0, . . . , xn) = xd0
0 . . . xdn

n be two
monomials in Γ with 0 ≤ ei, di < b for i = 1, . . . , n. Then vn∞(g) = vn∞(h) ⇐⇒
g = h.

Proof Since the pole order of xi is aibn−i, this means that
n∑

i=0

eia
ibn−i =

n∑
j=0

dja
jbn−j .

Reducing modulo b,
ena

n ≡ dnan mod b.

Since gcd(an, b) = 1 and 0 ≤ en, dn < b, we have en = dn. So

n−1∑
i=0

eia
ibn−i =

n−1∑
j=0

dja
jbn−j .

Dividing through by b, we similarly obtain en−1 = dn−1, and so on to e1 = d1.
Thus, e0 = d0, and so g = h. �

Claim 3. Let g(x0, . . . , xn) ∈ Γ be a polynomial. Then there exist constants λe ∈ k
such that

g(x0, . . . , xn) =
∑

e∈Z≥0×(Rb)n

λex
e0
0 . . . xenn ,

and
vn∞(g) = min {vn∞(xe00 . . . xenn ) : λe 6= 0} .

Proof Since the pole orders at Pn
∞ of any different b-reduced monomials are

different, by the strong triangle inequality, the valuation at Pn
∞ of a sum of b-

reduced monomials is the minimum of the valuations of the monomials (i.e. there
is no pole cancellation). �

Therefore, to calculate the possible pole orders of all polynomials in Γ, it is
enough to calculate the possible pole orders of monomials in Γ.

3.2. Valuations of rational functions. Before we can consider the possible pole
orders of rational functions, we need the following proposition.

Proposition 3 (From [1], Chapter 2, Proposition 6). For K̄ algebraically closed,
let I be an ideal in K̄[x1, . . . , xn]. Suppose V (I) = {P1, . . . , Pm} is a finite set of
points in K̄n. For Oi = OPi

, there is a natural isomorphism

K̄[x1, . . . , xn]/I −→
m∏
i=1

Oi/IOi.

Theorem 4. Let N be the semi-group of pole orders at Pn
∞ in Fn generated by

elements of Γ. Suppose, for some r > 0 and r /∈ N , that there exists ψ ∈ Fn with
(ψ)∞ = rPn

∞. Then, for ψ = g/h with g, h ∈ Γ, there is a place in the support of
(h)0 corresponding to a singular point Q on Cn.

Proof Fix some algebraic closure K̄ of K. Let

In = (f(x0, x1), . . . , f(xn−1, xn)) ⊂ K̄[x0, . . . , xn]

be an ideal. Let Γ = K̄[x0, . . . , xn]/In be the polynomial ring of Cn.
Suppose there is an element ψ ∈ Fn with pole only at Qn. Then ψ = g/h

for polynomials g, h ∈ Γ. To prove the contrapositive, assume each zero P of h
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corresponds to a non-singular point of Cn. Let the local ring of P be OP ⊂ Fn

with valuation vP . Since g/h does not have a pole at P ,

vP (g) ≥ vP (h) > 0.

Since P is non-singular, OP is a valuation ring, so there is a parameter tP ∈ OP

such that vP (tP ) = 1. Since each element z ∈ OP can be written uniquely as
z = tlu for u ∈ O×P and l = vP (z), and since vP (g) ≥ vP (h), we have

g ∈ (h) ⊂ OP .

Thus, for the ideal I = (h, In), we have

g = 0 ∈ OP /IOP

for each zero P of h. Since there are finitely many zeroes of h in Cn, V (I) contains
a finite number of points. By the isomorphism from the above proposition,

g = 0 ∈ K̄[x0, . . . , xn]/I = Γ/(h).

Hence, g = φ · h ∈ Γ for some φ ∈ Γ, so ψ = g/h = φ, a polynomial. While φ may
have coefficients in an extension of K, the valuation of φ is that of a polynomial,
and thus in N . �

Thus, if Cn is non-singular, the set of pole orders of rational functions is the set
of pole orders of monomials.

3.2.1. A non-example. We give an example of a singular Cab curve with a rational
function in the Riemann-Roch space.

Consider the curve C ⊂ Fq
2
, for q odd, given by

C : y2 − x2(x− 1) = 0.

In the associated function field F/Fq, the functions x and y have poles of orders 2
and 3 at P∞ and nowhere else. Let Pi,j be the place corresponding to the point
(i, j) ∈ C. Then the divisors associated to x and y are

(x) = 2P0,0 − 2P∞
(y) = 2P0,0 + P1,0 − 3P∞.

Thus,

(y/x) = P1,0 − P∞,
so y/x has a pole that is not the pole of a monomial in x and y. There is one place
in the support of (x)0, which corresponds to the singular point (0, 0) ∈ C, as is
expected by the theorem. Note that OP0,0 is not a valuation ring because there is
no parameter. In particular, y is not in the ideal generated by x.

3.3. Gap numbers of monomials. We now calculate the number of Weierstrass
gap numbers at Pn

∞ by looking at the pole orders of monomials. We will assume
that the curve Cn is non-singular. (If Cn is singular, we only obtain an upper bound
for the genus by counting pole orders of monomials.)

For the function field Fn, the elements

1, x0, x1, . . . , xn

have poles at Pn
∞ of orders

0, bn, bn−1a, . . . , an,
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respectively. The monomial xe00 x
e1
1 . . . xenn has a pole of order e0b

n +e1b
n−1a+ · · ·+

ena
n. Thus, to calculate the genus, we need to calculate the number of positive

integers α that do not have a solution in non-negative integers ei to the equation

α = e0b
n + e1b

n−1a+ · · ·+ ena
n.(1)

As we saw in Section 3.1, we can restrict to the case where 0 ≤ ei < b.

Proposition 5. Let g(Fn) denote the genus of the function field Fn. For n ≥ 0,

g(Fn+1) = bg(Fn) +
(an+1 − 1)(b− 1)

2
.

Proof To prove this, we will use two methods of counting, show that the methods
do not overlap, and then show that we have not missed anything.

Method 1: Let A = {αi : i = 1, 2, . . . , g(Fn)} be the set of gap numbers of
Pn
∞ in Fn. We want to show that for any α ∈ A, there is no monomial with a pole

of order bα+ lan+1 in Fn+1 for l ∈ Rb = {0, . . . , b− 1}.
Since α is a gap number of Pn

∞ in Fn, this means that there is no solution in ei
to equation (1).

Suppose we have a monomial with pole order equal to bα+ lan+1 in Fn+1. The
variables in Fn+1 are 1, x0, . . . , xn+1, so this would mean we could find a solution
to

e0b
n+1 + e1ab

n + · · ·+ ena
nb+ en+1a

n+1 = bα+ lan+1

with non-negative integers ei. Then en+1 ≡ l mod b. Since en+1 and l are in Rb,
en+1 = l, so

bα = e0b
n+1 + e1ab

n + · · ·+ ena
nb.

Dividing through by b, one has

α = e0b
n + e1ab

n−1 + · · ·+ ena
n.

Since e0, e1, . . . , en−1, and en are all non-negative integers, this contradicts the fact
that α is a gap number of Pn

∞.
The result is that we have gap numbers bα + lan+1 of Pn+1

∞ in Fn+1 for l =
0, . . . , b− 1 and for all α ∈ A. This gives us the bg(Fn) term in the genus formula.

Method 2: Since the only pole orders below an+1 that are achievable with
monomials in Fn+1 are multiples of b, there is no monomial with pole order that is
congruent to any of 1, 2, . . . , b− 1 mod b and less than an+1. Then, between an+1

and 2an+1, the only pole orders that are achievable are congruent to 0 or an+1

mod b. Going on in this manner, for l = 1, 2, . . . , b − 1, between lan+1 and (l +
1)an+1, the only pole orders that are achievable are congruent to 0, an+1, 2an+1, . . . , lan+1

mod b. (Note that these are all distinct congruence classes because an+1 is a unit
mod b.)

Counting in this way gives that the number of gap numbers from 0 to lan+1 that
are congruent to lan+1 mod b is b la

n

b c. Let pn+1 be the total number of these gap
numbers in Fn+1. For the b− 1 non-zero congruent classes modulo b, we get

pn+1 =

⌊
an+1

b

⌋
+

⌊
2an+1

b

⌋
+ · · ·+

⌊
(b− 1)an+1

b

⌋
missing pole orders.

For any integer m, let m ∈ Rb be the residue of m modulo b. Since⌊m
b

⌋
=
m

b
− m

b
,
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and since
{
an+1, 2an+1, . . . , (b− 1)an+1

}
= {1, 2, . . . , b− 1}, we get that

pn+1 =

(
an+1 + 2an+1 + · · ·+ (b− 1)an+1

b
− 1 + 2 + · · ·+ (b− 1)

b

)
=

(an+1 − 1)(b− 1)

2
.

Overlap? Suppose there exists an element in Fn+1 with pole order β that is
counted by both methods. By the first method, β = bα + lan+1 for some α ∈ A
and l such that 0 ≤ l ≤ b− 1. So β ≡ lan+1 mod b. If β is counted by the second
method, then since β ≡ lan+1, β must be less than lan+1. But β = bα+ lan+1, so
this is a contradiction. So

g(Fn+1) ≥ bg(Fn) +
(an+1 − 1)(b− 1)

2
.

Everything? Suppose there exists a gap number γ for which there is no
monomial in Fn+1 with pole order equal to γ. Then γ ≡ lan+1 mod b for some
l ∈ {0, 1, . . . , b− 1}. Since vn+1

∞ (xln+1) = −lan+1, we have γ 6= lan+1. Thus, either
γ > lan+1 or γ < lan+1.

If γ > lan+1, then since γ ≡ lan+1 mod b,

γ = mb+ lan+1

for some positive integer m. It follows that mb is a gap number of Pn+1
∞ , because

if it were the pole order of a function f , then the pole order of f · xln+1 is γ. Thus,
m is a gap number of Pn

∞, and we counted all of these gap numbers in the first
method.

Suppose γ < lan+1. In the second method, we counted all integers that are
congruent to lan+1 modulo b that are less than lan+1, so γ must have been among
them. �

We have our result.

Theorem 6. Let q be a power of a prime. For f(x, y) ∈ K[x, y], let f = 0 be the
equation of a Cab curve such that gcd(a, b) = 1. For n ≥ 0, let

Cn =
{

(p0, . . . , pn) ∈ Kn+1 : f(pi−1, pi) = 0 for i = 1, . . . , n
}
.

Consider the tower of function fields F = (F0, F1, . . . ) where Fn is the function
field associated to Cn. If Cn is non-singular, the genus of Fn is given by

g(Fn) =
(b− 1)an+1 − (a− 1)bn+1 + a− b

2(a− b)
,

and, for any positive integer m and P∞ the place at infinity in Fn, a basis for
L(mP∞) is given by{

xe00 x
e1
1 . . . xenn : e0 ≥ 0, 0 ≤ ei < b for i = 1, . . . , n, and

n∑
i=0

aibn−iei ≤ m

}
.

Note that the above result is an upper bound. If Cn contains singular points,
there will be fewer gap numbers, and so a lower genus.



GUNCTION FIELDS ARISING FROM EQUATIONS OF Cab CURVES 39

3.4. Examples. Working in F7, let f(x, y) = x3 + y2 − 3, and let the curves Cn

be defined as in Theorem 6. Note that 3 is neither a quadratic nor cubic residue in
F7.

The Jacobian matrix of Cn is the n× (n+ 1) matrix Jn defined by

Jn =



3x20 2x1 0 0 . . . 0 0
0 3x21 2x2 0 . . . 0 0
0 0 3x22 2x3 . . . 0 0
...

. . .

0 0 0 0 . . . 2xn−1 0
0 0 0 0 . . . 3x2n−1 2xn


.

The affine curve Cn is nonsingular if the rank of Jn is n for all points on Cn. The
rank drops precisely when we have a point that has two coordinates equal to zero.
We aim to show that this can never happen by showing there can be no affine point
of the form (0, a1, a2, . . . , an−1, 0) on Cn.

From the equation
f(a0, a1) = a30 + a21 − 3 = 0,

if a0 = 0, we have a21 = 3. Since 3 is not a quadratic residue in F7, a1 is not in F7,
so a1 ∈ F72 \ F7. Then, from

f(a1, a2) = a31 + a22 − 3 = 0,

we get a22 = 3−a31. Since a1 ∈ F72 \F7, it follows that 3−a31 is also in F72 \F7, and
so a2 ∈ F74 \F7. Similarly, it follows that each of a3, a4, . . . , an−1 is in F72i \F7 for
some non-negative integer i.

From the equation

f(an−1, an) = a3n−1 + a2n − 3 = 0,

if an = 0, then a3n−1 = 3. Since 3 is not a cubic residue in modulo 7, it follows that
an−1 ∈ F73 . However, this contradicts our work above, which said that an−1 ∈ F72i .
Hence, there can be no point on this curve with first and last coordinates equal to
zero. As a result, there can be no point with two zero coordinates at all, which
means that the Jacobian matrix has rank n, which means that the curve Cn is
nonsingular. By Theorem 6, the genus of Cn and the corresponding function field
Fn is

g(Cn) =
3n+1 − 2n+2 + 1

2
.

Working along these lines, we have the following result.

Theorem 7. Let q be a prime power. Let a, b ∈ N with gcd(a, b) = 1. If there
exists α ∈ Fq such that α is neither an ath or bth power in Fq, then the function
f(x, y) = xa+yb−α can be used to recursively define a nonsingular tower of curves.

For the case where q is prime, we are guaranteed to have examples of this type
when a and b both share factors with q− 1, since the maps x 7→ xa and x 7→ xb are
not one-to-one in this case. Since both maps are at least 2 to 1 and the element 1
is in the image of both maps, there must exist some α ∈ Fq that is neither an ath
or bth power.

In the case of a = 2, b = 3 and q = 7, the set of non-zero squares is {1, 2, 4}
and the non-zero cubes is {1, 6}. Hence, we can let α equal 3 or 5 and obtain a
nonsingular tower.
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It would be interesting to see if one can create examples for all combinations of
a, b, and q.

4. Comments

For more flexibility, note that it is not required that one uses the same polynomial
equation f = 0 for each level of the tower. Fixing a and b, if one has a sequence
of polynomials f1, f2, . . . for which fi = 0 is the equation of a Cab curve, then the
genus formula given in Theorem 6 still holds.

In fact, consider a sequence f1, f2, . . . , where fi = 0 is the equation of a Caibi

curve, for gcd (ai, bi) = 1 and ai > bi. As above, let F0 = K(x0) and Fn+1 =
Fn(xn+1) where fn(xn, xn+1) = 0. Then, provided that (ai, bj) = 1 for all i, j, and
that there are no singular points on the corresponding curve (except possibly at
infinity), one has the following formula:

g(Fn+1) = bn+1g(Fn) +
(a1 · · · an+1 − 1)(bn+1 − 1)

2
.

A basis for L(mP∞) is given by{
xe00 . . . xenn :

e0 ≥ 0, 0 ≤ ei < bi for i = 1, . . . , n,
and

∑n
i=0 a1 · · · aibi+1 · · · bnei ≤ m

}
.

4.1. Asymptotics. We have seen that for the towers defined recursively by Cab

equations, the genus grows exponentially in a. The number of places of degree one
will grow at most exponentially in b, which is strictly smaller than a. Thus, the
ratio of number of places of degree one of Fn divided by the genus of Fn will tend
to zero as n→∞. Therefore, these towers are not asymptotically good . (This also
follows directly from [2], which states that for a recursively defined tower to be
asymptotically good, the recursive equation must have balanced degrees.)
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