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ABsTRACT. Let A be a finite-dimensional split basic algebra over a finite field
k with odd characteristic, and assume that A is endowed with an involution
o: A — A. We determine the degrees of the irreducible characters of the
group Cg(o) = {z € G: o(z™!) = z} where G = A* is the unit group of
A, and prove that every irreducible character of Cg (o) is induced by a linear
character of some subgroup. As a particular case, our results hold for the
Sylow p-subgroups of the finite classical groups of Lie type, and extend (in a
uniform way) the results obtained by B. Szegedy in [11].
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Let p be an odd prime, let k be a finite field of characteristic p, and let A be a
finite-dimensional associative k-algebra (with identity). We recall that an involution
on A is a map o: A — A satisfying the following conditions:

(1) o(a+b) =0c(a) + o(b) for all a,b € A;

(2) o(ab) = o(b)o(a) for all a,b € A;

(3) o%(a) = a for all a € A.
We note that an involution o is not required to be k-linear; however, we will assume
that the field k =k - 1 is preserved by o. Then, ¢ defines a field automorphism of
k which is either the identity or has order 2; we say that o is of the first kind if o
fixes k, and of the second kind if its restriction oy to k has order 2. In any case, we
let k% = {a € k: o(a) = a} denote the o-fixed subfield of k, and consider A as a
finite dimensional associative k?-algebra. We observe that o is of the second kind
if and only if the field extension k? C k has degree 2, and o: k — k is the Frobenius
map defined by the mapping a — a? where ¢ = |k7|; hence, k” = F, and k = Fe.
For simplicity of writing, we will the bar notation @ = a4 for « € k.

Let G = A* denote the unit group of the k-algebra A. Then, for any involution
o: A — A, the cyclic group (o) acts on G as a group of automorphisms by means
of 27 = o(z7!) for all x € G (2 should not be confused with o(x)). For any
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o-invariant subgroup H < G, we denote by C'y (o) the subgroup of H consisting of
all o-fixed elements; that is,

Cuylo)={rcH:2° =2} ={zx € H: o(z™ ') =2}

The main purpose of this paper is to determine the degree of any irreducible (com-
plex) character of the group Cg(o) in the case where A is an arbitrary basic k-
algebra endowed with an involution o: A — A. By definition, a k-algebra A is said
to be basic if the Jacobson radical Rad(A) < A equals the set consisting of all nilpo-
tent elements of A; equivalently, the semisimple k-algebra A/ Rad(A) is isomorphic
to a direct sum ky & - -- @ k,, of field extensions k,...,k, of k (in the paper [10],
B. Szegedy refers to A as an N-algebra over k; see, in particular, [10, Lemma 2.1]).
We note that every subalgebra (containing the identity) of a basic k-algebra is also
a basic k-algebra; moreover, if J is any (two-sided) ideal of A, then A/J is also a
basic k-algebra. In the case where k; = k for all 1 < i < n, we refer to A as a
split basic k-algebra (or, in the terminology of [10], as a DN-algebra); we observe
that subalgebras (containing the identity) and quotient algebras of a split basic
k-algebra are also slit basic k-algebras (see, for example, [10, Lemmas 2.2 and 2.3]).

As a standard example, let M,, (k) be the full matrix algebra over k consisting
of all n x n matrices with entries in k, so that M, (k)* = GL, (k) is the general
linear group consisting of all invertible matrices in M,, (k). The k-algebra M,, (k) is
canonically endowed with the transpose involution defined by the mapping a — a®
where a” denotes the transpose of a € M,, (k). Let ¢ = [k7], let F': M,, (k) — M,, (k)
be the Frobenius morphism defined by F'(a;;) = (Gi;) = (a;;7) for all (a;;) € M, (k),
and set a* = F(a)T for all a € M,,(k). Then, the mapping a — a* defines an
involution on M, (k); notice that, if k” = k, then a* = o’ for all a € M, (k). If
o: M, (k) = M, (k) is an involution of the first kind, then there exists u € GL,, (k)
with 4T = v and such that o(a) = u~ta™u for all a € M, (k); moreover, the matrix
u is uniquely determined up to a factor in k™. On the other hand, if o: M, (k) —
M, (k) is an involution of the second kind, then there exists u € GL, (k) with
u* = u and such that o(a) = u~la*u for all a € M,,(k); moreover, the matrix u is
uniquely determined up to a factor in (k?)*. (The proofs can be found in the book
[8] by M.-A. Knus et al. where the complete classification of involutions is also
given for arbitrary central k-algebras.) For simplicity, for u € GL,, (k) as above, we
will denote by o, the involution on M, (k) given by the mapping a — u~ta*u; as
usual, we say that o, is symplectic if o, is of the first kind and u* = —u, orthogonal
if o, is of the first kind and «T = u, and wunitary if o, is of the second kind and
u* = u.

For an arbitrary involution o: M, (k) — M, (k) the group Cqr,, (o) is isomor-
phic to one of the well-known finite classical groups of Lie type (defined over k):
the symplectic group Spa,, (q) if o is symplectic (and k = F,), the orthogonal groups
03,,(a), O2m+1(q), or O, 5(q) if o is orthogonal (and k = F,), and the unitary
group U, (¢?) if o is unitary (and k = F,2). (For the details on the definition of
the classical groups, we refer to Chapter I the book [2] by R. Carter.) In fact,
up to isomorphism, these groups may be defined by the involution ¢ = ¢, where
u € GL, (k) is defined as follows; here, J,,, denotes the m x m matrix with 1’s along
the anti-diagonal and 0’s elsewhere.

(1) For Sp,,,(q), we choose k =F, and u = (_8m o ).
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(2) For OF,(q) or O2m+1(q), we choose k = F, and u = .J,, where, either
n=2m,orn=2m+ 1.

(3) For O3,,,5(q), we choose k = F, and u = (Jgn ¢
eeFy — (FX)2.
(4) For U, (¢%), we choose k = F2 and u = J,. (In this case, we have k? = F,.)

Let A = b, (k) be the Borel subalgebra of M,, (k) consisting of all upper-triangular
matrices; hence, G = A* is the standard Borel subgroup By, (k) of GL, (k). Then,
A is a split basic k-algebra; in fact, the Jacobson radical Rad(A) is the (upper)
niltriangular subalgebra ut, (k) < b,,(k) consisting of all upper-triangular matrices
with 0’s on the main diagonal, and A/Rad(A) is isomorphic to a direct sum of
n copies of k; indeed, A/ Rad(A) is isomorphic to the diagonal subalgebra 0, (k)
consisting of all diagonal matrices in M, (k). Further, A is a o-invariant subalgebra
of M,,(k), and the Cg(0) is a (standard) Borel subgroup of the corresponding finite
classical group.

In the general situation, let A be a split basic k-algebra with an involution
o: A — A. For any (nilpotent) subalgebra J of Rad(A), the set 1+ is a p-subgroup
of the unit group G = A* to which we refer as an algebra subgroup of G (as defined
in [6]). In the particular case where J = Rad(A), it is clear that P = 1 4+ Rad(A)
is a normal subgroup of G, and that it is the unique Sylow p-subgroup of G.
Furthermore, G is the semidirect product G = TP where T' < G is isomorphic to the
unit group of A/ Rad(A); hence, T is isomorphic to the direct product ki x - - - x k¢
where ky, . .., k, are field extensions of k such that A/ Rad(A) 2 k;®- - -@k,,. Since
A is split, we have k; = k for all 1 < i < n, and in fact there are nonzero orthogonal
idempotents ey, ..., e, € A with 1 = e;+---+e,, and such that A = DdRad(A) for
D = ke 1 ®- - -Pke,; this follows easily from the usual process of “lifting idempotents”
(see, for example, [9, Chapter VII]; see also [5, Lemma 2.1]). Then, T = D* is
the unit group of the subalgebra D; we will refer to D as the diagonal subalgebra
of A, and to T as the diagonal subgroup of G = A*. In particular, we have
|G| = |k|" (k| — 1)™ where r = dim Rad(A).

On the other hand, let © € G be arbitrary, and denote by Cg(x) the centraliser
of z in G (with respect to conjugation). It is clear that Cg(z) is the unit group of
the subalgebra C4(z) = {a € A: ax = za} of A. Since every subalgebra of a split
basic k-algebra is also a split basic k-algebra (see [10, Lemma 2.2]), C4(x) is a split
basic k-algebra, and thus |Ca(z)| = [k|°(Jk| — 1)™ for some nonnegative integers s
and m (with s < r and m < n). Since ([k|,|k| — 1) = 1, we deduce the following
result.

0 Jm
¢ 0 ) where ¢ = (§ %) for

Theorem 1 (Szegedy; see [10, Lemma 2.4]). Let A be a split basic k-algebra, let
G = A%, and let X be a conjugacy class of G. Then, |X| = [k|*(|k| — 1) for some
nonnegative integers k and .

Next, we consider the involution o: A — A, and determine the order of the
o-fixed subgroup Cg (o). We start by proving the following elementary result.

Lemma 1. Let A be a k-algebra with an involution o: A — A, let J be a o-invariant
nilpotent subalgebra of A, and let Q =14 7. Then, |Cg(o)| is a power of |k7|.

Proof. Let ¢: J — Q be the Cayley transform defined by p(a) = (1 —a)(1+a)~*
for all @ € J. Since p is odd, the map ¢ is bijective, and it is easy to check that
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Co(o) = p(Cy(0)) where Cy(c) = {a € J: o(a) = —a}. The result follows because
Cy(0) is a vector space over k7. O

On the other hand, we have the following.

Theorem 2. Let A be a split basic k-algebra with an involution oc: A — A, let
G = A* be the unit group of A, and let P =1+Rad(A). Let k? be the o-fized field
of k, and let ¢ = |k°|. Then, Cg(0)/Cp(0) =2 H x K where H is a direct product
of copies of k™, and K is a direct product of cyclic groups of order (¢ —1)/2 if o
is of the first kind, and q — 1 if o is of the second kind. In particular, there exist
nonnegative integers k and r such that

27k (g—1)", if o is of the first kind,

ICo(0) : Cplo)l = {(q +1)k(g—1)", ifo is of the second kind.

Further, we have Cg(o)P/P = Cg/p(0).

Proof. Let eq,...,e, € A be nonzero orthogonal idempotents, and consider the
diagonal subalgebra D = ke; & --- ® ke,, of A; moreover, for simplicity, we set
Jd = Rad(A).

Let S,, denote the symmetric group on {1,2,...,n}. Since o(ey), - ,0(e,) are

nonzero orthogonal idempotents satisfying 1 = o(e1) + -+ + o(e,), there exist a
permutation 7 € S, and an invertible element x € P = 1 + J such that o(e;) =
xew(i)x_l for all 1 <1 < n (see, for example, [9, Theorem VII.13]). In particular,
we see that o(e;) € ex(;)+d, and thus o(ke;) = ko(e;) € key(;y+4d forall 1 <i < n.
Moreover, since ¢ is an involution, we clearly have 72 = 1.

The involution o: A — A defines naturally an involution on the k-algebra A/J;
if we denote this involution also by o, then o(a+J) = o(a)+J for all a € A. Hence,
o defines an automorphism of the group G/P = (A/J)* by means of (zP)? = z°P
for all z € G. Since A = D @ J, we have A/J = D, and thus G/P = T where
T = D* is the diagonal subgroup of G. For every t € T', we have tP € Cg,p(0)
if and only if t71¢7 € P, and so Cg/p(0) = {tP: t~'t7 € P}. On the other hand,
since D = key & - - - d ke, every element of t € T = D* is uniquely expressed as a
sum t = aje;+- - -+ ape, where aq, ..., a, € k*. In particular, for every 1 <i <n
and every o € k™, the element

ti(a) = ae; + Z e;
1<j#i<n
lies in T'; indeed, every t € T factorises uniquely as a product ¢t = t1(aq) - - - tn ()
where a1,...,a, € k*. For every 1 < i < n, let T; = {t;(«): @ € k*}; notice
that T4,...,T, are subgroups of T and that T is the (internal) direct product
T =T ---T,. Similarly, if we define T; = T;P/P for all 1 < i < n, then G/P is
the direct product G/P =T} - --T,; moreover, since o(ke;) C ker iy + d, we must
have (T;)7 C Ty, and hence (T;)7 = T for all 1 < i < n.

Now, if t € T is arbitrary and t = ¢ - - - t,, where t; € T; for all 1 < i < n, then
717 = (7 (te(1))?) - (t H(tr(n))?) Where t; ! (t())? € TiP for all 1 < i < m,
and so t~ !t € P if and only if t;l(tw(i))” € P for all 1 < i < n; in other words,
we have tP € Cg/p(0) if and only if t7 (te)? € Pforalll < i < n. In
particular, if we set #;(a) = t;(a) P, then #;(a)t;(a)? € Cgp(o) for all o € k* and
all 1 < ¢ < n. In fact, it is straightforward to check that, for all 1 < i < n, the
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mapping a +— #;(a)t;(a)? defines a group homomorphism v;: k* — Cg/p(0), and
that Cg/p(0) = [[;c;Im(v;) where I is a complete set of representatives of the

m-orbits on {1,2,...,n}. In particular, we conclude that
|Cqyp(o)| =[] ITm(v)].
i€l

It is clear that ~; is injective whenever ¢ € I is such that 7(i) # i¢. On the
other hand, let ¢ € I be such that m(¢) = 4. In this case, (ke; + J)/J = ke; where
e; = ¢; + J, and we have o(ag;) = ale; + J for all a € k. In particular, for any
a € k¥, we deduce that « € ker(+;) if and only if &« = a4, and so

q-—1, if k7 =k,
[ Tm ()| = o
(¢g—1)/2, ifk #k.

Furthermore, we conclude that C,p(c) is isomorphic to a direct product H x K
where H is a direct product of copies of k*, and K is a direct product of cyclic
groups of order (¢ —1)/2 if o is of the first kind, or ¢ — 1 if o is of the second kind.
In particular, there exist nonnegative integers k and r such that

27k(g—1)", if o is of the first kind,
\CG/P(U” = {

(g+ 1)*(qg—1)", if o is of the second kind.

If we assume further that the diagonal subalgebra D < A is o-invariant, we
clearly have a semidirect product Cg (o) = Cr(0)Cp (o) where T = D>, and thus
Ca/p(o) = Cr(o) = Cg(o)/Cp(0). Therefore, in this situation, we conclude that
there exist nonnegative integers k and 7 such that

27k (g — 1), if o is of the first kind,
(¢q+1)¥(g—1)", if o is of the second kind.

|Ca(o) : Cp(o)| = {

In the general situation, let G be the semidirect product G =G x (o) of G by
the cyclic group (o). Since G is solvable and ¢ € G has order 2, Hall’s Theorem
(see [3, Theorem 6.41]) asserts that there exists a Hall p/-subgroup S < G with
o € 5. Then, S = SNG is a Hall p’-subgroup of G, and we have G = PS (by
order considerations); moreover, since o € S , the subgroup S is clearly o-invariant.
It follows that Cg (o) is the semidirect product Cg(o) = Cp(0)Cs(co), and hence
Cg(U)P/PgCS(O')%'CG/p(O'). O

We are now able to determine the size of any conjugacy class of Cg(0).

Theorem 3. Let A be a split basic k-algebra with an involution o: A — A, let
G = A%, and let KX be a conjugacy class of Cg(o). Then, there exist nonnegative
integers k, r and s such that

%] = 27k (g —1)"g*, if o is of the first kind,
g+ 1)*(q—1)"¢*, if o is of the second kind,
where ¢ = |k|.

Proof. Let x € X be arbitrary, and recall that Cg(x) is the unit group H = B* of
the subalgebra B = C4(z) of A. Since z € Cg(0), it is clear that B is o-invariant.
Since Cy (o) = HN Cg(0), we have |X| = |Cg(0) : Cu(o)|, and thus

K| = Ca(0) : Cp(o)] [Ch (o) : Co(o)|~H|Cp (o) : Cq(o)]
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where @ = PN H = 1+ Rad(B). The result follows by Lemma 1 and by the
previous theorem. O

Next, we consider the irreducible characters of C (o). Our goal is to prove the
following main result. (We observe that, in the case where o is an involution of the
first kind, this result is essentially [11, Theorem 6].)

Theorem 4. Let A be a split basic k-algebra with an involution oc: A — A, let
G = A* be the unit group of A, and let x be an arbitrary irreducible character of
Cg(o). Then, there exist nonnegative integers k, r and s such that

(1) = 27k (g —1)"g*, if o is of the first kind,
A= (q+1)*(g—1)"¢*, if o is of the second kind,

where q¢ = |k7|.

The following reduction result will be crucial for the proof of this theorem. As
usual, given an arbitrary function x: G — C of a group G and an arbitrary element
g € G, we define the function x9: G — C by the rule x9(x) = x(gwg~?) for all
x € G; similarly, given an arbitrary subset X of G and an arbitrary element g € G,
we define X9 = {29: v € X} where 29 = gzg~! for all z € G.

Theorem 5. Let A be a split basic k-algebra with an involution oc: A — A, let
G = A* be the unit group of A, and let P = 1+ Rad(A). Let x be a o-invariant
irreducible character of P, and let Ic(x) = {g € G: x9 = x} be the inertia group
of x. Then, Ig(x) = B> for some o-invariant subalgebra B < A.

Proof. Let G be the semidirect product G = G x (o) of G by the cyclic group (o).
Since P = 14 Rad(A) is o-invariant, P is a normal subgroup of G. As in the proof
of Theorem 2, we may choose a Hall p’-subgroup S < G with o € S and such that
G is the semidirect product G = PS.

The group S acts naturally on the set Irr(P) of irreducible characters of P and
on the set Cl(P) of conjugacy classes of P. By [7, Theorem 13.24], these actions
are permutation isomorphic. Let 8: Irr(P) — CI(P) be a S-equivariant bijection,
and let X = B(x). Then, Cg(x) = {s € S: X* = K}. Since Cs(x) is a p'-
group, Glauberman’s Lemma (see [7, Lemma 13.8]) implies that there exists z € X
such that 2® = z for all s € Cs(x); in particular, since x is o-invariant, we have
o € Cs(x), and thus z7 = z.

We now claim that Ig(x) = PCg(x). In fact, let ¢ € G be arbitrary. Since
G = PS , there are uniquely determined elements h € P and s € S N G such that
g = hs; thus, we have X9 = K® and xY = x®. On the one hand, suppose that
g € Cg(x). Then, X* = K9 = K, and so s € Csng(x) < Ig(x). On the other
hand, suppose that g € Ig(x). Then, x* = x9 = x, and so s € Cs(x). By the
choice of x, we conclude that s € Cg(z), and thus g = hs € PCg(z). The claim
follows.

To complete the proof it is enough to take B = C 4 (z) + Rad(A) where Cy(z) =
{a € A: za = ax}; it is clear that B is a o-invariant subalgebra of A, and that
B* ZPCG(JJ):Ig(Z‘). ([l

We now proceed with the proof of Theorem 4.
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Proof of Theorem 4. We start by recalling the Glauberman correspondence be-
tween o-invariant irreducible characters of P =1+ Rad(A) and irreducible charac-
ters of Cp(0); our main reference is [7, Chapter 13]. As usual, we denote by Irr(P)
the set consisting of all irreducible characters of P (and extend this notation to
any finite group), and by Irr, (P) the subset of Irr(P) consisting of all o-invariant
irreducible characters. Since p is odd, the Glauberman correspondence asserts that
there exists a uniquely defined bijective map 7p: Irr, (P) — Irr(Cp(0)) such that,
for any ¢ € Irr, (P), the image ¢ = wp(p) is the unique irreducible constituent of
the restriction @¢,, () which occurs with odd multiplicity (see |7, Theorem 13.1]).

Now, let x be an arbitrary irreducible character of C (o), let ¢ € Irr(Cp (o)) be
an irreducible constituent of X, (,), and let @ € Irry (P) be such that 7p(p) = ¢.
We consider the inertia group I(@) of @, and observe that

Icg (o) (@) = 1a(®) N Calo).
In fact, let g € C(0) be arbitrary. Then, it is clear that 9 € Irr, (P); moreover, we
have 7p(99) = ¢ (by [7, Theorem 13.1] because (¢, (27)cp (o)) = (@, Pcp(o)))-
Since 7p is bijective, we conclude that 9 = @ if and only if 9 = . On the
other hand, by Theorem 5, I¢(®) is the unit group H = B* of some subalgebra
B < A; we note that Rad(B) = Rad(A). By Theorem 2, we conclude that there
are nonnegative integers k and r such that

27 k(g —1)", if o is of the first kind,

C oo =
C6l0) : Ioa@) (Pl {(q +1)k(g—1)", if o is of the second kind;

in fact, I (o) (¢) = Ca(0)NIg(@) = Cg(c)NH = Cg(0). Since x is an irreducible

constituent of ©¢(?), Clifford correspondence (see [7, Theorem 6.11]) implies that
x = ¢ for some irreducible character 1 of It (0)(x) = Cu (o), and hence

(g4 1)F(qg—1)"(1), if o is of the second kind.

Since p 1 |Cr (o) : Cp(o)|, [7, Corollary 6.28] implies that ¢ is extendible to
Cy(0); in other words, there exists ¢’ € Irr(Cg (o)) such that zp’cp(o_) = . Since
Cy(0)/Cp(0) is abelian, we have

oCn(o) — Z wil!

w€lrr(Cu (0)/Cp(0))

(1) {Q_k(q —1)"p(1), if o is of the first kind,
X =

(by Gallagher’s Theorem; see [7, Corollary 6.17]), and so ¢ = wy)’ for some w €
Irr(Cr (o)) with Cp(o) C ker(w). It follows that 1c,(s) = ¢, and hence 9 is an
also extension of . Therefore,

(1) = 27F(qg—1)"p(1), if o is of the first kind,
= (g+1)*(g—1)"p(1), if o is of the second kind.

The proof of Theorem 4 is complete because (1) is a power of ¢ (by [1, Theo-
rem 1.3]; see also [11, Theorem 1]). O

Finally, we prove that C (o) is in fact an M-group; that is, every irreducible char-
acter x € Irr(Cg(o)) is induced by a linear character of some subgroup of Cg (o).

More precisely, we shall prove the following result. (For a particular situation, see
[11, Theorem 4].)
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Theorem 6. Let A be a split basic k-algebra with an involution o: A — A, let
G = A* be the unit group of A, and let x be an irreducible character of Cg(o).
Then, there exist a o-invariant subgroup H < G and a linear character 9 of Cy (o)
such that x = 9¢¢(?),

Proof. Let P = 1+ J where § = Rad(A), let ¢ € Irr(Cp(0)) be an irreducible
constituent of the restriction xc, (), and let ¢ € Irry(P) be the Glauberman
correspondent of ¢. By Theorem 5 and by the proof of Theorem 4, we may assume
that ¢ is G-invariant; hence, ¢ is also Cg(c)-invariant, and we have xcg (o) = @
(see the proof of Theorem 4). As in the proof of Theorem 2, let G be the semidirect
product G = G x (o) of G by the cyclic group (o), and let S be a Hall p/-subgroup
of G with o € S. Then, S = GN S is a o-invariant Hall p’-subgroup of G, and
we have a semidirect product G = P.S; on the other hand, Cg (o) is the semidirect
product Cg(o) = Cp(0)Cs(o) (see the proof of Theorem 2).

Now, consider the o-fixed subgroup Cz(c), and observe that C'z(c) is the direct
product Cg(0) = Cs(0) x (0); indeed, o centralizes Cs(c). Thus, by Theorem 2,
C3(0) is an abelian p’-group with exponent dividing ¢ —1 where ¢ = |k?|; moreover,
it is clear that C’g(a) acts on J as a group of k?-linear ring automorphisms (here,
J is naturally considered as a vector space over k?). We note that the character
@ € Irr(P) is Cg(o)-invariant, and claim that @ = 7¥ for some Cgz(o)-invariant
k7-algebra subgroup @ of P and some Cg(0)-invariant linear character 7 of Q; as
in [6], a subgroup @ of P is said to be a k?-algebra subgroup if Q@ =1+ U for some
k?-subalgebra U of J. To prove this, we proceed by induction on the dimension of
J. We consider the (k-)algebra subgroup N = 1+ J? of P; in fact, N is an ideal
subgroup (and hence a normal subgroup) of P; an algebra subgroup of P is said
to be an ideal subgroup if it is of the form 1 4 J for some (two-sided) ideal J of
J. Since Cz(0) and P have coprime orders, [7, Theorem 13.27] asserts that there
exists 7) € It (o) (V) such that (Pn, 7)) # 0.

Firstly, assume that 7 is not P-invariant. In this case, Ip(7)) is a proper algebra
subgroup of P (see [5, Lemma 3.3]); moreover, since 7 is Cg(o)-invariant, Ip(7) is
also Cg(o)-invariant. By [5, Lemma 3.2], there exists ¢ € Irrc_ (o) (Ip (7)) such that
(0,on) # 0 and (on, 1) # 0. By Clifford’s correspondence (see [7, Theorem 6.11]),
we must have $ = o, and the claim follows by induction.

On the other hand, suppose that 7 is P-invariant. In this case, we have g = efj
for some positive integer e; moreover, [4, Theorem 1.3] asserts that 7 is a linear
character (and hence e = $(1)). Let L be a Cg(o)-invariant k?-algebra subgroup
of P which is maximal with respect to the condition that 7 is extendible to L. By
[5, Lemma 3.2|, there exists 7 € Irtc_ () (L) with (7,$1) # 0 and (T, 7)) # 0; since
L/N is abelian, Gallager’s theorem (see |7, Corollary 6.17] implies that 7n = 7).
We shall now prove that @ = 7F. To see this, we consider the inertia group Ip(7)
and assume that Ip(T) # L. Let J and I’ be the k?-subalgebras of J such that
L=1+7Jand Ip(7T) = 1+ 7; notice that Ip(7) is a k?-algebra subgroup of P by
[5, Lemma 3.3] (moreover, since g2 C J,7’, both J and J’' are necessarily k-ideals
of J). Let k?[Cg(0)] denote the group algebra of Cg(c) over the o-fixed field k7,
and consider the left k”[Cz(o)]-module J'/J. Let V be an irreducible k?[Cz(c)]-
submodule of J'/J; notice that we are assuming that J'/J is non-zero. Since the
exponent of Cz(o) divides ¢ — 1 where ¢ = |k?|, k7 is a splitting field for C5(0)
(see [7, Corollary 9.25]), and thus V is one-dimensional (because C'z(0) is abelian).

Albanian J. Math. 12 (2018), no. 1, 79-88.


http://albanian-j-math.com/vol-12.html

CARLOS A. M. ANDRE 87

It follows that there exists a € J'\ J such that J + k%a is an Cg(o)-invariant k-
ideal of g, and hence L, = 14 J +k7a is an Cg(0)-invariant k?-algebra subgroup
of 14+ 7 = Ip(7) such that L C L, and |L, : L| = g. By [7, Theorem 13.28],
there exists 7/ € Irr¢_(,)(Lq) such that (7/,7La) # 0; hence, (7},7) # 0. By
[6, Theorem A], both 7 and 7’ have g-power degree, and thus either 7; = 7 or
7/ = 7la_ The first case cannot occur by the maximal choice of L. Therefore,
7/ = 7L and thus I (7) = L (by |7, Problem 6.1]). Since L, C Ip(7), we
conclude that L, C L, a contradiction. It follows that Ip(7) = L, and this implies
that 7 € Trr(P) (by [7, Problem 6.1]). Since (5, 7F) = (¢1,7) # 0, we conclude
that @ = 7F, as required.

Our claim is now proved; that is, there exist a Cz(co)-invariant k?-algebra sub-
group @ of P and a Cg(o)-invariant linear character 7 of @ such that $ = 7P In
particular, @) is o-invariant, and 7 € Irr,(Q). Let 7 = mo(7T) € Irr(Cq(0)); since
7 is linear, it is clear that 7 = 7¢,(,), and hence 7 is linear and Cgz(o)-invariant.
By [1, Proposition 2.8], we conclude that ¢ = 7CP(9): we recall that o defines an
k?-linear automorphism of 7.

Finally, let H = Cs(0)Q; we note that, since Q is C5(0)-invariant (and Cs(o) <
C3z(0)), H is a subgroup of G satisfying Cy(c) = Cs(0)Cq(0). Since 7 is Cgz(0)-
invariant and p { |Cy (o) : Cg(o)|, [7, Corollary 6.28] implies that 7 is extendible
to Cy(0); in other words, there exists 7/ € Irr(C (o)) such that TéQ(U) = 7. Since

Cu(0)/Cq(o) is abelian, we have

7CH(0) = Z wr’

weIrr(Cr(o)/Cq (o))
(by Gallagher’s Theorem; see [7, Corollary 6.17]), and so

(PCG(O') _ (TCP(U))Cg(U) — TC(;(U) _ Z (WT/)CG(O').
w€elrr(Cr(o)/Cq (o))

On the other hand, since Cg(0) = Cy(0)Cp (o) and Cy (o) N Cp(o) = Cg(o), we
deduce that

(W™)%%D) 00 (0) = (W) cg(e)) TP @ = 70P) = o,

and thus (wr')¢¢(?) is irreducible for all w € Trr(Cy(0)/Cq(o)). Since x is an
irreducible constituent of ¢“¢(?) we conclude that y = (wr’)¢¢(@) for some w €
Irr(Cy (0)/Cq(0)), and this completes the proof of the theorem. O
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