
African Diaspora Journal of Mathematics

Volume 21, Number 1, pp. 73–80 (2018)

ISSN 1539-854X

www.math-res-pub.org/adjm

SM  G H

D

Z Z∗

Department of Primary education, ZiBo Normal college,
ZiBo 255100, China

Abstract

Let C be a semidualizing module over any commutative ring R. We investigate

the semidualizing module C with finite injective dimension. In particular, we obtain

some equivalent characterizations of C under the trivial extension of R by C. More-
over, we get that the supremum of the C-Gorenstein projective dimensions of all R-

modules and the supremum of the C-Gorenstein injective dimensions of all R-modules

are equal. Hence the C-Gorenstein global dimension of the ring R is definable. At last,

we consider the weak C-Gorenstein global dimension.
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1 Introduction

Throughout the note, R is always a commutative ring and C is a semidualizing R-module.

The notion of semidualizing module was studied more than 27 years ago under other names

by, e.g., Foxby [4] (PG-module of rank 1), Golod [5] (suitable module) and Vasconcelos

[15] (spherical module), which can be viewed as a generalization of dualizing module and

free module of rank one. Relative algebra with respect to the semidualizing module C

has caught many authors’ attention. In this field, projective (injective, flat) modules are

generalized to C-projective (injective, flat) modules. Recently, H. Holm, P. Jørgensen, S.

Sather-Wagstaff, and D. White extended the Gorenstein projective (injective, flat) modules

to C-Gorenstein projective (injective, flat) modules. Note that if the semidualizing module

C is the regular module R, then C-Gorenstein projective (injective or flat) modules are just

Gorenstein projective (injective or flat) and the classical homological algebra is generalized

to the Gorenstein homological algebra with respect to the semidualizing module C, for this

topic, we refer the readers to see [8, 12, 16].

In classical homological algebra, we use the projective (injective, flat) modules to re-

solve an R-module, and we get the definitions of homological dimensions. And the homo-

logical dimensions can be used to characterize some rings, which provided for us a new

method to study the classical ring theory. As the counterpart, many authors studied the
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Gorenstein homological dimensions to characterize the Gorenstein rings. Recall that a ring

R is called n-Gorenstein for a nonnegative integer n, if and only if R is both left and right

noetherian and the self-injective dimension of R on both left and right is no more than n.

Enochs and Jenda [3] introduced the Gorenstein ring and showed the homological proper-

ties of modules over such rings, see [3, Chapter 9]. As the generalization of free modules,

the semidualizing modules can replace the regular module R in many cases. Hence it is nat-

ural for us to consider the homological property of a ring when the semidualizing module

C has finite injective dimension.

Throughout this paper, we use pdR(M), idR(M), and f dR(M) to denote, respectively,

the classical projective, injective, and flat dimension of R-module M; we use GpdR(M),

GidR(M), and G f dR(M) to denote, respectively, the Gorenstein projective, injective, and

flat dimension of M; furthermore, we use C-GpdR(M), C-GidR(M) and C-G f dR(M) to

denote, respectively, the C-Gorenstein projective, injective, and flat dimension of M.

We show the following theorem over any commutative ring R, see Theorems 3.4 and

3.8.

Theorem For any nonnegative integer n, if both sup{C-GidR(M) | M ∈ ModR} and

sup{C-GpdR(M) | M ∈ ModR} are finite, then the following are equivalent.

(1) idR(C) ≤ n, i.e., C is dualizing;

(2) sup{C-GpdR(M) | M ∈ ModR} ≤ n;

(3) sup{C-GidR(M) | M ∈ ModR} ≤ n.

Moreover, we show that the C-Gorenstein global dimension of R, denoted by GC -

gldim(R), which is defined following Corollary 3.6, can be computed by a simple formula.

Corollary Let C be a semidualizing R-module. If GC -gldim(R)<∞, then GC -gldim(R)=

sup{C-GpdR(R/I) | I is an ideal o f R}.

At the end, we consider the weak C-Gorenstein global dimension, sup{C-G f dR(M) |

M ∈ ModR}, and denote it by wGC -gldim(R). Obviously, it is a generalization of weak

Gorenstein global dimension of R. We compare the C-Gorenstein global dimension with the

weak C-Gorenstein global dimension of ring R, by our main theorem, we get the following

result.

Theorem Let C be a semidualizing R-module. Then wGC -gldim(R)≤GC -gldim(R) and

when R is Noetherian, they are equal.

It is worthy to note that as an R-module, R is semidualizing. So if we set C to be R,

then we recover the counterpart results in homological algebra and Gorenstein homological

algebra. But the proofs of results in this paper are not trivial generalizations of the existing

proofs.

2 Preliminaries

In this section, we recall a number of definitions, notions and results which will be used

throughout the paper. For unexplained concepts and notations, we refer the reader to [8, 13,

16].
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Definition 2.1. [16, 1.8] An R-module C is called semidualizing if

(1) C admits a degreewise finitely generated projective resolution;

(2) the natural homothety map R −→ HomR(C,C) is an isomorphism;

(3) Ext≥1
R

(C,C) = 0.

Let C be a semidualizing R-module. We denote the class of C-flat R-modules by FC (R),

the C-projective R-modules by PC(R) and the C-injective R-modules by IC(R), respec-

tively. By [10, Definition 5.1], we have that

(1) FC(R) = {C⊗R F | F is f lat};

(2) PC(R) = {C⊗R P | P is pro jective};

(3) IC(R) = {HomR(C, I) | I is in jective}.

As the generalization of Gorenstein injective (projective, flat) modules, Holm and Jørgensen

defined the C-Gorenstein injective (projective, flat) modules over commutative Noetherian

ring R, [8, Definition 2.7], in which the definition of C-Gorenstein projective modules has

been extended to the non-Noetherian ring by White[16], where she called GC -projective

modules, we refer the reader to see [8, 16].

Remark 2.2. By [8, Example 2.8], we know that projective modules are C-Gorenstein pro-

jective, injective modules are C-Gorenstein injective and flat modules are C-Gorenstein flat.

Hence every R-module M admits C-Gorenstein (projective, injective and flat) resolution. It

is easy to see from the proof of [8, Example 2.8] that the condition of R being Noetherian

is not needed.

By [8, Definition 9], for any R-module M, we have the C-Gorenstein projective (injec-

tive, flat) dimension, which was denoted by C-GpdR(M), (C-GidR (M), C-G f dR(M)).

At last, we recall the definition of trivial extension:

Definition 2.3. Let R be a ring and C a semidualizing module. The direct sum R⊕C can be

equipped with the product:

(r,c) · (r
′

,c
′

) = (rr
′

,rc
′

+ r
′

c).

This turns R⊕C into a ring which is called the trivial extension of R by C and denoted by

RnC.

There are canonical ring homomorphisms, R � R nC, which enable us to view R-

modules as RnC-modules, and vice versa. Hence as R-module RnC � R⊕C.

For any R-module M, Holm and Jørgensen demonstrated the relation between the C-

Gorenstein homological dimensions over ring R and the Gorenstein homological dimen-

sions over ring RnC, see [8, Theorem 2.16]. Note that the conclusion in [8, Theorem 2.16]

also holds true for non-Noetherain rings, as we have the following lemma:

Lemma 2.4. Let R be any commutative ring and I an injective R-module. For any R-module

M, we have Exti
RnC

(HomR(RnC, I),M) � Exti
R

(HomR(C, I),M) for all i ≥ 0.
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Proof. By Definition 2.1, C has a degreewise finitely generated projective resolution.

By Definition 2.3, there exist an R-module isomorphism RnC �R⊕C, so as R-module RnC

admits a degreewise finitely generated projective resolution. So by [3, Theorem 3.2.11], we

have the following isomorphisms,

HomR(RnC, I) � HomR(HomR(RnC,C), I) � (RnC)⊗R HomR(C, I).

As an R-module, HomR(C, I) has the following projective resolution

P = · · · → P1→ P0→ HomR(C, I)→ 0.

Since HomR(C, I) ∈ AC(R), TorR
i≥1

(RnC, HomR(C, I)) = 0. Thus applying the functor (Rn

C)⊗R − to P, we get another exact sequence

· · · → (RnC)⊗R P1→ (RnC)⊗R P0→ (RnC)⊗R HomR(C, I)→ 0.

By [8, Lemmas 1.5], we know that (RnC)⊗R P j is a projective RnC-module for any j ≥ 0,

thus the above exact sequence is the projective resolution of the RnC-module (RnC)⊗R

HomR(C, I). Hence we have that

Exti
RnC

(HomR(RnC, I),M)

� Exti
RnC

((RnC)⊗R HomR(C, I),M)

= HiHomRnC((RnC)⊗R P,M)

� HiHomR(P,M)

= Exti
R

(HomR(C, I),M).

Remark 2.5. By [8, Lemma 1.4], each injective RnC-module is a direct summand in a

module HomR(RnC, I) for an injective R-module I. Hence, when R is a commutative ring,

C-GidR(M) = GidRnC(M) for any R-module M by [6, Theorem 2.22]. Similarly, we can

prove C-GpdR(M) = GpdRnC (M) and C-G f dR(M) = G f dRnC(M) over any commutative

ring R.

3 Main results

We give our main results in this section. Firstly, we give a characterization of semidualizing

module C.

For any ring R, we denote Ggldim(R) by the Gorenstein global dimension of R. By [1,

Theorem 1.1],

Ggldim(R) = sup{GpdR(M) | M ∈ ModR} = sup{GidR(M) | M ∈ ModR}.

Proposition 3.1. Let C be a semidualizing R-module and n a non-negative integer. If

idR(C) ≤ n, then

(1) IC-idR(Q) = idR(C⊗R Q) ≤ n for every projective R-module Q;

(2) idRnC(P) ≤ n for every projective RnC-module P.

Proof. (1). Let Q be a projective R-module. As C � C ⊗R, the C-projective R-module

C ⊗Q is the summand of the any direct sum of the C ⊗R. Since idR(C) ≤ n, we have

idR(C⊗Q) ≤ n. On the other hand, we denote the C-injective dimension of Q by IC-idR(Q),

by[14, Theorem 2.11], we have that IC-idR(Q) = idR(C⊗R Q). So IC-idR(Q) ≤ n.

(2). By [8, Lemma 1.5], we only need to show idRnC((RnC)⊗R Q) ≤ n. In fact, there

are R-module isomorphisms

(RnC)⊗R Q � (R⊕C)⊗R Q � Q⊕ (C⊗R Q).
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By [8, Example 2.8], C-injective R-modules are C-Gorenstein injective R-modules. So

C−GidR (Q) ≤ IC − idR(Q) ≤ n and C−GidR(C⊗R Q) ≤ idR(C⊗R Q) ≤ n.

Thus, C-GidR((R nC) ⊗R Q) = C-GidR(Q ⊕ (C ⊗R Q) ≤ n. By Remark 1.5, we get that

GidRnC((RnC)⊗R Q) ≤ n. On the other hand, (RnC)⊗R Q is projective as an RnC-module,

so by [7, Theorem 2.2], we have that

idRnC((RnC)⊗R Q) =GidRnC ((RnC)⊗R Q).

Therefore, idRnC((RnC)⊗R Q) ≤ n.

If we set C = R, the following theorem is exactly [3, Proposition 9.1.7].

Theorem 3.2. Let R be any commutative ring such that Ggldim(RnC) <∞. The following

are equivalent for a non-negative integer n,

(1) idR(C) ≤ n;

(2) idRnC(P) ≤ n for every projective RnC-module P;

(3) pdRnC(E) ≤ n for every injective RnC-module E.

Proof. (1)⇒ (2). It follows by Proposition 3.1(2).

(2)⇒ (3). For any R nC-module M and all i > n, we have Exti
RnC

(M,P) = 0 by (2).

Since Ggldim(RnC) <∞, sup{GpdRnC (M) | M ∈ Mod(RnC)} <∞ by [1, Theorem 1.1].

So GpdRnC (M) ≤ n by [6, Theorem 2.20] and GidRnC (M) ≤ n by [1, Theorem 1.1]. Hence

pdRnC(E) ≤ n for every injective RnC-module E by [6, Theorem 2.22].

(3) ⇒ (1). By (3), Exti
RnC

(E,N) = 0 for all R nC-module N and all i > n. Since

Ggldim(RnC) < ∞, GidRnC (N) ≤ n by [6, Theorem 2.22]. So GpdRnC (N) ≤ n. For any

R-module M, then C-GpdR (M) = GpdRnC (M) ≤ n by Remark 2.5. Hence idR(T ) ≤ n for

any C-projective R-module T by [16, Proposition 2.12]. As C �C⊗R, we get idR(C) ≤ n.

Now, we consider the C-Gorenstein global dimension of R.

Proposition 3.3. Let C be a semidualizing R-module and n a nonnegative integer.

(1) If C-GpdR(M)≤ n for every R-module M, then pdRnC(E) ≤ n for every injective RnC-

module E.

(2) If C-GidR(M)≤ n for every R-module M, then idRnC(P) ≤ n for every projective RnC-

module P.

Proof. We only prove (1) and the proof of (2) is similar.

To show that pdRnC (E) ≤ n for every injective RnC-module E, we only need to show

pdRnC(HomR(RnC, I)) ≤ n for any injective R-module I by [8, Lemma 1.4]. In fact, since R

is commutative, HomR(RnC, I) is an R-module. So we have that C-GpdR (HomR(RnC, I)) ≤

n. Thus GpdRnC (HomR(RnC, I)) ≤ n by Remark 2.5. Following from [7, Theorem 2.1], we

get that pdRnC (HomR(RnC, I)) =GpdRnC (HomR(RnC, I)) ≤ n.

Theorem 3.4. For any nonnegative integer n, if both sup{C-GidR(M) | M ∈ ModR} and

sup{C-GpdR(M) | M ∈ ModR} are finite, then the following are equivalent:
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(1) idR(C) ≤ n, i.e., C is dualizing;

(2) sup{C-GpdR(M) | M ∈ ModR} ≤ n;

(3) sup{C-GidR(M) | M ∈ ModR} ≤ n.

Proof. (1)⇒ (2). Since idR(C) ≤ n, idRnC(P) ≤ n for every projective R nC-module

P by Proposition 2.1(2). So we have that Exti>n
RnC

(M,P) = 0 for any R-module M. But C-

GpdR(M) <∞, so GpdRnC (M) <∞ by Remark 2.5. Thus GpdRnC (M) ≤ n by [6, Theorem

2.20]. Therefore C-GpdR(M) ≤ n by [8, Theorem 2.16], and (2) follows.

(2)⇒ (1). Since C �C⊗R R, C is C-projective. So Exti>n
R

(M,C) = 0. Hence idR(C) ≤ n

by [16, Proposition 2.12].

(2)⇒ (3). By (2), C-GpdR (M) ≤ n for every R-module M. So pdRnC(E) ≤ n for every

injective R nC-module E by Proposition 3.3(1). Hence we have that Exti>n
RnC

(E,M) = 0.

As C-GidR(M) < ∞, GidRnC (M) < ∞. By [6, Theorem 2.22], GidRnC (M) ≤ n. Thus C-

GidR(M) ≤ n also by [8, Theorem 2.16] and (3) follows.

(3)⇒ (2). By (3), C-GidR(M)≤ n for every R-module M. So idRnC(P) ≤ n for every pro-

jective RnC-module P by Proposition 3.3(2). Hence Exti>n
RnC

(M,P) = 0. As C-GpdR(M) <

∞, GpdRnC (M) <∞. By [6, Theorem 2.20], GpdRnC (M) ≤ n. Thus C-GpdR(M) ≤ n also

by [8, Theorem 2.16] and (2) follows.

Remark 3.5. By Theorem 3.4, we know that if both sup{C-GidR(M) | M ∈ ModR} and

sup{C-GpdR(M) |M ∈ModR} are finite, then sup{C-GidR(M) |M ∈ModR}= sup{C-GpdR(M) |

M ∈ ModR}.When sup{C-GidR(M) | M ∈ ModR} is infinite, then there exists an R-module

M, such that C-GidR M =∞, then GidRnC M =∞ by Remark 2.5. Hence sup{GidRnC (M) |

M ∈ ModR} = ∞. But sup{GidRnC(M) | M ∈ ModR} = sup{GpdRnC(M) | M ∈ ModR} by

[1, Theorem 1.1], so there exist an R nC-module N such that GpdRnC (N) = ∞, thus C-

GpdRN =∞ also by Remark 2.5. So sup{C-GpdR(M) | M ∈ ModR} =∞ and vice versa.

Therefore we get the following equality.

Corollary 3.6. Let R be any commutative ring and C a semidualizing R-module. Then

sup{C-GidR(M) | M is an R-module } = sup{C-GpdR (M) | M is an R-module }.

We call the common value in the above Corollary C-Gorenstein global dimension of R

and denote it by GC -gldim(R). It is easy to see that C-Gorenstein global dimension extends

Gorenstein global dimension.

In classical homological algebra, the global dimension of a ring R, denoted by gldim(R),

can be computed via the following formula:

gldim(R) = sup{pd(R/I) | I is an ideal o f R}.

And by Theorem 3.4, the C-Gorenstein global dimension of R can also be computed via a

similar formula.

Corollary 3.7. Let C be a semidualizing R-module. If GC -gldim(R)<∞, then GC -gldim(R)=

sup{C-GpdR(R/I) | I is an ideal o f R}.
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Proof. It is clear that

sup{C−GpdR(R/I) | I is an ideal o f R} ≤GC −gldim(R).

Let sup{C-GpdR(R/I) | I is an ideal o f R} = n <∞. Since C � C ⊗R R, C is C-projective.

So by [16, Proposition 2.12], we have that Extn+1
R

(R/I,C) = 0 for every R ideal I. Consider

the injective resolution of C,

0→ C→ E0→ ·· · → En−1→ T
′

→ 0.

Applying HomR(R/I,−), we get that Ext1
R

(R/I,T
′

) � Extn+1
R

(R/I,C) = 0. By [17, Theo-

rem 9.11], we know that T
′

is injective. So idR(C) ≤ n. By Theorem 3.4, we have that

sup{C-GpdR(M) | M ∈ ModR} ≤ n and thus GC -gldim(R)≤ n by Corollary 3.6. Hence GC -

gldim(R) = sup{C-GpdR(R/I) | I is an ideal o f R}.

At last, we give the definition of the weak C-Gorenstein dimension of ring R and we

denote it by wGC -gldim(R), i.e., wGC -gldim(R)=sup{C-G f dR(M) | M ∈ModR}. Obviously,

it is the generalization of weak Gorenstein global dimension of R. By Remark 2.2, flat mod-

ules are C-Gorenstein flat, hence wGC -gldim(R)≤wgldim(R), where wgldim(R) denotes the

weak global dimension of R. Moreover, we show the connection between the C-Gorenstein

global dimension and the weak C-Gorenstein dimension of ring R.

Theorem 3.8. Let C be a semidualizing R-module. Then wGC -gldim(R) ≤ GC -gldim(R)

and when R is Noetherian, they are equal.

Proof. If GC − gldim(R) =∞, it is obviously that wGC − gldim(R) ≤ GC − gldim(R). If

GC -gldim(R)= n<∞, then idR(C)≤ n by Theorem 3.4 and Corollary 3.6. Thus f dR(Hom(C,E)) ≤

n and Tori>n
R

(Hom(C,E),M) = 0 for every R-module M. On the other hand, by [1, Corollary

1.2(2)] and Remark 2.5, wGC −gldim(R)<∞. Hence C-G f dRM ≤ n for every R-module M

by [6, Theorem 3.14]. Therefore wGC -gldim(R) ≤ n and wGC -gldim(R) ≤GC -gldim(R).

When R is Noetherian, we will show that GC -gldim(R) ≤ wGC -gldim(R). In fact, sup-

pose that wGC -gldim(R) = n for some nonnegative integer n, then for every finitely gen-

erated R-module M, we get that C-G f dR(M) ≤ n. Consider the projective resolution of

M: 0→ Gn → Pn−1→ ·· · → P1 → P0→ M→ 0, with Pi projective for 0 ≤ i ≤ n− 1. By

the definition of C-Gorenstein flat dimension, we know that Gn is C-Gorenstein flat. On

the other hand, R is Noetherian and M is finitely generated, so Gn is finitely presented C-

Gorenstein flat. Thus as RnC-module, Gn is finitely presented Gorenstein flat by [8, Theo-

rem 2.16]. Moreover, R is Noetherian implies that RnC is Noetherian by [11, Page 87]. By

[2, Proposition 1.3], we conclude that Gn is a Gorenstein projective RnC-module. So Gn

is a C-Gorenstein projective R-module also by [8, Theorem 2.16]. Thus C-GpdR(M) ≤ n.

Particularly, we have that C-GpdR(R/I) ≤ n for any R ideal I. So by Corollary 3.7, we have

that GC −gldim(R) ≤ n. Hence GC −gldim(R) ≤ wGC −gldim(R) and so

GC −gldim(R) = wGC −gldim(R).
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