Translator Disclaimer
2014 Le laplacien d'une quasi-bialgèbre de Lie
M. Bangoura, I. Bakayoko
Afr. Diaspora J. Math. (N.S.) 17(1): 10-31 (2014).

Abstract

Lie quasi-bialgebras are natural generalisations of Lie bialgebras introduced by Drinfeld. To any finite-dimensional Lie quasi-bialgebra structure $(\mathcal{G}, \mu, \gamma, \phi)$ and a $\mathcal{D}$-module structure $M$, where $\mathcal{D}$ is the double of the given Lie quasi-bialgebra, we associate one operator $L_{M} =\partial_{\mu, M}d_{\gamma, M} + d_{\gamma, M}\partial_{\mu, M}$ called the laplacien of the Lie quasi-bialgebra associated to the $\mathcal{D}$-module structure. We establish the fondamentals properties of the laplacian and give an explicit formula for $L_{M}$ by mean of adjoint characters of $\mathcal{G}$ and $\mathcal{G^*}$.

Citation

Download Citation

M. Bangoura. I. Bakayoko. "Le laplacien d'une quasi-bialgèbre de Lie." Afr. Diaspora J. Math. (N.S.) 17 (1) 10 - 31, 2014.

Information

Published: 2014
First available in Project Euclid: 20 October 2014

zbMATH: 1355.17022
MathSciNet: MR3270010

Subjects:
Primary: 17A30, 17B70

Rights: Copyright © 2014 Mathematical Research Publishers

JOURNAL ARTICLE
22 PAGES


SHARE
Vol.17 • No. 1 • 2014
Back to Top