Open Access
2014 Topological Structure of the Solutions Set of Impulsive Semilinear Differential Inclusions with Nonconvex Right-Hand Side
M. Benchohra, J. J. Nieto, A. Ouahab
Afr. Diaspora J. Math. (N.S.) 16(2): 72-91 (2014).

Abstract

In this paper, we study the topological structure of solution sets for the following first-order impulsive evolution inclusion with initial conditions: $$ \left\{ \begin{array}{rlll} y'(t)-Ay(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\\ y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m\\ y(0)&=&a\in E, \end{array} \right. $$where $J:=[0,b]$ and $0 = t_0 < t_1 < \,... \,< t_m < b$, $A$ is the infinitesimal generator of a $C_0-$semigroup of linear operator $T(t)$ on a separable Banach space $E$ and $F$ is a set-valued map. The functions $I_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1, \ldots ,m$). The continuous selection of the solution set is also investigated.

Citation

Download Citation

M. Benchohra. J. J. Nieto. A. Ouahab. "Topological Structure of the Solutions Set of Impulsive Semilinear Differential Inclusions with Nonconvex Right-Hand Side." Afr. Diaspora J. Math. (N.S.) 16 (2) 72 - 91, 2014.

Information

Published: 2014
First available in Project Euclid: 20 October 2014

zbMATH: 1332.34103
MathSciNet: MR3270008

Subjects:
Primary: 34A37 , 34A60 , 34G20

Keywords: absolute retract , compactness , Impulsive differential inclusions , semigroup , solution set

Rights: Copyright © 2014 Mathematical Research Publishers

Vol.16 • No. 2 • 2014
Back to Top