Abstract
In this paper, we study the topological structure of solution sets for the following first-order impulsive evolution inclusion with initial conditions: $$ \left\{ \begin{array}{rlll} y'(t)-Ay(t) &\in& F(t,y(t)), &\hbox{ a.e. } \, t\in J\backslash \{t_{1},\ldots,t_{m}\},\\ y(t^+_{k})-y(t^-_k)&=&I_{k}(y(t_{k}^{-})), &k=1,\ldots,m\\ y(0)&=&a\in E, \end{array} \right. $$where $J:=[0,b]$ and $0 = t_0 < t_1 < \,... \,< t_m < b$, $A$ is the infinitesimal generator of a $C_0-$semigroup of linear operator $T(t)$ on a separable Banach space $E$ and $F$ is a set-valued map. The functions $I_k$ characterize the jump of the solutions at impulse points $t_k$ ($k=1, \ldots ,m$). The continuous selection of the solution set is also investigated.
Citation
M. Benchohra. J. J. Nieto. A. Ouahab. "Topological Structure of the Solutions Set of Impulsive Semilinear Differential Inclusions with Nonconvex Right-Hand Side." Afr. Diaspora J. Math. (N.S.) 16 (2) 72 - 91, 2014.
Information