Open Access
Translator Disclaimer
2013 Asymptotic Behavior of Mild Solutions of Some Fractional Functional Integro-differential Equations
Giséle Mophou, Gaston M. N'Guérékata, Vincent Valmorin
Afr. Diaspora J. Math. (N.S.) 16(1): 70-81 (2013).

Abstract

In this paper, we prove a new composition theorem for asymptotically antiperiodic and weighted pseudo antiperiodic functions. We also give some sufficient conditions to ensure invertibility of convolution operators in the space of antiperiodic functions. Then we prove the existence and uniqueness of asymptotically antiperiodic mild solutions to some fractional functional integro-differential equations in a Banach space using the Banach's fixed point theorem.

Citation

Download Citation

Giséle Mophou. Gaston M. N'Guérékata. Vincent Valmorin. "Asymptotic Behavior of Mild Solutions of Some Fractional Functional Integro-differential Equations." Afr. Diaspora J. Math. (N.S.) 16 (1) 70 - 81, 2013.

Information

Published: 2013
First available in Project Euclid: 30 January 2014

MathSciNet: MR3161672
zbMATH: 1294.47100

Subjects:
Primary: 47D06
Secondary: 34G10 , 45M05

Keywords: anti-periodicity , Integro-differential equation , mild solution

Rights: Copyright © 2013 Mathematical Research Publishers

JOURNAL ARTICLE
12 PAGES


SHARE
Vol.16 • No. 1 • 2013
Back to Top