THE ORTHOGONAL COMPLEMENT RELATIVE TO THE FUNCTOR EXTENSION OF THE CLASS OF ALL GORENSTEIN PROJECTIVE MODULES

MOHAMMED TAMEKKANTE*

Department of Mathematics Faculty of Science and Technology of Fez, Box 2202 University S.M. Ben Abdellah Fez, Morocco

Abstract

In this paper, we study the pair $(\mathcal{GP}(R), \mathcal{GP}(R)^{\perp})$ where $\mathcal{GP}(R)$ is the class of all Gorenstein projective modules. We prove that it is a complete hereditary cotorsion theory, provided l.Ggldim $(R) < \infty$. We discuss also, when every Gorenstein projective module is Gorenstein flat.

AMS Subject Classification: 13D05, 13D02.

Keywords: Cotorsion theory, Gorenstein homological dimensions of modules and rings.

1 Introduction

Throughout the paper, all rings are associative with identity, and an *R*-module will mean left *R*-module unless explicitly stated otherwise.

Let *R* be a ring, and let *M* be an *R*-module. As usual, we use $pd_R(M)$, $id_R(M)$, and $fd_R(M)$ to denote, respectively, the classical projective dimension, injective dimension, and flat dimension of *M*. We denote by $M^+ = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ the *character module* of *M*.

For a two-sided Noetherian ring R, Auslander and Bridger [1] introduced the G-dimension, $\operatorname{Gdim}_R(M)$, for every finitely generated R-module M. They showed that $\operatorname{Gdim}_R(M) \leq \operatorname{pd}_R(M)$ for all finitely generated R-modules M, and equality holds if $\operatorname{pd}_R(M)$ is finite.

Several decades later, Enochs and Jenda [5, 6] introduced the notion of Gorenstein projective dimension (*G*-projective dimension for short), as an extension of *G*-dimension to modules that are not necessarily finitely generated, and the Gorenstein injective dimension (*G*-injective dimension for short) as a dual notion of Gorenstein projective dimension. Then, to complete the analogy with the classical homological dimension, Enochs, Jenda, and Torrecillas [8] introduced the Gorenstein flat dimension. Some references are [2, 3, 4, 5, 6, 8, 12].

^{*}E-mail address: tamekkante@yahoo.fr

Recall that an *R*-module *M* is called *Gorenstein projective*, if there exists an exact sequence of projective *R*-modules:

$$\mathbf{P}: \cdots \longrightarrow P_{-1} \longrightarrow P_{-1} \longrightarrow P_{0} \longrightarrow P_{1} \longrightarrow P_{2} \longrightarrow \cdots$$

such that $M \cong \text{Im}(P_0 \to P_1)$ and such that the functor $\text{Hom}_R(-,Q)$ leaves **P** exact whenever Q is a projective *R*-module. The complex **P** is called a *complete projective resolution*.

The Gorenstein injective R-modules is defined dually.

An *R*-module *M* is called *Gorenstein flat*, if there exists an exact sequence of flat *R*-modules:

$$\mathbf{F}:\cdots\longrightarrow F_{-2}\longrightarrow F_{-1}\longrightarrow F_{0}\longrightarrow F_{1}\longrightarrow F_{2}\longrightarrow\cdots$$

such that $M \cong \text{Im}(F_0 \to F_1)$ and such that the functor $I \otimes_R -$ leaves **F** exact whenever *I* is a right injective *R*-module. The complex **F** is called a complete flat resolution.

The Gorenstein projective, injective, and flat dimensions are defined in terms of resolutions and denoted by Gpd(-), Gid(-), and Gfd(-), respectively (see [3, 7, 12]).

Notation. By $\mathcal{P}(R)$ and I(R) we denote the classes of all projective and injective *R*-modules, respectively, and by $\overline{\mathcal{P}(R)}$ and $\overline{I(R)}$ we denote the classes of all modules with finite projective dimensions and injective dimensions, respectively. Furthermore, we let $\mathcal{GP}(R)$ and $\mathcal{GI}(R)$ denote the classes of all Gorenstein projective and injective *R*-modules, respectively.

In [2], the authors proved the equality

$$\sup \{ \operatorname{Gpd}_R(M) \mid M \text{ is a (left) } R \operatorname{-module} \} = \sup \{ \operatorname{Gid}_R(M) \mid M \text{ is a (left) } R \operatorname{-module} \}.$$

They called the common value of the above quantities the *left Gorenstein global dimension* of R and denoted it by l.Ggldim(R). Similarly, they set

 $l.wGgldim(R) = \sup{Gfd_R(M) | M \text{ is a (left) R-module}}$

which they called the *left weak Gorenstein global dimension* of *R*.

Given a class \mathfrak{X} of *R*-modules we set:

$$\begin{aligned} \mathfrak{X}^{\perp} &= \ker \operatorname{Ext}^{1}_{R}(\mathfrak{X}, -) &= \{ M \mid \operatorname{Ext}^{1}_{R}(X, M) = 0 \text{ for all } X \in \mathfrak{X} \}. \\ ^{\perp} \mathfrak{X} &= \ker \operatorname{Ext}^{1}_{R}(-, \mathfrak{X}) &= \{ M \mid \operatorname{Ext}^{1}_{R}(M, X) = 0 \text{ for all } X \in \mathfrak{X} \}. \end{aligned}$$

The class \mathfrak{X}^{\perp} (resp., $^{\perp}\mathfrak{X}$) is usually called the *right (resp., left) orthogonal complement relative to the functor* $\operatorname{Ext}^{1}_{R}(-,-)$ *of the class* \mathfrak{X} .

Definition 1.1 (Precovers and Preenvelopes). Let \mathfrak{X} be any class of *R*-modules and let *M* be an *R*-module.

• An \mathfrak{X} -precover of M is an R-homomorphism $\varphi: X \to M$ where $X \in \mathfrak{X}$ and such that the sequence

 $\operatorname{Hom}_{R}(X',X) \xrightarrow{\operatorname{Hom}_{R}(X',\varphi)} \operatorname{Hom}_{R}(X',M) \longrightarrow 0$

is exact for every $X' \in \mathfrak{X}$. An \mathfrak{X} -precover is called *special*, if φ is surjective and $\ker(\varphi) \in \mathfrak{X}^{\perp}$.

• An \mathfrak{X} -preenvelope of M is an R-homomorphism $\varphi: M \to X$ where $X \in \mathfrak{X}$ and such that the sequence,

 $\operatorname{Hom}_{R}(X,X') \xrightarrow{\operatorname{Hom}_{R}(\varphi,X')} \operatorname{Hom}_{R}(M,X') \longrightarrow 0$

is exact for every $X' \in \mathfrak{X}$. An \mathfrak{X} -preenvelope is called *special*, if φ is injective and $\operatorname{coker}(\varphi) \in {}^{\perp}\mathfrak{X}$.

For more details about precovers (and preenvelopes), the reader may consult [7, Chapters 5 and 6].

Definition 1.2 ([12], **Resolving classes 1.1**). For any class \mathfrak{X} of *R*-modules.

- We call \mathfrak{X} projectively resolving, if $\mathcal{P}(R) \subseteq \mathfrak{X}$ and for every short exact sequence $0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$ with $X'' \in \mathfrak{X}$ the conditions $X' \in \mathfrak{X}$ and $X \in \mathfrak{X}$ are equivalent.
- We call \mathfrak{X} *injectively resolving*, if $I(R) \subseteq \mathfrak{X}$ and for every short exact sequence $0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$ with $X' \in \mathfrak{X}$ the conditions $X'' \in \mathfrak{X}$ and $X \in \mathfrak{X}$ are equivalent.

A pair $(\mathfrak{X}, \mathfrak{Y})$ of classes of *R*-modules is called a *cotorsion theory* [7], if $\mathfrak{X}^{\perp} = \mathfrak{Y}$ and $^{\perp}\mathfrak{Y} = \mathfrak{X}$. In this case, we call $\mathfrak{X} \cap \mathfrak{Y}$ the kernel of $(\mathfrak{X}, \mathfrak{Y})$. Note that each element *K* of the kernel is a splitter in the sense of [11], *i.e.*, $\text{Ext}^{1}_{R}(K,K) = 0$. If \mathfrak{C} is any class of modules, then $(^{\perp}\mathfrak{C}, (^{\perp}\mathfrak{C})^{\perp})$ is easily seen be a cotorsion theory, called a *cotorsion theory generated* by \mathfrak{C} (see [13, Definition 1.10]). A cotorsion theory $(\mathfrak{X}, \mathfrak{Y})$ is called *complete* [13], if every *R*-module has a special \mathfrak{Y}-preenvelope (or equivalently every *R*-module has a special \mathfrak{X} -precover; see [13, Lemma 1.13]). A cotorsion theory $(\mathfrak{X}, \mathfrak{Y})$ is said to be *hereditary* [10], if whenever $0 \to L' \to L \to L'' \to 0$ is exact with $L, L'' \in \mathfrak{X}$, then L' is also in \mathfrak{X} , or equivalently, if $0 \to M' \to M \to M'' \to 0$ is exact $M', M \in \mathfrak{Y}$, then M'' is also in \mathfrak{Y} .

The aim of this paper is the study of the pair $(GP(R), GP(R)^{\perp})$.

Note: Below, we have only proved the results concerning the Gorenstein projective modules. The proofs of the Gorenstein injective ones are dual, and we can find a dual of the results using in the proofs in [12].

2 Lemmas

In this section, we recall some fundamental results about Gorenstein projective modules and dimensions. These results are extracted from the work of Holm in [12].

The first lemma shows that the class of Gorenstein projective modules is projectively resolving:

Lemma 2.1 ([12], Theorems 2.5). Let R be a ring. Then, The class GP(R) is projectively resolving. Moreover, it is closed under direct sums and direct summands.

The next lemma study the GP(R)-precovers of *R*-modules with finite Gorenstein projective dimension.

Lemma 2.2 ([12], Theorems 2.10). *Let M be an R-module with finite Gorenstein projective dimension n. Then M admits a surjective GP(R)-precover,* φ : $G \rightarrow M$, where $K = \ker \varphi$ *satisfies* $pd_R K = n - 1$ (*if n* = 0, *this should be interpreted as K* = 0).

In the following lemma, Holm gave a functorial description of the finite Gorenstein projective dimension of modules.

Lemma 2.3 ([12], Theorem 2.20). *Let M be an R-module with finite Gorenstein projective dimension, and let n be an integer. Then the following conditions are equivalent:*

- 1. $\operatorname{Gpd}_R(M) \leq n$.
- 2. $\operatorname{Ext}_{R}^{i}(M,L) = 0$ for all i > n, and all *R*-modules *L* with finite $\operatorname{pd}_{R}(L)$.
- 3. $\operatorname{Ext}_{R}^{i}(M,Q) = 0$ for all i > n, and all projective R-modules Q.
- 4. For every exact sequence of *R*-module $0 \rightarrow K_n \rightarrow G_{n-1} \rightarrow \cdots \rightarrow G_0 \rightarrow M \rightarrow 0$ where G_0, \dots, G_{n-1} are Gorenstein projectives, K_n is also Gorenstein projective.

Recall that the finitistic projective dimension of R is defined as:

 $FPD(R) = \sup \{ pd_R(M) \mid M \text{ is an } R \text{-module with } pd_R(M) < \infty \}$

Lemma 2.4 ([12], Theorems 2.28). For any ring R there is an equality

 $FPD(R) = \sup\{Gpd_R(M) \mid M \text{ is an } R\text{-module with finite Gorenstein projective dimension}\}.$

3 Main results

We begin with the following theorem:

Theorem 3.1. For any ring *R*, the following holds:

- 1. $\operatorname{Ext}^{i}_{R}(G,M) = 0$ for all i > 0, all $G \in \mathcal{GP}(R)$, and all $M \in \mathcal{GP}(R)^{\perp}$.
- 2. $\operatorname{Ext}^{i}_{R}(M,G) = 0$ for all i > 0, all $G \in GI(R)$, and all $M \in {}^{\perp}GI(R)$.
- 3. $GP(R)^{\perp}$ and $^{\perp}GI(R)$ are projectively resolving.
- 4. $GP(R)^{\perp}$ and $^{\perp}GI(R)$ are injectively resolving.

Proof. (1) Let *M* and *G* be an arbitrary elements of $GP(R)^{\perp}$ and GP(R), respectively, and let n > 1 be an integer. Pick an exact sequence $0 \to G' \to P_1 \to ... \to P_n \to G \to 0$ where all P_i are projectives. By the projectively resolving of GP(R) (Lemma 2.1), *G'* is clearly Gorenstein projective. Consequently, we have $\operatorname{Ext}_R^n(G,M) = \operatorname{Ext}_R^1(G',M) = 0$, as desired.

(2) By a dual argument to (1).

(3) We claim that $\mathcal{GP}(R)^{\perp}$ is projectively resolving. Using the long exact sequence in homology, we conclude that $\mathcal{GP}(R)^{\perp}$ is closed by extension, *i.e.*, if $0 \to M \to M' \to M'' \to 0$ is an exact sequence where M and M'' are in $\mathcal{GP}(R)^{\perp}$, then so is M'. In addition, from the

definition of Gorenstein projective modules, it is clear that $\mathcal{P}(R) \subseteq \mathcal{GP}(R)^{\perp}$. Now, consider a short exact sequence $0 \to M \to M' \to M'' \to 0$ where M' and M'' are in $\mathcal{GP}(R)^{\perp}$. For an arbitrary Gorenstein projective *R*-module *G*, consider a short exact sequence $0 \to G \to P \to$ $G' \to 0$ where *P* is projective and *G'* is Gorenstein projective (such a sequence exists by the definition of Gorenstein projective modules). From the long exact sequence of homology, we have:

$$\cdots \to \operatorname{Ext}^1_R(G',M'') \to \operatorname{Ext}^2_R(G',M) \to \operatorname{Ext}^2_R(G',M') \to \ldots$$

Then, $\operatorname{Ext}_R^2(G', M) = 0$ since $\operatorname{Ext}_R^1(G', M'') = \operatorname{Ext}_R^2(G', M') = 0$ (from (1) above). Accordingly, $\operatorname{Ext}_R^1(G, M) = \operatorname{Ext}_R^2(G', M) = 0$, as desired.

(4) We claim that $\mathcal{GP}(R)^{\perp}$ is injectively resolving. Clearly, $I(R) \subseteq \mathcal{GP}(R)^{\perp}$, and $\mathcal{GP}(R)^{\perp}$ is closed by extension. Now, consider a short exact sequence $0 \to M \to M' \to M'' \to 0$ where *M* and *M'* belongs to $\mathcal{GP}(R)^{\perp}$. Using the long exact sequence of homology, for all Gorenstein projective module *G*, we have

$$\cdots \to \operatorname{Ext}^1_R(G, M') \to \operatorname{Ext}^1_R(G, M'') \to \operatorname{Ext}^2_R(G, M) \to \ldots$$

Thus, from (1), $\operatorname{Ext}_{R}^{1}(G, M'') = 0$. Hence, $M'' \in \mathcal{GP}(R)^{\perp}$. Consequently, $\mathcal{GP}(R)^{\perp}$ is injectively resolving.

From the above theorem, we conclude the following two corollary.

Corollary 3.2. For any ring R,

- 1. $\mathcal{P}(R) = \mathcal{G}P(R) \cap \mathcal{G}P(R)^{\perp}$.
- 2. $I(R) = GI(R) \cap^{\perp} GI(R)$.

Proof. (1) Let $M \in \mathcal{GP}(R) \cap \mathcal{GP}(R)^{\perp}$ and consider a short exact sequence $0 \to M' \to P \to M \to 0$ where P is projective. Since $\mathcal{GP}(R)^{\perp}$ is projectively resolving (by Theorem 3.1), $M' \in \mathcal{GP}(R)^{\perp}$. Then, $\operatorname{Ext}_{R}^{1}(M, M') = 0$. Therefore, this short exact sequence splits. Consequently, M is a direct summand of P, and then projective.

(2) By a dual proof to (1).

Corollary 3.3.

- 1. [12, Proposition 2.27] Every Gorenstein projective (resp., injective) module with finite projective (resp., injective) dimension is projective (resp., injective).
- 2. Every Gorenstein projective (resp., injective) module with finite injective (resp., projective) dimension is projective (resp., injective).

Proof. (1) If *M* is a Gorenstein projective module with finite projective dimension, then $M \in \mathcal{GP}(R) \cap \mathcal{GP}(R)^{\perp}$ (by Lemma 2.3). Consequently, *M* is projective (by Corollary 3.2). The injective case is dual.

(2) Note that every module *I* with $id_R(I) := n < \infty$ belongs to $\mathcal{GP}(R)^{\perp}$. Indeed, by the definition of the Gorenstein projective modules, for each Gorenstein projective module *G* we can find an exact sequence $0 \to G \to P_{n-1} \to ... \to P_0 \to G' \to 0$ where all P_i are projective and *G'* is Gorenstein projective. Thus, we have $\operatorname{Ext}_R^1(G,I) = \operatorname{Ext}_R^{n+1}(G',I) = 0$.

Now, if *M* is a Gorenstein projective module with finite injective dimension, then $M \in \mathcal{GP}(R) \cap \mathcal{GP}(R)^{\perp}$. Accordingly, by Corollary 3.2, *M* is projective.

Dually, we can prove that every module with finite projective dimension is an element of $^{\perp}GI(R)$. Consequently, by Corollary 3.2, every Gorenstein injective module with finite projective dimension is injective.

The main result of this paper is the following theorem:

Theorem 3.4. If l.Ggldim $(R) < \infty$, then $(\mathcal{GP}(R), \mathcal{GP}(R)^{\perp})$ and $(^{\perp}\mathcal{GI}(R), \mathcal{GI}(R))$ are complete, hereditary cotorsion theories.

Proof. (1) To show that $(GP(R), GP(R)^{\perp})$ is a cotorsion theory, we have to prove that ${}^{\perp}(GP(R)^{\perp}) = GP(R)$. Let M be an element of ${}^{\perp}(GP(R)^{\perp})$. Since $\operatorname{Gpd}_R(M) < \infty$ and from Lemmas 2.2 and 2.3, M admits a surjective GP(R)-precover $\varphi: G \to M$ where $K = \ker(\varphi) \in GP(R)^{\perp}$. Then, G is a special GP(R)-precover of M, and the short exact sequence $0 \to K \to G \to M \to 0$ splits since $\operatorname{Ext}^1_R(M, K) = 0$. Thus, M is a direct summand of G. Hence, M is Gorenstein projective (by Lemma 2.1). Consequently, ${}^{\perp}(GP(R)^{\perp}) \subseteq GP(R)$, while the other inclusion is clear. Therefore, $(GP(R), GP(R)^{\perp})$ is a cotorsion theory, and every R-module has a special GP(R)-precover. This implies that $(GP(R), GP(R)^{\perp})$ is complete. Moreover, since GP(R) is projectively resolving and $GP(R)^{\perp}$ is injectively resolving, this cotorsion theory is hereditary.

(2) To prove the dual Gorenstein injective result, we use the dual result of Lemmas 2.1 and 2.2.

Proposition 3.5. If l.Ggldim(R) < ∞ , then $\mathcal{GP}(R)^{\perp} = \overline{\mathcal{P}(R)} = \overline{I(R)} = {}^{\perp}\mathcal{GI}(R)$.

Proof. Clearly, by Lemma 2.3, $\overline{\mathcal{P}(R)} \subseteq \mathcal{GP}(R)^{\perp}$. Now, let $M \in \mathcal{GP}(R)^{\perp}$ and N be an arbitrary *R*-module, and set n := l.Ggldim(R). We have, $\operatorname{Gpd}_R(N) \leq n$. Then, by Lemma 2.3, we can find an exact sequence

$$0 \longrightarrow G \longrightarrow P_n \longrightarrow \dots \longrightarrow P_1 \longrightarrow N \longrightarrow 0$$

where all P_i are projective and G is Gorenstein projective. Thus, by Theorem 3.1, for all j > 0, $\operatorname{Ext}_R^{j+n}(N,M) = \operatorname{Ext}_R^j(G,M) = 0$. Consequently, $\operatorname{id}_R(M) \le n$. Using [2, Corollary 2.7], $\overline{\mathcal{P}(R)} = \overline{I(R)}$ since l.Ggldim $(R) < \infty$. Then, $M \in \overline{\mathcal{P}(R)}$. Accordingly, $\mathcal{GP}(R)^{\perp} = \overline{\mathcal{P}(R)}$. Similarly, we prove that ${}^{\perp}\mathcal{GI}(R) = \overline{I(R)}$. This finishes the proof.

Proposition 3.6. If $\mathcal{GP}(R) = {}^{\perp}(\overline{\mathcal{P}(R)})$ and $\mathcal{GP}(R)^{\perp} = \overline{\mathcal{P}(R)}$, then $\operatorname{FPD}(R) = l.\operatorname{Ggldim}(R)$.

Proof. From [13, Theorem 2.2], every *R*-module admits a special $\mathcal{GP}(R)^{\perp}$ -preenvelope. On the other hand, by hypothesis, $(\mathcal{GP}(R), \mathcal{GP}(R)^{\perp})$ is the cotorsion theory generated by $\overline{\mathcal{P}(R)}$. Then, $(\mathcal{GP}(R), \overline{\mathcal{P}(R)})$ is a complete cotorsion theory. Therefore, every *R*-module *M* has a special $\mathcal{GP}(R)$ -precover.

The inequality $\text{FPD}(R) \leq l.\text{Ggldim}(R)$ follows from Lemma 2.4. Now, suppose that $\text{FPD}(R) \leq n$ and let M be an arbitrary R-module. We claim that $l.\text{Ggldim}(R) < \infty$. From the first part of this proof, M admits a special $\mathcal{GP}(R)$ -precover. Then, there is an exact sequence $0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0$ where G is Gorenstein projective and $K \in \mathcal{GP}(R)^{\perp} = \overline{\mathcal{P}(R)}$. Thus, $\text{pd}_R(K) \leq n$, and so $\text{Gpd}_R(M) \leq n+1$. Hence, $l.\text{Ggldim}(R) \leq n+1 < \infty$. Consequently, by Lemma 2.4, $l.\text{Ggldim}(R) = \sup{\text{Gpd}_R(M \mid \text{Gpd}_R(M) < \infty} = \text{FPD}(R)$.

From the above propositions, we conclude the following characterization of the left Gorenstein global dimension of a ring *R*, provided $FPD(R) < \infty$.

Corollary 3.7. *If* $FPD(R) < \infty$, *then the following are equivalent:*

- *l.* $l.\text{Ggldim}(R) < \infty$.
- 2. $GP(R) = {}^{\perp} \overline{\mathcal{P}(R)}$ and $GP(R)^{\perp} = \overline{\mathcal{P}(R)}$.

Proof. $(1) \Rightarrow (2)$ The first equality follows from Lemma 2.3, whereas the second follows from Proposition 3.5.

 $(2) \Rightarrow (1)$ Follows from Proposition 3.6.

Now, we discuss the rings over which "every Gorenstein projective module is Gorenstein flat".

Proposition 3.8. For any ring *R*, the following are equivalent:

- 1. Every Gorenstein projective module is Gorenstein flat.
- 2. $I^+ \in GP(R)^{\perp}$ for every right injective *R*-module *I*.
- 3. $(F^+)^+ \in GP(R)^{\perp}$ for every flat *R*-module *F*.

Proof. (1) \Rightarrow (2) Let *I* be a right injective *R*-module. Since every Gorenstein projective *R*-module is Gorenstein flat, and by the definition of the Gorenstein flat modules, we have $\operatorname{Tor}_{R}^{1}(I,G) = 0$ for all $G \in \mathcal{GP}(R)$. By adjointness, we have $\operatorname{Ext}_{R}^{1}(G,I^{+}) = (\operatorname{Tor}_{R}^{1}(I,G))^{+} = 0$. Consequently, $I^{+} \in \mathcal{GP}(R)^{\perp}$.

 $(2) \Rightarrow (1)$ Consider a complete projective resolution

P:
$$\cdots \to P_{-2} \xrightarrow{f_2} P_{-1} \xrightarrow{f_{-1}} P_0 \xrightarrow{f_0} P_1 \xrightarrow{f_1} P_2 \to \cdots$$

We decompose it into a short exact sequences $0 \to G_i \to P_i \to G'_i \to 0$ where $G_i = \ker(f_i)$ and $G'_i = \operatorname{Im}(f_i)$. From [12, Observation 2.2], G_i and G'_i are Gorenstein projectives. Now, let I be a right injective *R*-module. By hypothesis, we have $(\operatorname{Tor}^1_R(I, G'_i))^+ = \operatorname{Ext}^1_R(G'_i, I^+) = 0$. Then, $\operatorname{Tor}^1_R(I, G'_i) = 0$. Therefore,

$$0 \to I \otimes_R G_i \to I \otimes_R P_i \to I \otimes_R G'_i \to 0$$

is exact. Thus, $I \otimes_R -$ keeps the exactness of **P**. Then, **P** is a complete flat resolution. Consequently, every Gorenstein projective module is Gorenstein flat.

 $(2) \Rightarrow (3)$ Let F be a flat R-module. Then, F^+ is a right injective R-module. Consequently, $(F^+)^+ \in \mathcal{GP}(R)^{\perp}$.

 $(3) \Rightarrow (2)$ Let *I* be a right injective *R*-module. There exists a flat *R*-module *F* such that $F \to I^+ \to 0$ is exact. Then, $0 \to (I^+)^+ \to F^+$ is exact. However, $0 \to I \to (I^+)^+$ is exact (by [9, Proposition 3.52]). Thus, $0 \to I \to F^+$ is exact, and then *I* is a direct summand of F^+ . Hence, I^+ is a direct summand of $(F^+)^+$. On the other hand, it is easy to see that $\mathcal{GP}(R)^{\perp}$ is closed under direct summands. Consequently, $I^+ \in \mathcal{GP}(R)^{\perp}$, as desired.

Proposition 3.9. For any ring R, $\sup{Gfd_R(M) | M \text{ is Gorenstein projective}} = 0 \text{ or } \infty$.

78

Proof. Note that if $\operatorname{Gfd}_R(M) \leq n$, then we have $\operatorname{Tor}_R^i(I,M) = 0$ for all i > n. Indeed, the case n = 0 follows directly from the definition of the Gorenstein flats modules, whereas the case n > 0 is deduced from the first case by an *n*-step projective resolution of M. Suppose that $\sup{\operatorname{Gfd}_R(M) | M}$ is Gorenstein projective} = $n < \infty$. Then, $\operatorname{Ext}_R^{n+1}(G, I^+) = (\operatorname{Tor}_R^{n+1}(I,G))^+ = 0$ for every right injective module I and every Gorenstein projective module G. However, for every Gorenstein projective module G we can find an exact sequence $0 \to G \to P_{n-1} \to \ldots \to P_0 \to G' \to 0$ where all P_i are projective and G' is Gorenstein projective. Thus, $\operatorname{Ext}_R^{n+1}(G, I^+) = 0$. So, $I^+ \in GP(R)^{\perp}$ for every right injective module I. Then, by Proposition 3.8, every Gorenstein projective = 0, as desired.

A direct consequence of the above proposition is the following corollary:

Corollary 3.10. If l.wGgldim $(R) < \infty$, then every Gorenstein projective *R*-module is Gorenstein flat.

Acknowledgement. The author would like to express his sincere thanks to the referee for his helpful suggestions.

References

- M. Auslander and M. Bridger, *Stable module theory*, Mem. Amer. Math. Soc. 94 (1969), MR 42#4580.
- [2] D. Bennis and N. Mahdou, *Global Gorenstein dimensions*, Proc. Amer. Math. Soc. 138 (2) (2010), 461-465.
- [3] L. W. Christensen, *Gorenstein dimensions*. Lecture Notes in Math. 1747. Springer-Verlag, Berlin, 2000.
- [4] L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and flat dimensions - a functorial description with applications, J. Algebra 302 (2006), 231-279.
- [5] E. Enochs and O. Jenda, On Gorenstein injective modules, Comm. Algebra 21 (1993), 3489-3501.
- [6] E. Enochs and O. Jenda, *Gorenstein injective and projective modules*, Math. Z. 220 (1995), 611-633.
- [7] E. Enochs and O. Jenda, *Relative Homological Algebra*, de Gruyter Exp. Math. 30 (2000).
- [8] E. Enochs, O. Jenda, and B. Torrecillas, *Gorenstein flat modules*, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), 1-9.
- [9] C. Faith, Algebra 1: Rings, Modules and Categories. Berlin- Heidelberg- New York, Springer 1981.

80	Tamekkante Mohammed
[10]	J. R. García Rozas, <i>Covers and Envelopes in the Category of Complexes of Modules</i> . Boca Raton, FL: Chapman and Hall/CRC (1999).
[11]	R. Gobel and S. Shelah, <i>Cotorsion theories and splitters</i> , Trans. Amer. Math. Soc. 352 (2000), 5357-5379.
[12]	H. Holm, <i>Gorenstein homological dimensions</i> , J. Pure Appl. Algebra 189 (2004), 167-193.
[13]	J. Trlifaj, <i>Covers, Envelopes, and Cotorsion Theories</i> . Lecture notes for the workshop, Homological Methods in Module Theory. Cortona, September (2000), 10-16.