Translator Disclaimer
April 2012 Geometry of fractional spaces
Gianluca Calcagni
Adv. Theor. Math. Phys. 16(2): 549-644 (April 2012).

Abstract

We introduce fractional flat space, described by a continuous geometry with constant non-integer Hausdorff and spectral dimensions. This is the analogue of Euclidean space, but with anomalous scaling and diffusion properties. The basic tool is fractional calculus, which is cast in a way convenient for the definition of the differential structure, distances, volumes, and symmetries. By an extensive use of concepts and techniques of fractal geometry, we clarify the relation between fractional calculus and fractals, showing that fractional spaces can be regarded as fractals when the ratio of their Hausdorff and spectral dimension is greater than one. All the results are analytic and constitute the foundation for field theories living on multi-fractal spacetimes, which are presented in a companion paper.

Citation

Download Citation

Gianluca Calcagni. "Geometry of fractional spaces." Adv. Theor. Math. Phys. 16 (2) 549 - 644, April 2012.

Information

Published: April 2012
First available in Project Euclid: 23 January 2013

zbMATH: 1268.28009
MathSciNet: MR3019412

Rights: Copyright © 2012 International Press of Boston

JOURNAL ARTICLE
96 PAGES


SHARE
Vol.16 • No. 2 • April 2012
Back to Top