Translator Disclaimer
June 2008 Exact renormalization of a noncommutative Φ3 model in 6 dimensions
Harald Grosse, Harold Steinacker
Adv. Theor. Math. Phys. 12(3): 605-639 (June 2008).

Abstract

The noncommutative self-dual φ3 model in six dimensions is quantized and essentially solved, by mapping it to the Kontsevich model. The model is shown to be renormalizable and asymptotically free, and solvable genus by genus. It requires both wavefunction and coupling constant renormalization. The exact (“all-order”) renormalization of the bare parameters is determined explicitly, which turns out to depend on the genus 0 sector only. The running coupling constant is also computed exactly, which decreases more rapidly than predicted by the 1-loop beta-function. A phase transition to an unstable phase is found.

Citation

Download Citation

Harald Grosse. Harold Steinacker. "Exact renormalization of a noncommutative Φ3 model in 6 dimensions." Adv. Theor. Math. Phys. 12 (3) 605 - 639, June 2008.

Information

Published: June 2008
First available in Project Euclid: 7 May 2008

zbMATH: 1177.81104
MathSciNet: MR2399320

Rights: Copyright © 2008 International Press of Boston

JOURNAL ARTICLE
35 PAGES


SHARE
Vol.12 • No. 3 • June 2008
Back to Top