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Abstract. In this paper, we study a nonlocal eigenvalue problem involving
variable exponent growth conditions, on a bounded domain Ω ⊂ Rn. Using
adequate variational techniques, mainly based on Ekeland’s variational princi-
ple, we establish the existence of a continuous family of eigenvalues lying in a
neighborhood at the right of the origin.

1. Introduction

A very interesting area of nonlinear analysis lies in the study of elliptic equa-
tions involving fractional operators. Recently, great attention has been focused
on these problems, both for pure mathematical research and in view of concrete
real-world applications. Indeed, this type of operator arises in a quite natural
way in different contexts, such as the description of several physical phenomena,
optimization, population dynamics, and mathematical finance. The fractional
Laplacian operator (−∆)s, 0 < s < 1, also provides a simple model to describe
some jump Lévy processes in probability theory (see [1, 4, 5, 6] and the references
therein).

In last years, a large number of papers are written on fractional Sobolev spaces
and nonlocal problems driven by this operator (see, for instance, [5, 6, 8, 20, 21, 22]
for further details). Specifically, we refer to Di Nezza, Palatucci, and Valdinoci
[8], for a full introduction to the study of the fractional Sobolev spaces and the
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fractional Laplacian operators.
On the other hand, attention has been paid to the study of partial differential
equations involving the p(x)-Laplacian operators; see [9, 10, 12, 11, 14, 19] and
the references therein.
So the natural question that arises is to see which result we will obtain, if we
replace the p(x)-Laplacian operator by its fractional version (the fractional p(x)-
Laplacian operator).
Currently, as far as we know, the only results for fractional Sobolev spaces
with variable exponents and fractional p(x)-Laplacian operator are obtained by
[2, 3, 7, 13, 24]. In particular, the authors generalized the last operator to the
fractional case. Then, they introduced an appropriate functional space to study
problems in which a fractional variable exponent operator is present.

Now, let us introduce the fractional Sobolev space with the variable exponent
as it is defined in [7].
Let Ω be a smooth bounded open set in RN and let p : Ω × Ω −→]1,+∞[ be a
continuous bounded function. We assume that

1 < p− = min
(x,y)∈Ω×Ω

p(x, y) ⩽ p(x, y) ⩽ p+ = max
(x,y)∈Ω×Ω

p(x, y) < +∞ (1.1)

and

p is symmetric, that is, p(x, y) = p(y, x) for all (x, y) ∈ Ω× Ω. (1.2)

We set
p̄(x) = p(x, x) for all x ∈ Ω.

Throughout this paper, s is a fixed real number such that 0 < s < 1.
We define the fractional Sobolev space with variable exponent via the Gagliardo
approach as follows:

W = W s,p(x,y)(Ω)

=

{
u ∈ Lp̄(x)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|sp(x,y)+N
dxdy < +∞, for some λ > 0

}
,

where Lp̄(x)(Ω) is the Lebesgue space with variable exponent (see section 2).
The space W s,p(x,y)(Ω) is a Banach space (see [13]) if it is equipped with the norm

∥u∥W = ∥u∥Lp̄(x)(Ω) + [u]s,p(x,y),

where [.]s,p(x,y) is a Gagliardo seminorm with variable exponent, which is defined
by

[u]s,p(x,y) = [u]s,p(x,y)(Ω) = inf

{
λ > 0 :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|sp(x,y)+N
dxdy ⩽ 1

}
.

The space(W, ∥.∥W ) is separable reflexive ; see [3, Lemma 3.1].

The fractional p(x)-Laplacian operator is given by

(−∆p(x))
su(x) = p.v.

∫
Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy, for all x ∈ Ω,
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where p.v. is a commonly used abbreviation in the principal value sense.

Remark 1.1. Note that (−∆p(x))
s is a generalized operator of the fractional p-

Laplacian operator (−∆p)
s (i.e., when p(x, y) = p = constant) and is the frac-

tional version of the p(x)-Laplacian operator ∆p(x)u(x) = div
(
|∇u(x)|p(x)−2u(x)

)
,

which is associated with the variable exponent Sobolev space.

In this paper, we are concerned with the study of the eigenvalue problem,

(Ps)

 (−∆p(x))
su(x) + |u(x)|p̄(x)−2u(x) = λ|u(x)|r(x)−2u(x) in Ω,

u = 0 in RN \ Ω,

where Ω is a smooth open and bounded set in RN (N ⩾ 3), λ > 0 is a real
number, p : Ω× Ω −→]1,+∞[ is a continuous function satisfying (1.1) and (1.2)
and r : Ω −→]1,+∞[ is a continuous function such that

1 < r− = min
x∈Ω

r(x) ⩽ r(x) ⩽ r+ = max
x∈Ω

r(x) < p− for all x ∈ Ω. (1.3)

We will show that any λ > 0 sufficiently small is an eigenvalue of the above non-
local nonhomogeneous problem. The proof relies on simple variational arguments
based on Ekeland’s variational principle.
Our main result generalizes the work of Mihăilescu and Rădulescu [16], in the
fractional case. More precisely, we replace ∆p(x), which is a local operator, by the
nonlocal operator (−∆p(x))

s.

In the context of eigenvalue, problems involving variable exponent represent a
starting point in analyzing more complicated equations. A first contribution in
this sense is the paper of X. L. Fan, Q. H. Zhang and D. Zhao [11], where the
following eigenvalue problem has been considered,

(P1)

 −div
(
|∇u(x)|p(x)−2∇u(x)

)
= λ|u(x)|p(x)−2u(x) inΩ,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ⩾ 3) is a bounded domain with smooth boundary ∂Ω, the
functionp : Ω −→]1,+∞[ is continuous, and λ > 0 is a real number. The result
obtained in [11] establishes the existence of infinitely many eigenvalues for prob-
lem (P1) by using an argument based on the Ljusternik–Schnirelmann critical
point theory. Denoting by Λ the set of all nonnegative eigenvalues, the authors
showed that sup Λ = +∞ and they pointed out that only under special con-
ditions, which are somehow connected with a kind of monotony of the function
p(x), we have inf Λ > 0 (this is in contrast with the case when p(x) is a constant;
then, we always have inf Λ > 0).
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Going further, another eigenvalue problem involving variable exponent growth
conditions intensively studied is the following:

(P2)

 −div
(
|∇u(x)|p(x)−2∇u(x)

)
= λ|u(x)|q(x)−2u(x) in Ω,

u = 0 on ∂Ω,

where p, q : Ω −→]1,+∞[ are two continuous functions and λ > 0 is a real
number.
Note that when p(x) ̸= q(x), the competition between the growth rates involved
in problem (P2) is essential in describing the set of eigenvalues of this problem
and we cite the following:

• In the case when min
x∈Ω

q(x) < min
x∈Ω

p(x) and q(x) has a subcritical growth,

Mihăilescu and Rădulescu [16] used Ekeland’s variational principle in or-
der to prove the existence of a continuous family of eigenvalues which lies
in a neighborhood of the origin. This result is later extended by Fan in
[9].

• In the case when max
x∈Ω

p(x) < min
x∈Ω

q(x) and q(x) has a subcritical growth,

a mountain pass argument, similar with that used by Fan and Zhang [10],
can be applied in order to show that any λ > 0 is an eigenvalue of problem
(P2).

• Finally, in the case when max
x∈Ω

q(x) < min
x∈Ω

p(x), it can be proved that the

energetic functional, which can be associated with the eigenvalue prob-
lem, has a nontrivial minimum for any positive λ large enough (see, [10]).
Clearly, in this case, the result of Mihăilescu and Rădulescu [16] can be
also applied. Consequently, in this situation there exist two positive con-
stants λ∗ and λ∗∗ such that any λ ∈]0, λ∗[∪]λ∗∗,+∞[ is an eigenvalue of
the problem.

In an appropriate context, we also point out the study of the eigenvalue problem,

(P3)

 −div
(
(∇u(x)|p1(x)−2 + |∇u(x)|p2(x)−2)∇u(x)

)
= λ|u(x)|q(x)−2u(x) in Ω,

u = 0 on ∂Ω,

where p1, p2, q : Ω −→]1,+∞[ are continuous functions satisfying

1 < p2(x) < min
x∈Ω

q(x) ⩽ max
x∈Ω

q(x) < p1(x) < N for all x ∈ Ω

and

max
x∈Ω

q(x) <
Np2(x)

N − p2(x)
for all x ∈ Ω.

For this problem Mihăilescu and Rădulescu [15] proved the existence of two posi-
tive constants λ0 and λ1 with λ0 ⩽ λ1 such that any λ ∈]λ1,+∞[ is an eigenvalue
of problem (P3) while any λ ∈]0, λ0[ is not an eigenvalue of problem (P3).

This paper is organized as follows. In section 2, we give some definitions and
fundamental properties of the spaces Lq(x) andW . In section 3, we introduce some
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important lemmas which show that the functional Jλ (see section 3) satisfies the
geometrical conditions of the mountain pass theorem. Finally, using Ekeland’s
variational principle, we prove that the problem (Ps) has a continuous spectrum
which concentrates around the origin.

2. Some preliminary results

In this section, we recall some necessary properties of variable exponent spaces.
For more details, we refer the reader to [12, 14, 19], and the references therein.
Consider the set

C+(Ω) =
{
q ∈ C(Ω) : q(x) > 1 for all x ∈ Ω

}
.

For all q ∈ C+(Ω), we define

q+ = sup
x∈Ω

q(x) and q− = inf
x∈Ω

q(x).

For any q ∈ C+(Ω), we define the variable exponent Lebesgue space as

Lq(x)(Ω) =

{
u : Ω −→ R measurable :

∫
Ω

|u(x)|q(x)dx < +∞
}
.

This vector space endowed with the Luxemburg norm, which is defined by

∥u∥Lq(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣q(x)dx ⩽ 1

}
,

is a separable reflexive Banach space.
Let q̂ ∈ C+(Ω) be the conjugate exponent of q, that is, 1

q(x)
+ 1

q̂(x)
= 1. Then we

have the following Hölder-type inequality ]:

Lemma 2.1 (Hölder inequality). If u ∈ Lq(x)(Ω) and v ∈ Lq̂(x)(Ω), then∣∣∣∣ ∫
Ω

uvdx

∣∣∣∣ ⩽ (
1

q−
+

1

q̂−

)
∥u∥Lq(x)(Ω)∥v∥Lq̂(x)(Ω) ⩽ 2∥u∥Lq(x)(Ω)∥v∥Lq̂(x)(Ω).

A very important role in manipulating the generalized Lebesgue spaces with
variable exponent is played by the modular of the Lq(x)(Ω) space, which defined
by

ρq(.) : L
q(x)(Ω) −→ R

u −→ ρq(.)(u) =
∫
Ω
|u(x)|q(x)dx.

Proposition 2.1. Let u ∈ Lq(x)(Ω); then we have

(i) ∥u∥Lq(x)(Ω) < 1(resp. = 1, > 1) ⇔ ρq(.)(u) < 1(resp.= 1, > 1),

(ii) ∥u∥Lq(x)(Ω) < 1 ⇒ ∥u∥q+
Lq(x)(Ω)

⩽ ρq(.)(u) ⩽ ∥u∥q−
Lq(x)(Ω)

,

(iii) ∥u∥Lq(x)(Ω) > 1 ⇒ ∥u∥q−
Lq(x)(Ω)

⩽ ρq(.)(u) ⩽ ∥u∥q+
Lq(x)(Ω)

.

Proposition 2.2. If u, uk ∈ Lq(x)(Ω) and k ∈ N, then the following assertions
are equivalent:

(i) lim
k→+∞

∥uk − u∥Lq(x)(Ω) = 0,
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(ii) lim
k→+∞

ρq(.)(uk − u) = 0,

(iii) uk −→ u in measure in Ω and lim
k→+∞

ρq(.)(uk) = ρq(.)(u).

In [13], the authors introduced the variable exponent Sobolev fractional space
as follows:

E = W s,q(x),p(x,y)(Ω)

=

{
u ∈ Lq(x)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|sp(x,y)+N
dxdy < +∞, for some λ > 0

}
,

where q : Ω −→]1,+∞[ is a continuous function, such that

1 < q− = min
(x,y)∈Ω×Ω

q(x) ⩽ q(x) ⩽ q+ = max
(x,y)∈Ω×Ω

q(x) < +∞.

We would like to mention that the continuous and compact embedding theorem
is proved in [13] under the assumption q(x) > p̄(x) = p(x, x). Here, we give a
slightly different version of compact embedding theorem assuming that q(x) =
p̄(x), which can be obtained by following the same discussions in [13].

Theorem 2.1. Let Ω be a smooth bounded domain in RN and let s ∈]0, 1[. Let
p : Ω × Ω −→]1,+∞[ be a continuous variable exponent with sp(x, y) < N for
all (x, y) ∈ Ω × Ω. Let (1.1) and (1.2) be satisfied. Let r : Ω −→]1,+∞[ be a
continuous variable exponent such that

p∗s(x) =
Np̄(x)

N − sp̄(x)
> r(x) ⩾ r− = min

x∈Ω
r(x) > 1 for all x ∈ Ω.

Then, there exists a constant C = C(N, s, p, r,Ω) > 0 such that, for any u ∈ W ,

∥u∥Lr(x)(Ω) ⩽ C∥u∥W
Thus, the space W is continuously embedded in Lr(x)(Ω) for any r ∈]1, p∗s[. More-
over, this embedding is compact.

Remark 2.1. Let W0 denote the closure of C∞
0 (Ω) in W , that is,

W0 = C∞
0 (Ω)

||.||W
.

(1) Theorem 2.1 remains true if we replace W by W0.
(2) Since p∗s(x) > p̄(x) ⩾ p− > 1, then Theorem 2.1 implies that [.]s,p(x,y) is a

norm on W0, which is equivalent to the norm ∥.∥W . So (W0, [.]s,p(x,y)) is
a Banach space (see, for instance, [24]).

Definition 2.1. Let p : Ω × Ω −→]1,+∞[, be a continuous variable exponent
and let s ∈]0, 1[. For any u ∈ W , we define the modular
ρp(.,.) : W −→ R, by

ρp(.,.)(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

|u(x)|p̄(x)dx

and

∥u∥ρp(.,.) = inf

{
λ > 0 : ρp(.,.)

(
u

λ

)
⩽ 1
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Remark 2.2.

(1) It is easy to see that ∥.∥ρp(.,.) is a norm, which is equivalent to the norm

∥.∥W .
(2) ρp(.,.) also check the results of Propositions 2.1 and 2.2.

We could also get the following properties:

Lemma 2.2. (see [24, Lemma 2.1] )
Let p : Ω×Ω −→]1,+∞[, be a continuous variable exponent and let s ∈]0, 1[. For
any u ∈ W0, we have

(i) 1 ⩽ [u]s,p(x,y) ⇒ [u]p
−

s,p(x,y) ⩽
∫
Ω×Ω

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy ⩽ [u]p

+

s,p(x,y),

(ii) [u]s,p(x,y) ⩽ 1 ⇒ [u]p
+

s,p(x,y) ⩽
∫
Ω×Ω

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy ⩽ [u]p

−

s,p(x,y).

Let denote by L the operator associated to the (−∆p(x))
s defined as

L : W0 −→ W ∗
0

u −→ L(u) : W0 −→ R

φ −→ <L(u), φ >

such that

< L(u), φ >=

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dxdy,

where W ∗
0 is the dual space of W0.

Lemma 2.3. (see[3]). Assume that assumptions (1.1) and (1.2) are satisfied and
that0 < s < 1. Then, the following assertions hold:

• L is a bounded and strictly monotone operator.
• L is a mapping of type (S+), that is, if uk ⇀ u in W0 and lim sup

k−→+∞
<

L(uk)− L(u), uk − u >⩽ 0, then uk −→ u in W0.
• L is a homeomorphism.

3. Main results

Definition 3.1. We say that u ∈ W0 is a weak solution of problem (Ps), if, for
all φ ∈ W0, we have∫

Ω×Ω

|u(x)− u(y)|p(x,y)−2
(
u(x)− u(y)

)(
φ(x)− φ(y)

)
|x− y|N+sp(x,y)

dxdy

+

∫
Ω

|u(x)|p̄(x)−2u(x)φ(x)dx− λ

∫
Ω

|u(x)|r(x)−2u(x)φ(x)dx = 0. (3.1)

Moreover, we say that λ is an eigenvalue of problem (Ps), if there exists u ∈
W0 \ {0} which satisfies (3.1), that is, u is the corresponding eigenfunction to λ.
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Let us consider the energy functional Jλ corresponding to the problem (Ps),
defined by Jλ : W0 −→ R

Jλ(u) =

∫
Ω×Ω

1

p(x, y)

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

p̄(x)
|u(x)|p̄(x)dx

−λ

∫
Ω

1

r(x)
|u(x)|r(x)dx

for any λ > 0.

3.1. Some important lemmas. Now, we introduce some important lemmas
that show that the functional Jλ satisfies the geometrical conditions of the moun-
tain pass theorem that are necessary to establish the proof of the existence result.

Lemma 3.1. Let Ω be a smooth bounded open set in RN and s ∈]0, 1[. Let
p : Ω×Ω −→]1,+∞[, be a continuous variable exponent satisfied (1.1) and (1.2)
with sp(x, y) < N for all (x, y) ∈ Ω×Ω and let r : Ω −→]1,+∞[ be a continuous
variable exponent such that 1 < r(x) < p− for all x ∈ Ω. Then,

(1) Jλ is well defined,
(2) Jλ ∈ C1(W0,R) and for all u, φ ∈ W0, its Gâteaux derivative is given by:

< J ′
λ(u), φ >=

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω

|u(x)|p̄(x)−2u(x)φ(x)dx− λ

∫
Ω

|u(x)|r(x)−2u(x)φ(x)dx.

Proof. (i) Let u ∈ W0; then

Jλ(u) =
∫
Ω×Ω

1
p(x,y)

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω

1
p̄(x)

|u(x)|p̄(x)dx
− λ

∫
Ω

1
r(x)

|u(x)|r(x)dx

⩽ 1
p−

[ ∫
Ω×Ω

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω
|u(x)|p̄(x)dx

]
− λ

r+

∫
Ω
|u(x)|r(x)dx

= 1
p−
ρp(.,.)(u)− λ

r+
ρr(.)(u)

By Proposition 2.1 and Remark 2.2-(ii) we get

Jλ(u) ⩽
1

p−

[
∥u∥p+W0

+ ∥u∥p−W0

]
− λ

r+

[
∥u∥r+

Lr(x)(Ω)
+ ∥u∥r−

Lr(x)(Ω)

]
.

Using Theorem 2.1, we obtain
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Jλ(u) ⩽ 1
p−

[
∥u∥p+W0

+ ∥u∥p−W0

]
− λ

r+

[
Cr+∥u∥r+W0

+ Cr−∥u∥r−W0

]

⩽ 1
p−

[
∥u∥p+W0

+ ∥u∥p−W0

]
− λ

r+
max

{
Cr+ , Cr−

}[
∥u∥r+W0

+ ∥u∥r−W0

]

⩽
(

1
p−

− λ
r+

max
{
Cr+ , Cr−

})[
∥u∥p+W0

+ ∥u∥r+W0

]
< +∞.

(ii)- Existence of the Gâteaux derivative. We define

Ψ(u) =

∫
Ω×Ω

1

p(x, y)

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy , Φ(u) =

∫
Ω

1

p̄(x)
|u(x)|p̄(x)dx

and

Φλ(u) = λ

∫
Ω

1

r(x)
|u(x)|r(x)dx.

Then

Jλ(u) = Ψ(u) + Φ(u)− Φλ(u) and J ′
λ(u) = Ψ ′(u) + Φ′(u)− Φ′

λ(u). (3.2)

• For any u, φ ∈ W0, we have

< Ψ ′(u), φ >=

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dxdy. (3.3)

Indeed,

< Ψ ′(u), φ > = limt−→0
Ψ(u+tφ)−Ψ(u)

t

= limt−→0

{∫
Ω×Ω

|(u(x)+tφ(x))−(u(y)+tφ(y))|p(x,y)−|u(x)−u(y)|p(x,y)
tp(x,y)|x−y|N+sp(x,y) dxdy.

}
(3.4)

Let us consider M : [0, 1] −→ R

α 7−→
∣∣(u(x)− u(y)) + αt(φ(x)− φ(y))

∣∣p(x,y)
tp(x, y)|x− y|N+sp(x,y)

.

The function M is continuous on [1, 0] and differentiable on ]0, 1[. Then by the
mean value theorem, there exists θ ∈]0, 1[ such that

M ′(α)(θ) = M(1)−M(0).

Then∣∣(u(x)− (u(y)) + θt(φ(x)− φ(y))
∣∣p(x,y)−2[

(u(x)− u(y)) + tθ(φ(x)− φ(y))
]
(φ(x)− φ(y))

|x− y|N+sp(x,y)

= St(u, φ) =
|(u(x)− u(y)) + t(φ(x)− φ(y))|p(x,y) − |u(x)− u(y)|p(x,y)

tp(x, y)|x− y|N+sp(x,y)
.

(3.5)
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Combining (3.4) and (3.5), we get,

< Ψ ′(u), φ >= lim
t−→0

∫
Ω×Ω

St(u, φ) dxdy.

Since t, θ ∈ [0.1], so tθ ⩽ 1, which implies

St(u, φ) ⩽
∣∣(u(x)− (u(y)) + (φ(x)− φ(y))

∣∣p(x,y)−2[
(u(x)− u(y)) + (φ(x)− φ(y))

]
(φ(x)− φ(y))

|x− y|N+sp(x,y)
.

On the other hand,

St(u, φ) −→
t→0

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
.

Hence, by the dominated convergence theorem, we obtain (3.3).
By the same argument, we have

< Φ′(u), φ >=

∫
Ω
|u(x)|p̄(x)−2u(x)φ(x) dx and < Φ′

λ(u), φ > λ

∫
Ω
|u(x)|r(x)−2u(x)φ(x)dx.

Then by relation (3.2), the result holds.

Continuity of the Gâteaux derivative of Jλ. Assume that uk −→ u in
W0, and we show that Ψ ′(uk) −→ Ψ ′(u) in W ∗

0 . Indeed,

< Ψ ′(uk)− Ψ ′(u), φ >=

∫
Ω×Ω

[
|uk(x)−uk(y)|p(x,y)−2(uk(x)−uk(y))−|u(x)−u(y)|p(x,y)−2(u(x)−u(y))

]
|x−y|N+sp(x,y)

×(φ(x)− φ(y)) dxdy

=
∫
Ω×Ω

[
|uk(x)−uk(y)|p(x,y)−2(uk(x)−uk(y))

|x−y|
( N
p(x,y)

+s)(p(x,y)−1)
− |u(x)−u(y)|p(x,y)−2(u(x)−u(y))

|x−y|
( N
p(x,y)

+s)(p(x,y)−1)

]

× (φ(x)−φ(y))

|x−y|
N

p(x,y)
+s
dxdy .

Let us set

Fk(x, y) =
|uk(x)− uk(y)|p(x,y)−2(uk(x)− uk(y))

|x− y|(
N

p(x,y)
+s)(p(x,y)−1)

∈ Lp̂(x,y)(Ω× Ω),

F (x, y) =
|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|(
N

p(x,y)
+s)(p(x,y)−1)

∈ Lp̂(x,y)(Ω× Ω),

φ(x, y) =
φ(x)− φ(y)

|x− y|
N

p(x,y)
+s

∈ Lp(x,y)(Ω× Ω),

where 1
p(x,y)

+ 1
p̂(x,y)

= 1.

Hence, by the Hölder inequality (see Lemma 2.1), we obtain

< Ψ ′(uk)− Ψ ′(u), φ >⩽ 2∥Fk − F∥Lp̂(x,y)(Ω×Ω)∥φ∥Lp(x,y)(Ω×Ω).

Thus
∥Ψ ′(uk)− Ψ ′(u)∥W ∗

0
⩽ 2∥Fk − F∥Lp̂(x,y)(Ω×Ω).
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Now, let

vk(x, y) =
uk(x)− uk(y)

|x− y|
N

p(x,y)
+s

∈ Lp(x,y)(Ω×Ω) and v(x, y) =
u(x)− u(y)

|x− y|
N

p(x,y)
+s

∈ Lp(x,y)(Ω×Ω).

Since uk −→ u in W0. Then vk −→ v in Lp(x,y)(Ω× Ω).
Hence, for a subsequence of (vk)k⩾0, we get

vk(x, y) −→ v(x, y) a.e. in Ω×Ω and ∃ h ∈ Lp(x,y)(Ω×Ω) such that |vk(x, y)| ⩽ h(x, y).

So we have

Fk(x, y) −→ F (x, y) a.e. in Ω× Ω and |Fk(x, y)| = |vk(x, y)|p(x,y)−1 ⩽ |h(x, y)|p(x,y)−1.

Then, by the dominated convergence theorem, we deduce that

Fk −→ F in Lp̂(x,y)(Ω× Ω).

Consequently

Ψ ′(uk) −→ Ψ ′(u) in W ∗
0 .

By the same argument, we show that

Φ′(uk) −→ Φ′(u) in
(
Lp̄(x)(Ω)

)∗
and Φ′

λ(uk) −→ Φ′
λ(u) in

(
Lr(x)(Ω)

)∗
.

Then by relation (3.2), we deduce the continuity of J ′
λ. □

The following result shows that the functional Jλ satisfies the first geometrical
condition of the mountain pass theorem;

Lemma 3.2. Let Ω be a smooth bounded open set in RN and let s ∈]0, 1[. Let
p : Ω×Ω −→]1,+∞[, be a continuous variable exponent satisfied (1.1) and (1.2)
with sp(x, y) < N for all (x, y) ∈ Ω×Ω and let r : Ω −→]1,+∞[ be a continuous
variable exponent such that 1 < r(x) < p− for all x ∈ Ω. Then, there exists
λ∗ > 0 such that, for any λ ∈]0, λ∗[, there exist R, a > 0 such that Jλ(u) ⩾ a > 0
for any u ∈ W0 with ∥u∥W0 = R.

Proof. Since r(x) < p∗s(x) for all x ∈ Ω, so by Remark 2.1-(i) W0 is continuously
embedded in Lr(x)(Ω). Then there exists a positive constant c1 such that

∥u∥Lr(x)(Ω) ⩽ c1∥u∥W0 for all u ∈ W0. (3.6)

We fix R ∈]0, 1[ such that R < 1
c1
. Then relation (3.6) implies

∥u∥Lr(x)(Ω) < 1, for all u ∈ W0 with R = ∥u∥W0 .

By Proposition 2.1-(ii), we get∫
Ω

|u(x)|r(x)dx ⩽ ∥u∥r−Lr(x)(Ω) for all u ∈ W0 with R = ∥u∥W0 . (3.7)

Combining (3.6) and (3.7), we get∫
Ω

|u(x)|r(x)dx ⩽ cr
−

1 ∥u∥r−W0
for all u ∈ W0 with R = ∥u∥W0 . (3.8)
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Using the fact that ∥u∥W0 < 1 and (3.8), we deduce that, for any u ∈ W0 with
R = ∥u∥W0 , the following inequalities hold true:

Jλ(u) ⩾ 1
p+

∫
Ω×Ω

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy + 1

p+

∫
Ω
|u(x)|p̄(x)dx

− λ
r−

∫
Ω
|u(x)|r(x)dx

⩾ 1
p+

[ ∫
Ω×Ω

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω
|u(x)|p̄(x)dx

]
− λ

r−

∫
Ω
|u(x)|r(x) dx

⩾ 1
p+
∥u∥p

+

W0
− λ

r−
cr

−
1 ∥u∥r−W0

⩾ 1
p+
Rp+ − λ

r−
cr

−
1 Rr−

⩾ Rr−
(

1
p+
Rp+−r− − λ

r−
cr

−
1

)
.

(3.9)

By the inequality (3.9), we can choose λ∗ in order to

1

p+
Rp+−r− − λ

r−
cr

−

1 > 0

Hence, if

λ∗ =
Rp+−r−

2p+
.
r−

cr
−

1

, (3.10)

then, for any λ ∈]0, λ∗[ and any u ∈ W0 with ∥u∥W0 = R, there exists a = Rp+

2p+
> 0

such that

Jλ(u) ⩾ a > 0,

which completes the proof. □

The following result shows that the functional Jλ satisfies the second geomet-
rical condition of the mountain pass theorem;

Lemma 3.3. Let Ω be a smooth bounded open set in RN and s ∈]0, 1[. Let
p : Ω×Ω −→]1,+∞[, be a continuous variable exponent satisfied (1.1) and (1.2)
with sp(x, y) < N for all (x, y) ∈ Ω×Ω and let r : Ω −→]1,+∞[ be a continuous
variable exponent such that 1 < r(x) < p− for all x ∈ Ω. Then, there exists
φ ∈ W0 such that φ ⩾ 0, φ ̸= 0 and Jλ(tφ) < 0 for any t small enough.

Proof. Assumption (1.3) implies that r− < p−. Let ε > 0 be such that r−+ε ⩽ p−.
Since r ∈ C(Ω), then we can find an open set Ω0 ⊂ Ω such that

|r(x)− r−| ⩽ ε for all x ∈ Ω0.

Consequently,

r(x) ⩽ r− + ε ⩽ p− for all x ∈ Ω0.
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Let φ ∈ C∞
0 (Ω) be such that supp φ ⊂ Ω0, φ(x) = 1 for all x ∈ Ω0, and 0 ⩽ φ ⩽ 1

in ∈ Ω. Then using the above information for any t ∈]0, 1[, we have

Jλ(tφ) =
∫
Ω×Ω

tp(x,y)

p(x,y)
|φ(x)−φ(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω

tp̄(x)

p̄(x)
|φ(x)|p̄(x)dx

− λ
∫
Ω

tr(x)

r(x)
|φ(x)|r(x)dx

⩽ tp−

p−

[ ∫
Ω×Ω

|φ(x)−φ(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω
|φ(x)|p̄(x)dx

]
− λ

∫
Ω0

tr(x)

r(x)
|φ(x)|r(x)dx

⩽ tp
−

p−
ρp(.,.)(u)− λ

r+
tr

−+ε
∫
Ω0

|φ(x)|r(x)dx

⩽ tr
−+ε

[
ρp(.,.)(φ)

p−
tp

−−r−−ε − λ
r+

∫
Ω0

|φ(x)|r(x)dx
]

Thus

Jλ(tφ) < 0 for any t < ξ
1

p−−r−−ε ,

where

0 < ξ < min

{
1,

λp−

r+

∫
Ω0

|φ(x)|r(x)dx
ρp(.,.)(φ)

}
Finally, we point out that ρp(.,.)(φ) > 0 (this fact implies that φ ̸= 0).
Indeed, since supp φ ⊂ Ω0 ⊂ Ω and 0 ⩽ φ ⩽ 1 in Ω, so we get

0 <

∫
Ω0

|φ(x)|r(x)dx ⩽
∫
Ω

|φ(x)|r(x)dx ⩽
∫
Ω

|φ(x)|r−dx. (3.11)

On the other hand, since 1 < r− < p∗s(x) for all x ∈ Ω, then W0 is continuously

embedded in Lr−(Ω), so there exists c2 > 0 such that

∥φ∥Lr− (Ω) ⩽ c2∥φ∥W0 . (3.12)

Combining (3.11) and (3.12), we get

0 <
1

c2
∥φ∥Lr− (Ω) ⩽ ∥φ∥W0 .

This fact and Proposition 2.1 ((ii) or (iii)) imply that

ρp(.,.)(φ) > 0.

Lemma 3.3 is proved □

3.2. Existence result. Our main result is given by the following theorem.

Theorem 3.1. Let Ω be a smooth bounded open set in RN and let s ∈]0, 1[.
Let p : Ω × Ω −→]1,+∞[, be a continuous variable exponent satisfied (1.1) and
(1.2) with sp(x, y) < N for all (x, y) ∈ Ω × Ω and let r : Ω −→]1,+∞[ be a
continuous variable exponent such that 1 < r(x) < p− for all x ∈ Ω. Then there
exists λ∗ > 0 such that every λ ∈]0, λ∗[ is an eigenvalue of problem (Ps).
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The proof of Theorem 3.1 is based on Ekeland’s variational principle and the
mountain pass theorem, and it is divided to two steps.

Proof of Theorem 3.1. Step 1: Let λ∗ > 0 be defined as in (3.10) and let λ ∈
]0, λ∗[. By Lemma 3.2, it follows that

inf
∂BR(0)

Jλ > 0, (3.13)

where ∂BR(0) =
{
u ∈ BR(0) : ∥u∥W0 = R

}
and BR(0) is the ball centered at the

origin and of radius R in W0.
On the other hand, by Lemma 3.3, there exists φ ∈ W0 such that Jλ(tφ) < 0 for
any t small enough. Moreover, by (3.9), for all u ∈ BR(0), we get

Jλ(u) ⩾
1

p+
∥u∥p

+

W0
− λ

r−
cr

−

1 ∥u∥r−W0
. (3.14)

Then we have

−∞ < c̄ = inf
BR(0)

Jλ < 0. (3.15)

Combining (3.13) and (3.15), then we can assume that

0 < ε < inf
∂BR(0)

Jλ − inf
BR(0)

Jλ.

Applying Ekeland’s variational principle to the functional
Jλ : BR(0) −→ R, we find uε ∈ BR(0) such that{ Jλ(uε) < inf

BR(0)

Jλ + ε,

Jλ(uε) < Jλ(u) + ε∥u− uε∥W0 for all u ̸= uε.
(3.16)

So

Jλ(uε) ⩽ inf
BR(0)

Jλ + ε ⩽ inf
BR(0)

Jλ + ε < inf
∂BR(0)

Jλ.

It follows that uε ∈ BR(0).

Now, we consider Iε
λ : BR(0) −→ R

u −→ Jλ(u) + ε∥u− uε∥W0 .

By (3.16), we get

Iε
λ(uε) = Jλ(u) < Iε

λ(u) for all u ̸= uε.

Thus uε is a minimum point of Iε
λ on BR(0). It follows that, for any t > 0 small

enough and v ∈ BR(0),

Iε
λ(uε + tv)− Iε

λ(uε)

t
⩾ 0.

By this fact,we claim that

Jλ(uε + tv)− Jλ(uε)

t
+ ε∥v∥W0 ⩾ 0.
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When t tends to 0+, we have that

< J ′
λ(uε), v > +ε∥v∥W0 ⩾ 0.

This gives
∥Jλ(uε)∥W ∗

0
⩽ ε. (3.17)

Step 2 (Palais–Smale condition). From (3.17), we deduce that there exists a
sequence {wk} ⊂ Br(0) such that

Jλ(wk) −→ c̄ and J ′
λ(wk) −→ 0. (3.18)

From (3.14) and (3.18), we have that {wk} is bounded in W0. Thus there exists
w ∈ W0 such that wk ⇀ w in W0.
By (1.3), we have that r(x) < p∗s(x) for all x ∈ Ω, so by Theorem 2.1 and Remark
2.1, we deduce that W0 is compactly embedded in Lr(x)(Ω); then

wk −→ w in Lr(x)(Ω). (3.19)

Using Lemma 2.1, we have∫
Ω

|wk|r(x)−2wk(wk − w)dx ⩽ 2∥wk∥Lr(x)(Ω)∥wk − w∥Lr(x)(Ω).

So, by (3.19), we get

lim
k−→+∞

∫
Ω

|wk|r(x)−2wk(wk − w)dx = 0. (3.20)

Since p̄(x) < p∗s(x) for all x ∈ Ω, by the same argument, we have

lim
k−→+∞

∫
Ω

|wk|p̄(x)−2wk(wk − w)dx = 0. (3.21)

On the other hand, from (3.18), we get

lim
k−→+∞

< J ′
λ(wk), wk − w >= 0.

Namely,

lim
k−→+∞

{∫
Ω×Ω

|wk(x)− wk(y)|p(x,y)−2
(
wk(x)− wk(y)

)(
(wk(x)− wk(y))− (w(x)− w(y))

)
|x− y|N+sp(x,y)

dxdy

+

∫
Ω
|wk(x)|p̄(x)−2wk(x)

(
wk(x)− w(x)

)
dx− λ

∫
Ω
|wk(x)|r(x)−2wk(x)

(
wk(x)− w(x)

)
dx

}
= 0.

Hence, relations (3.20) and (3.21) yield

lim
k−→+∞

∫
Ω×Ω

|wk(x)− wk(y)|p(x,y)−2
(
wk(x)− wk(y)

)(
(wk(x)− wk(y))− (w(x)− w(y))

)
|x− y|N+sp(x,y)

dxdy = 0.

Using the above information, Lemma 2.3-(ii), and the fact that wk ⇀ w in W0,
we get  lim sup < L(wk), wk − w >⩽ 0,

wk ⇀ w in W0,
L is a mapping of type (S+).

⇒ wk −→ w in W0.

Then by (3.18), we obtain

Jλ(w) = lim
k−→+∞

Jλ(wk) = c̄ < 0 and J ′
λ(w) = 0.
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We conclude that w is a nontrivial critical point of Jλ. Thus w is a nontrivial
weak solution for problem (Ps). Finally any λ ∈]0, λ∗[ is an eigenvalue of problem
(Ps).
The proof of Theorem 3.1 is complete. □
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