VOL. 2 · NO. 1 | Winter 2017
 
VIEW ALL ABSTRACTS +
Articles
Torrey M Gallagher
Adv. Oper. Theory 2 (1), 1-16, (Winter 2017) DOI: 10.22034/aot.1610.1029
KEYWORDS: mean nonexpansive, fixed point, approximate fixed point sequence, nonexpansive, nonlinear operator, 47H10, 47H14
Francisco García-Pacheco
Adv. Oper. Theory 2 (1), 17-20, (Winter 2017) DOI: 10.22034/aot.1610.1033
KEYWORDS: projection, complemented, norm-attaining, 46B20, 46B07, 46B03
Stefan Cobzaş
Adv. Oper. Theory 2 (1), 21-49, (Winter 2017) DOI: 10.22034/aot.1610.1022
KEYWORDS: convex function, convex operator, Lipschitz property, ordered locally convex space, cone, normal cone, normed lattice, barrelled space, metrizale locally convex space, Metric linear space, 46N10, 26A16, 26A51‎, 46A08, 46A16, 46A40, ‎46B40
Natalia Bebiano, Joao da Providência
Adv. Oper. Theory 2 (1), 50-58, (Winter 2017) DOI: 10.22034/aot.1610.1041
KEYWORDS: maximum-entropy inference, generalized free energy inequality, von Neumann entropy, numerical range, 47A12, 62F30, 54C10
Tanmoy Paul
Adv. Oper. Theory 2 (1), 59-77, (Winter 2017) DOI: 10.22034/aot.1611-1052
KEYWORDS: $L_{p}(I,X)$, proximinality, strong proximinality, ball proximinality, 41A50, 46B20, 46E40, ‎46E15
Golla Ramesh
Adv. Oper. Theory 2 (1), 78-86, (Winter 2017) DOI: 10.22034/aot.1611-1060
KEYWORDS: quaternionic Hilbert space, normal operator, Compact operator, right eigenvalue, norm attaining operator, Lindenstrauss theorem, 47S10, 43B15, 35P05
Arash Ghaani Farashahi
Adv. Oper. Theory 2 (1), 87-97, (Winter 2017) DOI: 10.22034/aot.1701-1090
KEYWORDS: compact homogeneous space, $G$-invariant measure, compact group, dual space, unitary representation, irreducible representation, trigonometric polynomials, 43A85, 20G05, 47A67
Back to Top