March/April 2023 Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity
Pascal Bégout, Jesús Ildefonso Díaz
Adv. Differential Equations 28(3/4): 311-340 (March/April 2023). DOI: 10.57262/ade028-0304-311

Abstract

This paper completes some previous studies by several authors on the finite time extinction for nonlinear Schrödinger equation when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|^2)u=\frac{a}{{\varepsilon}+(|u|^2)^\alpha}u,$ with $a\in{\mathbb{C}},$ ${\varepsilon}\ge0,$ $2\alpha=(1-m)$ and $m\in[0,1).$ Here, we consider the sublinear case $0 < m < 1$ with a critical damped coefficient: $a\in{\mathbb{C}}$ is assumed to be in the set $ D(m)=\big\{z\in{\mathbb{C}}; \; {\mathrm{Im}}(z) > 0 \text{ and } 2\sqrt m{\mathrm{Im}}(z)=(1-m){\mathrm{Re}}(z)\big\} . $ Among other things, we know that this damping coefficient is critical, for instance, in order to obtain the monotonicity of the associated operator (see the paper by Liskevich and Perel'muter [16] and the more recent study by Cialdea and Maz'ya [14]). The finite time extinction of solutions is proved by a suitable energy method after obtaining appropriate a priori estimates. Most of the results apply to non-necessarily bounded spatial domains.

Citation

Download Citation

Pascal Bégout. Jesús Ildefonso Díaz. "Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity." Adv. Differential Equations 28 (3/4) 311 - 340, March/April 2023. https://doi.org/10.57262/ade028-0304-311

Information

Published: March/April 2023
First available in Project Euclid: 12 October 2022

Digital Object Identifier: 10.57262/ade028-0304-311

Subjects:
Primary: 35A01 , 35A02 , 35B40 , 35D30 , 35D35 , 35Q55

Rights: Copyright © 2023 Khayyam Publishing, Inc.

JOURNAL ARTICLE
30 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.28 • No. 3/4 • March/April 2023
Back to Top