January/February 2019 Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system
Yasuhide Fukumoto, Xiaopeng Zhao
Adv. Differential Equations 24(1/2): 31-68 (January/February 2019). DOI: 10.57262/ade/1544497234

Abstract

In this paper, the properties of weak and strong solutions for the Hall-magnetohydrodynamic system augmented by the effect of electron inertia are studied. First, we establish the existence and uniqueness of local-in-time strong solutions; Then, we prove the existence of global strong solutions under the condition that $\|u_0\|_{\dot{H}^{\frac12}}+\|B_0\|_{\dot{H}^{\frac12}} +\|\nabla B_0\|_{\dot{H}^{\frac12}}$ is sufficiently small. Moreover, by applying a cut-off function and generalized energy inequality, we show that the weak solution of electron inertia Hall-MHD system approaches zero as the time $t\rightarrow\infty$. Finally, the algebraic decay rate of the weak solution of electron inertia Hall-MHD system is established by using Fourier splitting method and the properties of decay character.

Citation

Download Citation

Yasuhide Fukumoto. Xiaopeng Zhao. "Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system." Adv. Differential Equations 24 (1/2) 31 - 68, January/February 2019. https://doi.org/10.57262/ade/1544497234

Information

Published: January/February 2019
First available in Project Euclid: 11 December 2018

zbMATH: 07192792
MathSciNet: MR3910030
Digital Object Identifier: 10.57262/ade/1544497234

Subjects:
Primary: 35Q35 , 76W05

Rights: Copyright © 2019 Khayyam Publishing, Inc.

Vol.24 • No. 1/2 • January/February 2019
Back to Top