Translator Disclaimer
January/February 2018 Almost global existence of weak solutions for the nonlinear elastodynamics system for a class of strain energies
Sébastien Court, Karl Kunisch
Adv. Differential Equations 23(1/2): 135-160 (January/February 2018).

Abstract

The aim of this paper is to prove the existence of almost global weak solutions for the unsteady nonlinear elastodynamics system in dimension $d=2$ or $3$, for a range of strain energy density functions satisfying some given assumptions. These assumptions are satisfied by the main strain energies generally considered. The domain is assumed to be bounded, and mixed boundary conditions are considered. Our approach is based on a nonlinear parabolic regularization technique, involving the $p$-Laplace operator. First we prove the existence of a local-in-time solution for the regularized system, by a fixed point technique. Next, using an energy estimate, we show that if the data are small enough, bounded by $\varepsilon >0$, then the maximal time of existence does not depend on the parabolic regularization parameter, and the behavior of the lifespan $T$ is $\gtrsim \log (1/\varepsilon)$, defining what we call here almost global existence. The solution is thus obtained by passing this parameter to zero. The key point of our proof is due to recent nonlinear Korn's inequalities proven by Ciarlet and Mardare in $W^{1,p}$ spaces, for $p>2$.

Citation

Download Citation

Sébastien Court. Karl Kunisch. "Almost global existence of weak solutions for the nonlinear elastodynamics system for a class of strain energies." Adv. Differential Equations 23 (1/2) 135 - 160, January/February 2018.

Information

Published: January/February 2018
First available in Project Euclid: 26 October 2017

zbMATH: 06822196
MathSciNet: MR3717164

Subjects:

Rights: Copyright © 2018 Khayyam Publishing, Inc.

JOURNAL ARTICLE
26 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.23 • No. 1/2 • January/February 2018
Back to Top