Abstract
The aim of this work is to demonstrate the effectiveness of the extension theory of symmetric operators in the investigation of the stability of standing waves for the nonlinear Schrödinger equations with two types of non-linearities (power and logarithmic) and two types of point interactions ($\delta$- and $\delta'$-) on a star graph. Our approach allows us to overcome the use of variational techniques in the investigation of the Morse index for self-adjoint operators with non-standard boundary conditions which appear in the stability study. We also demonstrate how our method simplifies the proof of the stability results known for the NLS equation with point interactions on the line.
Citation
Jaime Angulo Pava. Nataliia Goloshchapova. "Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph." Adv. Differential Equations 23 (11/12) 793 - 846, November/December 2018. https://doi.org/10.57262/ade/1537840834