Translator Disclaimer
January/February 2016 Saddle type solutions for a class of reversible elliptic equations
Francesca Alessio, Giuseppina Alessio, Piero Montecchiari
Adv. Differential Equations 21(1/2): 1-30 (January/February 2016).

Abstract

This paper is concerned with the existence of saddle type solutions for a class of semilinear elliptic equations of the type \begin{equation} \Delta u(x)+F_{u}(x,u)=0,\quad x\in\mathbb R^{n},\;\; n\ge 2, \tag*{(PDE)} \end{equation} where $F$ is a periodic and symmetric nonlinearity. Under a non degeneracy condition on the set of minimal periodic solutions, saddle type solutions of $(PDE)$ are found by a renormalized variational procedure.

Citation

Download Citation

Francesca Alessio. Giuseppina Alessio. Piero Montecchiari. "Saddle type solutions for a class of reversible elliptic equations." Adv. Differential Equations 21 (1/2) 1 - 30, January/February 2016.

Information

Published: January/February 2016
First available in Project Euclid: 23 November 2015

zbMATH: 1335.35064
MathSciNet: MR3449328

Subjects:
Primary: 34C37 , 35B05 , 35B40 , 35J20 , 35J60

Rights: Copyright © 2016 Khayyam Publishing, Inc.

JOURNAL ARTICLE
30 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.21 • No. 1/2 • January/February 2016
Back to Top