Translator Disclaimer
November/December 2016 Global weak solutions for Boussinesq system with temperature dependent viscosity and bounded temperature
Francesco De Anna
Adv. Differential Equations 21(11/12): 1001-1048 (November/December 2016).

Abstract

In this paper, we obtain a result about the global existence of weak solutions to the d-dimensional Boussinesq-Navier-Stokes system, with viscosity dependent on temperature. The initial temperature is only supposed to be bounded, while the initial velocity belongs to some critical Besov Space, invariant to the scaling of this system. We suppose the viscosity close enough to a positive constant, and the $L^\infty$-norm of their difference plus the Besov norm of the horizontal component of the initial velocity is supposed to be exponentially small with respect to the vertical component of the initial velocity. In the preliminaries, and in the appendix, we consider some $L^p_t L^q_x$ regularity Theorems for the heat kernel, which play an important role in the main proof of this article.

Citation

Download Citation

Francesco De Anna. "Global weak solutions for Boussinesq system with temperature dependent viscosity and bounded temperature." Adv. Differential Equations 21 (11/12) 1001 - 1048, November/December 2016.

Information

Published: November/December 2016
First available in Project Euclid: 13 October 2016

zbMATH: 1375.35312
MathSciNet: MR3556759

Subjects:
Primary: 35Q30, 35Q35, 76D03

Rights: Copyright © 2016 Khayyam Publishing, Inc.

JOURNAL ARTICLE
48 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.21 • No. 11/12 • November/December 2016
Back to Top