Translator Disclaimer
2006 An existence and stability result for standing waves of nonlinear Schrödinger equations
Louis Jeanjean, Stefan Le Coz
Adv. Differential Equations 11(7): 813-840 (2006).

Abstract

We consider a nonlinear Schrödinger equation with a nonlinearity of the form $V(x)g(u)$. Assuming that $V(x)$ behaves like $|x|^{-b}$ at infinity and $g(s)$ like $|s|^p$ around $0$, we prove the existence and orbital stability of travelling waves if $1 < p < 1+(4-2b)/N$.

Citation

Download Citation

Louis Jeanjean. Stefan Le Coz. "An existence and stability result for standing waves of nonlinear Schrödinger equations." Adv. Differential Equations 11 (7) 813 - 840, 2006.

Information

Published: 2006
First available in Project Euclid: 18 December 2012

zbMATH: 1155.35095
MathSciNet: MR2236583

Subjects:
Primary: 35J60
Secondary: 35B35, 35Q55

Rights: Copyright © 2006 Khayyam Publishing, Inc.

JOURNAL ARTICLE
28 PAGES


SHARE
Vol.11 • No. 7 • 2006
Back to Top