2005 Higher integrability for parabolic equations of $p(x,t)$-Laplacian type
Stanislav Antontsev, Vasilii Zhikov
Adv. Differential Equations 10(9): 1053-1080 (2005). DOI: 10.57262/ade/1355867817

Abstract

Let $\Omega\subset\mathbb{R}^{n}$, $n\geq2$, be a bounded domain withboundary $\partial\Omega$, and $Q=\Omega\times(0,T]$ be a cylinder of height $Ts < \infty$. We study local weak solutions of the parabolic equation \[ Lu\equiv\frac{\partial u}{\partial t}-div\left( \left| \nabla u\right| ^{p(z)-2}\nabla u\right)=0,\quad z=(x,t)\in\Omega\times(0,T), \] with variable exponent of nonlinearity $p$. We assume that $p(z)\in C(\Omega)$ and is such that \[ \frac{2n}{n+2}s < \alpha\leq p(z)\leq\beta < \infty,\quad z\in Q, \] \[ \left| p(z_{1})-p(z_{2})\right| \leq\omega(|z_{1}-z_{2}|)\quad \forall \,(z_{1},\,z_{2})\in\overline{Q}, \] \[ \overline{\lim_{\tau\rightarrow0}}\quad \omega(\tau)\ln\frac{1}{\tau}s <\infty. \] We prove that the weak solution is bounded and establish Meyer's type estimates: there exists a positive constant $\varepsilon>0$ such that for every subdomain $Q^{\prime}$, $\overline{Q^{\prime}}\subset Q$, \[ \int_{Q^{\prime}}\left| \nabla u\right| ^{p(z)(1+ \varepsilon )}dz s <\infty. \]

Citation

Download Citation

Stanislav Antontsev. Vasilii Zhikov. "Higher integrability for parabolic equations of $p(x,t)$-Laplacian type." Adv. Differential Equations 10 (9) 1053 - 1080, 2005. https://doi.org/10.57262/ade/1355867817

Information

Published: 2005
First available in Project Euclid: 18 December 2012

zbMATH: 1122.35043
MathSciNet: MR2161759
Digital Object Identifier: 10.57262/ade/1355867817

Subjects:
Primary: 35K55
Secondary: 35B05 , 35D10 , 35K65

Rights: Copyright © 2005 Khayyam Publishing, Inc.

Vol.10 • No. 9 • 2005
Back to Top