Translator Disclaimer
September 2014 A cellular network model with Ginibre configured base stations
Naoto Miyoshi, Tomoyuki Shirai
Author Affiliations +
Adv. in Appl. Probab. 46(3): 832-845 (September 2014). DOI: 10.1239/aap/1409319562


Stochastic geometry models for wireless communication networks have recently attracted much attention. This is because the performance of such networks critically depends on the spatial configuration of wireless nodes and the irregularity of the node configuration in a real network can be captured by a spatial point process. However, most analysis of such stochastic geometry models for wireless networks assumes, owing to its tractability, that the wireless nodes are deployed according to homogeneous Poisson point processes. This means that the wireless nodes are located independently of each other and their spatial correlation is ignored. In this work we propose a stochastic geometry model of cellular networks such that the wireless base stations are deployed according to the Ginibre point process. The Ginibre point process is one of the determinantal point processes and accounts for the repulsion between the base stations. For the proposed model, we derive a computable representation for the coverage probability - the probability that the signal-to-interference-plus-noise ratio (SINR) for a mobile user achieves a target threshold. To capture its qualitative property, we further investigate the asymptotics of the coverage probability as the SINR threshold becomes large in a special case. We also present the results of some numerical experiments.


Download Citation

Naoto Miyoshi. Tomoyuki Shirai. "A cellular network model with Ginibre configured base stations." Adv. in Appl. Probab. 46 (3) 832 - 845, September 2014.


Published: September 2014
First available in Project Euclid: 29 August 2014

zbMATH: 1330.60066
MathSciNet: MR3254344
Digital Object Identifier: 10.1239/aap/1409319562

Primary: 60G55
Secondary: 60D05, 90B18

Rights: Copyright © 2014 Applied Probability Trust


This article is only available to subscribers.
It is not available for individual sale.

Vol.46 • No. 3 • September 2014
Back to Top