Translator Disclaimer
December 2012 Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process
Joaquin Fontbona, Hélène Guérin, Florent Malrieu
Author Affiliations +
Adv. in Appl. Probab. 44(4): 977-994 (December 2012). DOI: 10.1239/aap/1354716586

Abstract

Motivated by stability questions on piecewise-deterministic Markov models of bacterial chemotaxis, we study the long-time behavior of a variant of the classic telegraph process having a nonconstant jump rate that induces a drift towards the origin. We compute its invariant law and show exponential ergodicity, obtaining a quantitative control of the total variation distance to equilibrium at each instant of time. These results rely on an exact description of the excursions of the process away from the origin and on the explicit construction of an original coalescent coupling for both the velocity and position. Sharpness of the obtained convergence rate is discussed.

Citation

Download Citation

Joaquin Fontbona. Hélène Guérin. Florent Malrieu. "Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process." Adv. in Appl. Probab. 44 (4) 977 - 994, December 2012. https://doi.org/10.1239/aap/1354716586

Information

Published: December 2012
First available in Project Euclid: 5 December 2012

zbMATH: 1274.60240
MathSciNet: MR3052846
Digital Object Identifier: 10.1239/aap/1354716586

Subjects:
Primary: 60F17, 60J25, 60J75, 93E15

Rights: Copyright © 2012 Applied Probability Trust

JOURNAL ARTICLE
18 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.44 • No. 4 • December 2012
Back to Top