Abstract
In this paper we consider three-dimensional random tessellations that are stable under iteration (STIT tessellations). STIT tessellations arise as a result of subsequent cell division, which implies that their cells are not face-to-face. The edges of the cell-dividing polygons are the so-called I-segments of the tessellation. The main result is an explicit formula for the distribution of the number of vertices in the relative interior of the typical I-segment. In preparation for its proof, we obtain other distributional identities for the typical I-segment and the length-weighted typical I-segment, which provide new insight into the spatiotemporal construction process.
Citation
Christoph Thäle. Viola Weiss. Werner Nagel. "Spatial STIT tessellations: distributional results for I-segments." Adv. in Appl. Probab. 44 (3) 635 - 654, September 2012. https://doi.org/10.1239/aap/1346955258
Information