Translator Disclaimer
March 2011 Multifractal spectra for random self-similar measures via branching processes
J. D. Biggins, B. M. Hambly, O. D. Jones
Author Affiliations +
Adv. in Appl. Probab. 43(1): 1-39 (March 2011). DOI: 10.1239/aap/1300198510

Abstract

Start with a compact set KRd. This has a random number of daughter sets, each of which is a (rotated and scaled) copy of K and all of which are inside K. The random mechanism for producing daughter sets is used independently on each of the daughter sets to produce the second generation of sets, and so on, repeatedly. The random fractal set F is the limit, as n goes to ∞, of the union of the nth generation sets. In addition, K has a (suitable, random) mass which is divided randomly between the daughter sets, and this random division of mass is also repeated independently, indefinitely. This division of mass will correspond to a random self-similar measure on F. The multifractal spectrum of this measure is studied here. Our main contributions are dealing with the geometry of realisations in Rd and drawing systematically on known results for general branching processes. In this way we generalise considerably the results of Arbeiter and Patzschke (1996) and Patzschke (1997).

Citation

Download Citation

J. D. Biggins. B. M. Hambly. O. D. Jones. "Multifractal spectra for random self-similar measures via branching processes." Adv. in Appl. Probab. 43 (1) 1 - 39, March 2011. https://doi.org/10.1239/aap/1300198510

Information

Published: March 2011
First available in Project Euclid: 15 March 2011

zbMATH: 1223.28010
MathSciNet: MR2761142
Digital Object Identifier: 10.1239/aap/1300198510

Subjects:
Primary: 28A80, 60G18, 60J80

Rights: Copyright © 2011 Applied Probability Trust

JOURNAL ARTICLE
39 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.43 • No. 1 • March 2011
Back to Top