Open Access
Translator Disclaimer
June 2016 Various generalized Ulam-Hyers stabilities of a nonic functional equations
John M. Rassias, M. Arunkumar, E. Sathya, T. Namachivayam
Author Affiliations +
Tbilisi Math. J. 9(1): 159-196 (June 2016). DOI: 10.1515/tmj-2016-0008

Abstract

In this paper, we have established the general solution and generalized Ulam - Hyers stability of the following nonic functional equation \begin{align*} & f(x+5y)-9f(x+4y)+36f(x+3y)-84f(x+2y)+126f(x+y)-126f(x)\\ & \qquad \qquad\qquad\qquad +84f(x-y)-36f(x-2y)+9f(x-3y)-f(x-4y) = 9! f(y) \end{align*} where $9! = 362880$ in a Banach Space ($\textbf{BS}$), Felbin's type Fuzzy Normed Space ($\textbf{FFNS}$) and Intuitionistic Fuzzy Normed Space ($\textbf{IFNS}$) using the standard direct and fixed point method.

Citation

Download Citation

John M. Rassias. M. Arunkumar. E. Sathya. T. Namachivayam. "Various generalized Ulam-Hyers stabilities of a nonic functional equations." Tbilisi Math. J. 9 (1) 159 - 196, June 2016. https://doi.org/10.1515/tmj-2016-0008

Information

Received: 2 August 2015; Accepted: 5 January 2016; Published: June 2016
First available in Project Euclid: 12 June 2018

zbMATH: 1338.39037
MathSciNet: MR3483660
Digital Object Identifier: 10.1515/tmj-2016-0008

Subjects:
Primary: 39B52‎
Secondary: 32B72, 32B82

Rights: Copyright © 2016 Tbilisi Centre for Mathematical Sciences

JOURNAL ARTICLE
38 PAGES


SHARE
Vol.9 • No. 1 • June 2016
Back to Top