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(N Qx,y)=az’+bzy+cy’=[a, b, c]

is an indefinite binary quadratic form with real coefficients in integral variables z, y,
not both zero, it is well known that M, the lower bound of | @ (x, )| (usually called

the minimum) satisfies the inequality
(2) M<D/st
where D? is the discriminant of @,
3) D*=b*-4ac>0, D>0.
If equality holds in (2) then @ must be equivalent to a multiple of the form
(1,1, —1].
This is part of a famous theorem due to Markoff [4], a considerably simplified

proof of which has lately been given by Cassels [2].
Put briefly, Markoff’s theorem states that

4) lim M/D=}4

if we consider all classes of forms with discriminant D?, and that any form @ with
3M(Q)>D is equivalent to a multiple of one of a denumerable set of forms, the
Markoff forms, of which the first is [1, 1, —1], the second [1, 2, —1], the third
[5, 11, —5].

Recently Barnes [1] has discussed the problem of obtaining corresponding bounds
for the product

(5) Q9 Q(u,v)

over integers z, y, u, v such that
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(6) zv—yu=+1

and gave complete results, both for asymmetric and for one-sided inequalities, which
are analogous to those of Markoff.

To illustrate I quote the following theorem on non-zero forms.

Theorem (Barnes). (i) If @ ¢s not equivalent to a multiple of any of the forms h, or
fn(n=1,3,5,...), then there exist integers x, y, u, v satisfying (6) for which

D2
7 — ——— < Q(z, ¥) @ (u, v)<O.
(7 2Vs+2 Yy) @ (u, v)

(iti) For any ¢>0 there exists a set of forms @, none of which is equivalent to a
multiple of any other, for which every negative value of the product Q (xz, y) @ (u,v)
satisfies

1

3 3 _D2 = - 3
(8) Q@ y) Qu, v)< (2V5+2 s)

and this set has the cardinal number of the continuum.

(I use D* where Barnes uses D. I have omitted (ii).)

It is curious that in a paper [5] of which Barnes was unaware, (i), (ii) and
part of (iii) (but not the other theorems obtained by Barnes) had been anticipated.
In some respect even more was proved. Thus if we exclude multiples of the forms hy,
fa(n=1,3,5,...) my results implied that integers z, y, u, v exist satisfying (6) and

such that simultaneously we have both (7) and

1 1

. ) )
e R AL

9

and a third inequality, which it is easier to express in terms of continued fractions
or in terms of the coefficients of reduced forms.

The indefinite binary quadratic form
(10) D (z,y)=az’+frxy+yy’
is said to be reduced if
(11) ay<0, B>|at+y].

It is well known that @ is equivalent to any member of a chain of such reduced
forms. Barnes’s theorem amounts to this: exclude multiples of the forms hky, fn, then
there is a reduced form ®~Q and such that
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2

12 0<|oy|< ——-.
(12) || 2V5+2

My results showed that the inequalities
1 1 _3+Vs

13 AT T
(13) [« Ty 7 D

and

(14) D—B<2V5-4)(a]+]y])

can also be satisfied at the same time as (12).

2. In this note I consider a problem of apparently the same order of diffi-
culty. Let
(15) L=min{max (|Qw, v |, |Q, v|)}
for integers subject to (6), or, what is the same thing, let
(16) L=min{max (|a|, |c|)}
for all forms [a, b, ¢] equivalent, properly or improperly, to @. What are the results
for L which correspond to those for min{a| and for min |ac|?

It is surprising to find that the results for L contrast sharply with those for
M or for min|ac| in that there is but one minimum and that not isolated. In ad-
dition the proof is very simple.

My results are contained in the theorems which follow.

Theorem 1. If Q(x,y) i3 a zero form then
(17) L=<}D
with equality if and only if
(18) Q~1D(2zy+y)~} D@ - 1))

Theorem 2. (i) If @ is not a zero form then necessarily
(19) L<}D.

(ii) For every e£>0Q there exists a form which is a multiple of an integral form
such that

(20) 4D—e<L<}D.

In place of Theorem 2 (ii) it can be shown that the set of non-equivalent forms

of discriminant D* such that (20) holds has the cardinal number of the continuum.
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3. Proof of Theorem 1. If Q(p,q)=0 for coprime integers p and ¢, the uni-

modular transformation
x=pX+rY, y=qX+sY

where ps—qr= 11 carries € into an equivalent form
BXY+yY:~D{zy+0y)
where 0<|6|<}. For this form it is plain that
L(Q<|6|D<}D

and that equality implies 6= +4.

2 it is clear that

For the form 2zy+yf~at—y
L=1, D=2,
Theorem 1 is proved.

4. Proof of Theorem 2. We use a simple Lemma on reduced forms which do

not represent zero.

Lemma 1. Suppose that
O=[a, B, —y], B +4ay=D%

18 reduced with

(1) x>0, y>0, B>|ly—al.
Then
{22) min{y, a +8—y}<} D,
(23) min («, y+f—oa)<} D.
Note that
(a—p)E+day<pi+day=D, a+y<D.

It

y2%D, a+f-y=}D,
then

fziD+y—a=zD—a>0,
D*-2Daz=D*—4ay=F'=2(D-a), 0=d

a contradiction.
This proves (22). And (23) follows by applying (22) to the reduced form

[y, 8, —al~ - .
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Now by (21) we have
(24) min (a, y)<3D. fEyFa>0.
It follows therefore that one at least of the three forms
D@y =[ap,y], Pty y)=[x,2a+p at+p-yl,

Dz, ~x+y)=[{a—pf—y, f+2y, —v]

(25)

is such that each of its extreme coefficients is numerically less than 4 D. Hence for

infinitely many integers xz, y, w, v such that rv—yu= 11 we have
(26) max (|Q(z, y)|, |Qw, v)[)<}D

since @ is equivalent to infinitely many reduced forms.
It can also be shown that if [a, b, ¢] is such that |a|<3 D, |c|<} D, then
[a, b, ¢] is either a reduced form or derivable from a reduced form in the manner

indicated above.

5. Proof of Theorem 2 (ii). Let g>1 be any positive integer and consider the

chain of reduced indefinite binary quadratic forms with period

¢=¢0=[2’29’ —g_l]) ®1:[*g_132» g+1]: ®2=[g+112g: —2],
(27)
D;=[-2,2¢9,9+1]), @,=[g+1,2, —g—-1], D,=[-9-1, 29, 2]

and discriminant

(28) D*=4(n*+1), h=g+1.

Lemma 2. For this class of integral forms we have
L=g+1=h, 2L/D=h/(H+1)},

By a theorem of Lagrange (see Dickson [3]), any number a properly represented
by @ and such that |a|<} D must be the leading coefficient of some form in the
chain determined by @.

Now [4 D]=h and @ is an integral form. It follows by inspection of the period
for @ that the only integers numerically less than or equal to A which are properly
represented by & must be 2 and A It follows therefore that

L=2 or L=h.
If however L=2 then necessarily

DP~2+2bzxy+ 24
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where the integer b is such that
BF4=r+1,
B*—h =5, b=+3, h=2,
BR—-b2=3, b=+1, h=2,
In all cases therefore L=#%=2. The second part of Theorem 1 follows from

Lemma 2.

6. The proof in the last section can be modified to show that the set of non-

equivalent forms of discriminant D? such that
(29) }D(1—¢e)<L<}D

has the cardinal number of the continuum, & being any assigned positive number.

For this purpose I constructed a chain of equivalent reduced forms
(30) P=[(~1 a, f (~1" M y] (= oo <i<oo)

such that each form fell into one of two categories.
Dr. Barnes however has pointed out to me that one of these categories can be
avoided and I use therefore Dr. Barnes’s simpler example.
Each form @ is assumed to have the property A:
0 <min (o4, 04,)< e D,
A
1 D(1—¢)<max(a, o;.1) <3 D(1+¢),

and, in consequence,
D(1-¢)<p<D.

Herein ¢ is an assigned small enough positive number and &' is a small positive

number which depends on e.

Lemma 3. 4 class of forms whose reduced forms satisfy A must be such that
3D(1—¢g<L<3}D.
If this is not the case then there exists a form in the class
(31) Q=la, b, c]
such that

(32) la|<3D(1—¢), |c|]<iD(1-e).
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Now by the theorem of Lagrange already quoted, if @ represents a number ¢
such that |t|<} D, there must be a reduced form in the chain determined by @
which has ¢ for its leading coefficient. Since the reduced forms all satisfy A, it fol-

lows that (32) can be replaced by the stronger inequality
(33) la|<eD, |c|<eD.
Now we saw that one of the forms
Q=@ y), L=Qktyy, G=Q fzty

must be reduced since @, is such that |a|<} D, |¢|<3D. But @, plainly does not

satisfy A: @, is such that the coefficient of %® is numerically at least
|6|—|a|—|c|>(D*~4e* D% -2 D>D(1-3¢)

if ¢ is small enough, so that @, does not satisfy A. So too for @,.

The contradiction proves Lemma 3.

7. It remains to construct a chain (@;) with the properties stated. Take a

sequence of positive integers

(34) (9:) (= o0 <1< o)
such that
(35) gi=2 (i even), ¢, =N (i odd)

where N is an appropriately chosen large positive integer.
Let

(36) Fi=[g, 941, ...}, Hi=[gi-1, 91 2, ...]

Then the forms @; defined by

w_ B _wn_ D
F( F(H;‘l Hg F{H(‘}‘l

37)

constitute a chain of reduced forms with discriminant D2

Now, for 7 even,

(38) 2<F.<2+§, H/ >N,

so that

39 0< <B 1—l D< <%D
( ) % N’ ‘k N ol +1 .

4 — 533807. Acta Mathematica. 91. Imprimé le 15 mai 1954.
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It follows that the chain (®,) satisfies A if

(40) vl
&

Since the set of sequences (g;) so constructed has the cardinal number of the
continuum and since each sequence gives rise to at most two classes of forms, the
result stated at the beginning of this section is proved.

In place of the sequence (35) given me by Dr. Barnes, we can use the sequence
g=1(1=1,2), g =N (1=0),

the congruences being modulo 3. But the details are not so simple.
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