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1. If  

(1) Q(x, y)=axe +bxy+cy2=[a,  b, c] 

is an indefinite binary quadratic form with real coefficients in integral variables x, y, 

not both zero, it is well known that  M, the lower bound o f [Q (x ,  y) l (usually called 

the minimum) satisfies the inequality 

(2) M _< D//5 ~ 

where D e is the discriminant of Q, 

(3) D2=b 2 - 4 a c > 0 ,  D > 0 .  

If equality holds in (2) then Q must be equivalent to a multiple of the form 

[1,  l ,  - 1]. 

This is part of a famous theorem due to Markoff [4], a considerably simplified 

proof of which has lately been given by Cassels [2]. 

Put  briefly, Markoff's theorem states that  

(4) lim M/D= t 

if we consider all classes of forms with discriminallt D e, and that  any form Q with 

3 M (Q)> D is equivalent to a multiple of one of a denumerable set of forms, the 

Markoff forms, of which the first is [1, l , - 1 ] ,  the second [1, 2 , - 1 ] ,  the third 

[5, 11, - 5]. 

Recently Barnes [1] has discussed the problem of obtaining corresponding bounds 

for the product 

(5) Q (x, y) Q (u, v) 

over integers x, y, u, v such that  



44 A. OPPENHEIM 

(6) x v - y u =  • l 

and gave complete  results,  bo th  for a symmet r i c  and for one-sided inequalities,  which 

are analogous to those of Markoff .  

To i l lustrate I quote  the  following theorem on non-zero forms. 

Theorem (Barnes). (i) I /  Q is not equivalent to a multiple o / a n y  o~ the /orms  h I or 

/n (n=  1, 3, 5, .. .), then there exist integers x, y, u, v satis/ying (6) /or which 

D 2 
(7) 2 V 5 + 2  <_ Q (x, y) Q (u, v)<O.  

(iii) For any e > O there exists a set o/ /orms Q, none o/ which is equivalent to a 

multiple o/ any other, /or which every negative value o/ the product Q(x,  y ) Q ( u , v )  

satis/ies 

(8) Q ( x , y )  Q ( u , v ) < : - D  2 2 ] / g + 2  e , 

and this set has the cardinal number o/ the continuum. 

(I use D 2 where Barnes  uses D. I have  omi t t ed  (ii).) 

I t  is curious t h a t  in a paper  [5] of which Barnes  was unaware,  (i), ( i i ) a n d  

pa r t  of (iii) (but  not  the other  theorems obta ined  by  Barnes)  had been ant ic ipated.  

In  some respect  even more  was proved.  Thus  i /  we exclude multiples o/ the /orms  hi, 

/n (n = 1, 3, 5, . . .)  m y  results  implied t ha t  integers x, y, u, v exist satis/ying (6) and 

such that simultaneously we have both (7) and 

DQ 1 lv) (9) (x, y) Q (u, > 3 + [/5 

and a third inequality, which it is easier to express in t e rms  of cout inued fract ions 

or in te rms  of the coefficients of reduced forms. 

The  indefinite b ina ry  quadra t ic  form 

q~ ( x, y ) = cc x2 + fl x y + ~, y ~ (10) 

is said to be reduced if 

(11) 

I t  is well known t h a t  Q is equiva len t  to any  m e m b e r  of a chain of such reduced 

forms. Barnes ' s  t heorem amoun t s  to this:  exclude multiple~ o/ the /orms hi, In, then 

there is a reduced /orm ~ , , ,  Q and such that 
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(12) - -  

My results showed that  the inequalities 

D 2 

2 ( 5 §  

1 1 3 + V 5  
(13) + > 

and 

(14) 

45 

can also be satis/ied at the same time as (12). 

2. In this note I consider a problem of apparently the same order of diffi- 

culty. Let 

(15) L = min (max (I Q (x, y)[, I Q (u, v) l) } 

for integers subject to (6), or, what is the same thing, let 

(16) L = m i n { m a x  ( la] ,  Icl)} 

for all forms [a, b, c] equivalent, properly or improperly, to Q. What  are the results 

for L which correspond to those for rain l a] and for rain l ac l?  

I t  is surprising to find that  the results for L contrast sharply with those for 

M or for m i n l a c  I in that  there is but one minimum and that  not isolated. In ad- 

dition the proof is very simple. 

My results are contained in the theorems which follow. 

Theorem 1. _7/ Q (x, y) is a zero/orm then 

(17) L_< �89 n 

with equality i/ and only i/ 

(18) Q ,~ �89 D (2 x y + y2) ~ �89 D (x ~ - y~). 

Theorem 2. (i) I /  Q is not a zero /orm then necessarily 

(19) L < �89 D. 

(ii) _For every ~ > 0 there exists a ]orm which is a multiple o/ an integral [orm 

such that 

(20) � 8 9 1 8 9  

In place of Theorem 2 (ii) it can be shown that  the set o/ non-equivalent ]orms 

o] discriminant D ~ such that (20) holds has the cardinal number of the continuum. 
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3. Proo I o] Theorem 1. If  Q(io, q )=0  for eoprime integers 10 and q, the uni- 

modular transformation 

x=10X+rU, y = q X + s Y  

where 1 0 s - q r =  • 1 carries Q into an equivalent form 

fl X Y +y Y 2 ~ D ( x y +  Oy ~) 

where 0_<[0[_< �89 For this form it is plain that  

L(Q)<-IO]D<-�89 

and that  equality implies 0 = _+ �89 

For the form 2 x y + y 2 N x 2  y2 it is clear that  

L = l ,  D = 2 .  

Theorem 1 is proved. 

4. Proo/ o/ Theorem 2. We use a simple Lemma on reduced forms which do 

not represent zero. 

Lemma I. Suppose that 

~=[cr  - y ] ,  f l ~ + 4 ~ y = D  ~, 

is reduced with 

(2~) 

Then 

(22) 

(23) 

Note that  

If 

then 

= > 0 ,  ~ , > o ,  / ~ > l r - o c [ .  

rain (y, ~ + f l - y ) < � 8 9  

min (oc, y+fl-ot)<�89 

(~-y)2+4a~,<f12+4ay=D~, ot +~,< D. 

y>_�89 ac+fl-y>�89 

fl>_�89 D + y - ~ t  >_D-oc>O , 

D2-2Doc>_D2-4~),=fl~>(D-a) 9, O>~t 2, 

a contradiction. 

This proves (22), And (23) follows by applying (22) to the reduced form 

[ r , /~ ,  - ~ 1 "  - r 
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Now by (21) we have 

(24) m i n ( ~ , 7 ) < � 8 9  fl__+~T~>0. 

I t  follows therefore that  one at least of the three forms 

~b(x ,y)=[~, f l ,~ , ] ,  O (x + y, y) = [ot, 2 :c + fl, :c + f l -  y], 
(25) 

r (x, - x  + y) = [ ~ -  f l - y ,  f l + 2 ~ ,  -},]  

is such that  each of its extreme coefficients is numerically less than �89 D. Hence for 

in/initely many  integers x,  y, u, v such that  x v - y  u = • 1 we have 

(26) max (I Q (x, Y) I, I Q (u, v)[) < �89 D 

since Q is equivalent to infinitely many reduced forms. 

I t  can also be shown that  if [ a ,b , c ]  is such that  l a l < � 8 9  I c l < � 8 9  then 

[a, b, c] is either a reduced form or derivable from a reduced form in the manner 

indicated above. 

5. Proo/ o] Theorem 2 (ii). Let  g _> 1 be any positive integer and consider the 

chain of reduced indefinite binary quadratic forms with period 

(27) 
r 1 6 2  2g, - g -  1], 

�9 a = [ - - 2 ,  2g,  g+l], 

and discriminant 

~ l = [ - g - l ,  2, g + l ] ,  ( l )~=[g+l ,  2g, - 2 ] ,  

~b4=[g+l ,  2, - g - l ] ,  r  2g, 2] 

(28) D 2=4(h2+1) ,  h = g + l .  

Lemma 2. For this class o] integral ]orms we have 

L = g + l = h ,  2 L / D = h / ( h ~ + l )  ~. 

By a theorem of Lagrange (see Dickson [3]), any number a properly represented 

by ~b and such that  l a] __< �89 D must be the leading coefficient of some form in the 

chain determined by ~.  

Now [�89 D] = h and ~ is an integral form. I t  follows by inspection of the period 

for r that  the only integers numerically less than or equal to h which are properly 

represented by ~5 must be 2 and h. I t  follows therefore that  

L = 2  or L = h .  

If  however L =  2 then necessarily 

~ N 2 x ~  + 2 b x y + _ 2 y  ~ 
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where the integer b is such that  

b2~4=h~ § l, 

b2-h2=5, b = •  h = 2 ,  

h2-b~=3, b = _ l ,  h=2. 

In all cases therefore L=h>_2. The second part of Theorem 1 follows from 

Lemma 2. 

6. The proof in the last section can be modified to show that  the set of non- 

equivalent forms of discriminant D 2 such that 

(29) �89 D(1 -e )<  L< �89 D 

has the cardinal number of the continuum, e being any assigned positive number. 

For this purpose I constructed a chain of equivalent reduced forms 

(30) r = [ ( -  1)~ ~t,/~, ( -  1)~§ ~,1] ( -  ~ < i <  ~ )  

such that each form fell into one of two categories. 

Dr. Barnes however has pointed out to me that  one of these categories can be 

avoided and I use therefore Dr. Barnes's simpler example. 

Each form (/)~ is assumed to have the property A: 

O<min( :q ,  ~§ eD, 
A 

�89 D (1 - e) < m a x  (:q, a,+l) < �89 D (1 + e), 

and, in consequence, 

D(1-e ' )<  fl~< D. 

Herein e is an assigned small enough positive number and e' is a small positive 

number which depends on e. 

Lemma 3. A class o/ /orms whose reduced /orms satis/y A must be such that 

�89189 

If  this is not the case then there exists a form in the class 

Q = [a, b, c] (31) 

such that 

(32) l a [ <  � 8 9  [cl<�89 
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Now by the theorem of Lagrange already quoted, if Q represents a number t 

such that  I tl<_�89 there must be a reduced form in the chain determined by Q 

which has t for its leading coefficient. Since the reduced forms all satisfy A, it fol- 

lows that  (32) can be replaced by the stronger inequality 

(33) [ a [ < e D ,  [ c I<~D .  

Now we saw that  one of the forms 

Q I = Q ( x , y ) ,  Q~ = Q (x _+ y, y), Qa=Q(x,  _+x+y) 

must be reduced since Q1 is such that  l a [ <  �89 [c[< �89 But Q1 plainly does not 

satisfy A: Q2 is such that  the coefficient of y2 is numerically at least 

I b I - l a [ - [ c [ > ( D 2 - 4 e 2  n 2 ) t - 2 e n >  n ( 1 -  3~) 

if ~ is small enough, so that  Q2 does not satisfy A. So too for Qa. 

The contradiction proves Lemma 3. 

7. I t  remains to construct a chain (r with the properties stated. Take a 

sequence of positive integers 

(34) (g~) ( -  ~ < i <  ~ )  

such that  

(35) g~=2 (i even), g~>_N (i odd) 

where N is an appropriately chosen large positive integer. 

Let 

(36) F~ = [g, ,  g~+l . . . .  ], H~ = [ff~-l, g, ~, ...]. 

Then the forms qb~ defined by 

~t fit r162 ~1 D (37) - - 
F~ F~ H~ - I H~ - F~ H~ + I 

constitute a chain of reduced forms with discriminant D 2. 

Now, for i ever/ ,  

1 
(38) 2 < F ~ < 2 + ~ r ,  H~>N,  

so that  

o 
(39) 0 < ~ l <  ~r' �89 1 -  D<:c~+I<�89 

4-533807 .  Acta Mathematica. 91. Imprim6 le 15 mai 1954. 
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I t  follows t h a t  the  chain  (r sat isf ies  A if 

1 
(40) N > - .  

8 

Since the  set  of sequences (g,) so cons t ruc t ed  has  the  ca rd ina l  n u m b e r  of the  

con t inuum and  since each sequence gives r ise to  a t  mos t  two classes of forms,  the  

resul t  s t a t ed  a t  the  beginning  of th is  sec t ion is p roved .  

I n  place  of the  sequence (35) g iven  me b y  Dr.  Barnes ,  we can use the  sequence 

g , = l ( i - - - - 1 , 2 ) ,  g,>_N(i----O), 

the  congruences being modulo  3. B u t  the  de ta i l s  are  no t  so s imple.  
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