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1. Introduction

On the phase space Tn×Bn, we consider the Hamiltonian system generated by the Cr

time-periodic Hamiltonian

Hε(θ, p, t) =H0(p)+εH1(θ, p, t), (θ, p, t)∈Tn×Bn×T,

where T=R/Z, Bn is the unit ball in Rn around the origin, and ε>0 is a small parameter.
The equations

θ̇= ∂pH0+ε∂pH1 and ṗ=−ε∂θH

imply that the momenta p are constant in the case ε=0. A question of general interest
in Hamiltonian dynamics is to understand the evolution of these momenta when ε>0 is
small (see e.g. [1], [2], [3]). In the present paper, we assume that H0 is convex, and, more
precisely,

I

D
6 ∂2

pH0 6DI, (1)

and prove that a certain form of Arnold’s diffusion occur for many perturbations. We
assume that r>4, and denote by Sr the unit sphere in Cr(Tn×Bn×T).

Theorem 1. There exist two continuous functions ` and ε0 on Sr, which are positive
on an open and dense set U⊂Sr, and an open and dense subset V1 of

V := {H0+εH1 :H1 ∈U and 0<ε<ε0(H1)}
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such that the following property holds for each Hamiltonian H∈V1:
There exist an orbit (θ, p) of Hε and a time T∈N such that

‖p(T )−p(0)‖>`(H1).

The key point in this statement is that `(H1) does not depend on ε∈]0, ε0(H1)[. In
§1.1, we give a more detailed description of the diffusion path. Moreover, an improved
version of the main theorem provides an explicit lower bound on l(H1) (see Theorem 2.1
and Remark 2.1).

The present work is in large part inspired by the work of Mather [52], [53], [54]. In
[52], Mather announced a much stronger version of Arnold diffusion for n=2. Our set V is
what Mather called a cusp residual set. As in Mather’s work, the instability phenomenon
thus holds in an open dense subset of a cusp residual set. Our result is, however, quite
different. We obtain a much more restricted form of instability, which holds for any n>2.
The restricted character of the diffusion comes from the fact that we do not really solve
the problem of double resonance (but only finitely many, independent from ε, double
resonances are really problematic). The proof of Mather’s result is partially written (see
[53]), and he has given lectures about some parts of the proof [54].(1)

The study of Arnold diffusion was initiated by the seminal paper of Arnold, [1], where
he describes a diffusion phenomenon on a specific example involving two independent
perturbations. A lot of work has then been devoted to describe more general situations
where similar constructions could be achieved. A unifying aspect of all these situations
is the presence of a normally hyperbolic cylinder, as was understood in [57] and [29];
see also [27], [28], [61], [62], [23], [24], [8]. These general classes of situations have been
referred to as a-priori unstable.

The Hamiltonian Hε studied here is, on the contrary, called a-priori stable, because
no hyperbolic structure is present in the unperturbed system H0. Our method will,
however, rely on the existence of a normally hyperbolic invariant cylinder. The novelty
here thus consists in proving that a-priori unstable methods do apply in the a-priori
stable case. Application of normal forms to construct normally 3-dimensional hyperbolic
invariant cylinders in a-priori stable situation in 3 degrees of freedom had already been
discussed in [45] and in [48]. The existence of normally hyperbolic cylinders with a length
independent from ε in the a-priori stable case, in arbitrary dimension, have been proved
in [10], see also [9]. In the present paper, we obtain an explicit lower bound on the length
of such a cylinder. The quantity `(H1) in the statement of Theorem 1 is closely related
to this lower bound (see also Remark 2.1). Let us mention some additional works of

(1) After a preliminary version of this paper was completed for n=2 the problem of double reso-
nance was solved and existence of a strong form of Arnold diffusion is given in [40].
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interest around the problem of Arnold’s diffusion: [5], [6], [14], [13], [15], [16], [17], [18],
[21], [22], [26], [35], [36], [44], [41], [42], [43], [46], [49], [65], [66], [63], and many others.

1.1. Reduction to normal form

As is usual in the theory of instability, we build our unstable orbits around a resonance.
A frequency ω∈Rn is said resonant if there exists k∈Zn+1, k 6=0, such that k ·(ω, 1)=0.
The set of such integral vectors k forms a submodule Λ of Zn+1, and the dimension of
this module (which is also the dimension of the vector subspace of Rn+1 it generates) is
called the order, or the dimension of the resonant frequency ω.

In order to apply our proof, we have to consider a resonance of order n−1 or,
equivalently, of codimension 1. For definiteness and simplicity, we choose once and for
all to work with the resonance

ωs =0,

where

ω=(ωs, ωf )∈Rn−1×R.

Similarly, we use the notation

θ=(θs, θf )∈Tn−1×T and p=(ps, pf )∈Rn−1×R,

which are the slow and fast variables associated with our resonance (see §2 for definitions).
More precisely, we will be working around the manifold defined by the equation

∂psH0(p) = 0

in the phase space. In view of (1), this equation defines a Cr−1 curve Γ in Rn, which
can also be described parametrically as the graph of a Cr−1 function ps

∗(p
f ):Rn−1!R.

We will also use the notation p∗(pf ):=(ps
∗(p

f ), pf )).
We define the averaged perturbation Z corresponding to the resonance Γ by

Z(θs, p) :=
∫∫

H1(θs, ps, θf , pf , t) dθf dt.

If the perturbation H1(θ, p, t) is expanded as

H1(θ, p, t) =H1(θs, θf , p, t) =
∑

ks∈Zn−1

kf∈Z
l∈Z

h[ks,kf ,l](p)e
2πi(ks·θs+kf ·θf +l·t),
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then
Z(θs, p) =

∑
ks

h[ks,0,0](p)e2πi(ks·θs).

Our first generic assumption, which defines the set U⊂Sr in Theorem 1, is on the shape
of Z. We assume that there exists a subarc Γ1⊂Γ such that the following hypotesis holds.

Hypothesis 1. There exists a real number λ∈
]
0, 1

2

[
such that, for each p∈Γ1, there

exists θs
∗(p)∈Tn−1 such that the inequality

Z(θs, p) 6Z(θs
∗(p), p)−λd2(θs, θs

∗(p)) (HZλ)

holds for each θs.

1.2. Single maximum

Thie condition (HZλ) implies that, for each p∈Γ1, the averaged perturbation Z(θ, p) has
a unique non-degenerate maximum at θs

∗(p). In §1.5 we relax this condition and allow
bifurcations from one global maximum to a different one. Note that the set of functions
Z∈Cr(Tn−1×Bn) satisfying Hypothesis 1 on some arc Γ1⊂Γ is open and dense for each
r>2. As a consequence, we have that the set U of functions H1∈Sr (the unit sphere in
Cr(Tn×Bn×T)) whose average Z satisfies Hypothesis 1 on some arc Γ1⊂Γ is open and
dense in Sr if r>2.

The general principle of averaging theory is that the dynamics of Hε is approximated
by the dynamics of the averaged Hamiltonian H0+εZ in a neighborhood of Tn×Γ. The
applicability of this principle is limited by the presence of additional resonances, that is
points p∈Γ such that the remaining frequency ∂pfH0 is rational. Although additional
resonances are dense in Γ, only finitely many of them, called punctures, are really prob-
lematic. More precisely, denoting by Uε1/3(Γ1) the ε1/3-neighborhood of Γ1 in Bn and
by R(Γ1, ε, δ)⊂Cr(Tn×Bn×T) the set of functions R(θ, p, t):Tn×Bn×T!R such that

‖R‖C2(Tn×U
ε1/3 (Γ1)×T) 6 δ.

We will prove in §2 the following result.

Proposition 1.1. For each δ∈]0, 1[, there exist a locally finite subset Pδ⊂Γ and
ε1∈]0, δ[, such that the following holds:

For each compact arc Γ1⊂Γ disjoint from Pδ, each H1∈Sr, and each ε⊂]0, ε1[, there
exists a Cr-smooth canonical change of coordinates

Φ:Tn×B×T−!Tn×Rn×T
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satisfying ‖Φ−id ‖C0 6
√
ε and such that, in the new coordinates, the Hamiltonian

H0+εH1 takes the form

Nε =H0(p)+εZ(θs, p)+εR(θ, p, t), (2)

with R∈R(Γ1, ε, δ).

The key aspects of this result is that the set Pδ is locally finite and independent
from ε. Because it is essential to have these properties of Pδ, the conclusions on the
smallness of R are not very strong. Yet they are sufficient to obtain the following result.

Theorem 1.2. Let us consider the Cr Hamiltonian

Nε(θ, p, t) =H0(p)+εZ(θs, p)+εR(θ, p, t), (3)

and assume that ‖Z‖C2 61 and that (HZλ) holds on some arc Γ1⊂Γ of the form

Γ1 := {(p∗(pf )) : pf ∈ [a−, a+]}.

Then there exist positive constants δ and ε0, which depends only on n, H0, and λ, and
such that, for each ε∈]0, ε0[, the following property holds for an open dense subset of
functions R∈R(Γ1, ε, δ) (for the Cr topology):

There exists an orbit (θ(t), p(t)) and an integer T∈N such that

‖p(0)−p∗(a−)‖<
√
ε and ‖p(T )−p∗(a+)‖<

√
ε.

1.3. Derivation of Theorem 1 using Proposition 1.1 and Theorem 1.2

Given l>0, we denote by Dr(l) the set of Cr Hamiltonians with the following property:
There exists an orbit (θ(t), p(t)) and an integer T such that ‖p(T )−p(0)‖>l. The set
Dr(l) is clearly open.

We now prove the existence of a continuous function ε0 on Sr which is positive on
U and such that each Hamiltonian Hε=H0+εH1 with H1∈U and ε<ε0(H1) belongs to
the closure of Dr(ε0(H1)).

For each H1⊂U , there exist a compact arc Γ1⊂Γ and a number λ∈
]
0, 1

4

[
such that

the corresponding averaged perturbation Z satisfies Hypothesis 1 on Γ1 with constant
2λ. We then consider the real δ given by Theorem 1.2 (applied with the parameter λ).
By possibly reducing the arc Γ1, we may assume in addition that this arc is disjoint from
the set Pδ of punctures for this δ. The following properties then hold:

• the averaged perturbation Z satisfies Hypothesis 1 on Γ1 with a constant λ′>λ;
• the parameter δ is associated with λ by Theorem 1.2;
• the arc Γ1 is disjoint from the set Pδ of punctures.
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We say that (Γ1, λ, δ) is a compatible set of data if the second and third points above
are satisfied. Then, we denote by U(Γ1, λ, δ) the set of H1∈Sr which satisfy the first
point. This is an open set, and we just proved that the union of all compatible sets of
data of these open sets covers U .

With each compatible set of data (Γ1, λ, δ) we associate the positive numbers

` := 1
2‖p−−p+‖,

where p± are the extremities of Γ1, and ε2(Γ1, λ, δ):=min
{
ε1,

1
5`

2, `
}
, where ε1 is associ-

ated with δ by Proposition 1.1.
Using a partition of unity, we can build a continuous function ε0 on Sr which is

positive on U and have the following property: For each H1∈U , there exists a compatible
set of data (Γ1, λ, δ) such that H1∈U(Γ1, λ, δ) and ε0(H1)6ε2(Γ1, λ, δ).

For this function ε0, we claim that each Hamiltonian Hε=H0+εH1 with H1∈U and
0<ε<ε0(H1) belongs to the closure of Dr(ε0(H1)).

Assuming the claim, we finish the proof of Theorem 1. For l>0, let us denote by V(l)
the open set of Hamiltonians of the form H0+εH1, where H1∈U satisfies ε0(H1)>l and
ε∈]0, ε0(H1)[. The claim implies that D(l) is dense in V(l) for each l>0. The conclusion
of the theorem (with l(H1):=ε0(H1)) then holds with the open set V1 :=

⋃
l>0(V(l)∩D(l)),

which is open and dense in V=
⋃

l>0 V(l).
To prove the claim, let us consider a Hamiltonian Hε=H0+εH1, with H1∈U and

ε∈]0, ε0(H1)[. We take a compatible set of data (Γ1, λ, δ) such that H1∈U(Γ1, λ, δ) and
ε0(H1)6ε2(Γ1, λ, δ). We apply Proposition 1.1 to find a change of coordinates Φ which
transforms the Hamiltonian H0+εH1 to a Hamiltonian in the normal form Φ∗Hε=Nε

with R∈R(Γ1, ε, δ). The change of coordinates Φ is fixed for the sequel of this discussion,
as well as ε. By Theorem 1.2, the Hamiltonian Nε can be approximated in the Cr norm
by Hamiltonians Ñε admitting an orbit (θ(t), p(t)) such that p(0)=p− and p(T )=p+ for
some T∈N. Let us denote by H̃ε :=(Φ−1)∗Ñε the expression in the original coordinates
of Ñε. It can be made arbitrarily Cr-close to Hε by taking Ñε sufficiently close to Nε.
Since ‖Φ−id ‖C0 6

√
ε, the extended H̃ε-orbit

(x(t), y(t), t mod1) :=Φ(θ(t), p(t), t mod1)

satisfies ‖p(0)−p−‖6
√
ε and ‖p(T )−p−‖6

√
ε, hence

‖y(T )−y(0)‖> ‖p+−p−‖−2
√
ε> `> ε0(H1).

In other words, we have H̃ε∈D(ε0(H1)). We have proved that Hε belongs to the closure
of D(ε0(H1)). This ends the proof of Theorem 1.
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The Hamiltonian in normal form Nε has the typical structure of what is called an
a-priori unstable system under Hypothesis 1. Actually, under the additional assumption
that ‖R‖C2 6δ, with δ sufficiently small with respect to ε, the conclusion of Theorem 1.2
would follow from the various works on the a-priori unstable case; see [8], [23], [24], [29],
[36], [61], [62]. The difficulty here is the weak hypothesis made on the smallness of R,
and, in particular, the fact that ε is allowed to be much smaller than δ.

1.4. Proof of Theorem 1.2

We give a proof based on several intermediate results that will be established in the
further sections of the paper. The first step is to establish the existence of a normally
hyperbolic cylinder. It is detailed in §3. As a consequence of the difficulties of our
situation, we get only a rough control on this cylinder, as was already the case in [10].
Some C1 norms might blow up when ε!0 (see (4)).

The second step consists in building unstable orbits along this cylinder under ad-
ditional generic assumptions. In the a-priori unstable case, where a regular cylinder is
present, several methods have been developed. Which of them can be extended to the
present situation is unclear. Here we manage to extend the variational approach of [8],
[23], [24] (which are based on Mather’s work). We use the framework of [8], but also
essentially appeal to ideas from [51] and [24] for the proof of one of the key genericity
results. A self-contained proof of the required genericity with many new ingredients is
presented in §5.

The second step consists of three main steps:
• along a resonance Γ prove existence of a normally hyperbolic cylinder C and derive

its properties (see Theorem 1.3);
• show that this cylinlder C contains a family of Mañé sets Ñ (c), c∈Γ, each being

of Aubry–Mather type, i.e. a Lipschitz graph over the circle (see Theorem 1.4);
• using the notion of a forcing class [8] to generically construct orbits diffusing along

this cylinder C (see Theorem 1.5).

1.4.1. Existence and properties of a normally hyperbolic cylinder C

Theorem 1.3. Let us consider the Cr Hamiltonian system (3) and assume that Z
satisfies (HZλ) on some arc Γ1⊂Γ of the form

Γ1 := {(p∗(pf )) : pf ∈ [a−, a+]}.
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Then there exist constants C>1>�>δ>0, which depend only on n, H0, and λ, and such
that, for each ε in ]0, δ[, the following property holds for each function R∈R(Γ1, ε, δ):

There exists a C2 map

(Θs, P s)(θf , pf , t):T×[a−−�ε1/3, a++�ε1/3]×T−!Tn−1×Rn−1

such that the cylinder

C := {(θs, ps) = (Θs, P s)(θf , pf , t) : pf ∈ [a−−�ε1/3, a++�ε1/3] and (θf , t)∈T×T}

is weakly invariant with respect to Nε in the sense that the Hamiltonian vector field is
tangent to C. The cylinder C is contained in the set

W := {(θ, p, t) : pf ∈ [a−−�ε1/3, a++�ε1/3], ‖θs−θs
∗(p

f )‖6� and ‖ps−ps
∗(p

f )‖6�
√
ε},

and it contains all the full orbits of Nε contained in W . We have the estimates∥∥∥∥∂Θs

∂pf

∥∥∥∥6C

(
1+

√
δ

ε

)
,

∥∥∥∥ ∂Θs

∂(θf , t)

∥∥∥∥6C(
√
ε+

√
δ), (4)∥∥∥∥∂P s

∂pf

∥∥∥∥6C,

∥∥∥∥ ∂P s

∂(θf , t)

∥∥∥∥6C
√
ε, (5)

‖Θs(θf , pf , t)−θs
∗(p

f )‖6C
√
δ.

A similar, weaker, result is proved in [10]. The present statement contains better
quantitative estimates. It follows from Theorem 3.1 below, which makes these estimates
even more explicit. The terms �ε1/3 come from the fact that we only estimate R on the
ε1/4-neighborhood of Γ1, see the definition of R(Γ1, ε, δ).

For convenience of notations we extend our system from Tn×Bn×T to Tn×Rn×T.
It is more pleasant in many occasions to consider the time-1 Hamiltonian flow φ and the
discrete system that it generates on Tn×Rn. We will thus consider the cylinder

C0 = {(q, p)∈Tn×Rn : (q, p, 0)∈C}.

We will think of this cylinder as being φ-invariant, although this is not precisely true, due
to the possibility that orbits may escape through the boundaries. If r is large enough, it
is possible to prove the existence of a really invariant cylinder closed by KAM-invariant
circles, but this is not useful here.

The presence of this normally hyperbolic invariant cylinder is another similarity
with the a-priori unstable case. The difference is that we only have rough control on the
present cylinders, with some estimates blowing up when ε!0. As we will see, variational
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methods can still be used to build unstable orbits along the cylinder. We will use the
variational mechanism of [8]. Variational methods for this problem were initiated by
Mather; see [50] in an abstract setting. In a quite different direction, they were also used
by Bessi to study the Arnold’s example of [1]; see [15].

1.4.2. Weak KAM and Mather theory

We will use standard notations of weak KAM and Mather theory, we recall here the most
important ones for the convenience of the reader. We mostly use Fathi’s presentation in
terms of weak KAM solutions, see [31], and also [8] for the non-autonomous case. We
consider the Lagrangian function L(θ, v, t) associated with Nε (see §4 for the definition)
and, for each c∈Rn, the function

Gc(θ0, θ1) := min
γ

∫ 1

0

(L(γ(t), γ̇(t), t)−c·γ̇(t)) dt,

where the minimum is taken on the set of C1 curves γ: [0, 1]!Tn such that γ(0)=θ0 and
γ(1)=θ1. It is a classical fact that this minimum exists, and that the minimizers is the
projection of a Hamiltonian orbit. A (discrete) weak KAM solution at cohomology c is a
function u∈C(Tn,R) such that

u(θ) = min
v∈Rn

(u(θ−v)+Gc(θ−v, θ)+α(c)),

where α(c) is the only real constant such that such a function u exists. For each curve
γ:R!Tn and each S<T in Z, we thus have the inequalities

u(γ(T ))−u(γ(S))6Gc(γ(S), γ(T ))+(T−S)α(c) 6
∫ T

S

(L(γ(t), γ̇(t), t)−c·γ̇(t)+α(c)) dt.

A curve θ:R!Tn is said to be calibrated by u if

u(θ(T ))−u(θ(S))=
∫ T

S

(L(θ(t), θ̇(t), t)−c·θ̇(t)+α(c)) dt,

for each S<T in Z. The curve θ is then the projection of a Hamiltonian orbit (θ, p), such
an orbit is called a calibrated orbit. We denote by

Ĩ(u, c)⊂Tn×Rn

the union of all calibrated orbits (θ, p)(t) of the sets (θ, p)(Z), or equivalently of the sets
(θ, p)(0). In other words, these are the initial conditions of the orbits which are calibrated
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by u. By definition, the set Ĩ(u, c) is invariant under the time-1 Hamiltonian flow ϕ, it
is moreover compact and not empty. We also denote by

sĨ(u, c)⊂Tn×Rn×T

the suspension of Ĩ(u, c), or in other words the set of points of the form

(θ(t), p(t), t mod1)

for each t∈R and each calibrated orbit (θ, p). The set sĨ(u, c) is compact and invariant
under the extended Hamiltonian flow. Note that sĨ(u, c)∩{t=0}=Ĩ(u, c)×{0}. The
projection

I(u, c)⊂Tn

of Ĩ(u, c) on Tn is the union of points θ(0), where θ is a calibrated curve. The projection

sI(u, c)⊂Tn×T

of sĨ(u, c) on Tn×T is the union of points (θ(t), t mod1), where t∈R and θ is a calibrated
curve. It is an important result of Mather theory that sĨ(u, c) is a Lipschitz graph above
sI(u, c) (hence Ĩ(u, c) is a Lipschitz graph above I(u, c)). We finally define the Aubry
and Mañé sets by

Ã(c) =
⋂
u

Ĩ(u, c), sÃ(c) =
⋂
u

sĨ(u, c), Ñ (c) =
⋃
u

Ĩ(u, c), sÑ (c) =
⋃
u

sĨ(u, c), (6)

where the unions and the intersections are taken on the set of all weak KAM solutions u
at cohomology c. When a clear distinction is needed, we will call the sets sÃ(c) and sÑ (c)
the suspended Aubry (and Mañé) sets. We denote by sA(c) and sN (c) the projections
of sÃ(c) and sÑ (c) on Tn×T, respectively. Similarly, A(c) and N (c) are the projections
of Ã(c) and Ñ (c) on Tn, respectively. The Aubry set Ã(c) is compact, non-empty and
invariant under the time-1 flow. It is a Lipschitz graph above the projected Aubry set
A(c). The Mañé set Ñ (c) is compact and invariant. Its orbits (under the time-1 flow)
either belong, or are bi-asymptotic, to Ã(c).

In [8], an equivalence relation is introduced on the cohomology H1(Tn,R)=Rn,
called forcing relation. It will not be useful for the present exposition to recall the pre-
cise definition of this forcing relation. What is important is that, if c and c′ belong to
the same forcing class, then there exists an orbit (θ, p) and an integer T∈N such that
p(0)=c and p(T )=c′. We will establish here that, in the presence of generic additional
assumptions, the resonant arc Γ1 is contained in a forcing class, which implies the con-
clusion of Theorem 1.2, but also the existence of various types of orbits, see [8, §5] for
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more details. To prove that Γ1 is contained in a forcing class, it is enough to prove that
each of its points is in the interior of its forcing class. This can be achieved using the
mechanisms exposed in [8], called the Mather mechanism and the Arnold mechanism,
under appropriate informations on the sets

Ã(c)⊂ Ĩ(u, c)⊂Ñ (c), c∈Γ1.

1.4.3. Localization and a graph theorem

The first step is to relate these sets to the normally hyperbolic cylinder C0 as follows.

Theorem 1.4. In the context of Theorem 1.3, we may assume, by possibly reducing
the constant δ>0, that the following additional property holds for each function R∈
R(Γ1, ε, δ) with ε∈]0, δ[:

For each c∈Γ1, the Mañé set Ñ (c) is contained in the cylinder C0. Moreover, the
restriction of the coordinate map θf :Tn×Rn!T to Ĩ(u, c) is a bi-Lipschitz homeomor-
phism for each weak KAM solution u at cohomology c.

Proof. The proof is based on estimates on weak KAM solutions that will be estab-
lished in §4. Let � be as given by Theorem 1.3. Theorem 4.1 (which is stated and proved
in §4) implies that the suspended Mañé set sÑ (c) is contained in the set

{‖θs−θs
∗(c

f )‖6� : ‖ps−ps
∗(c

f )‖6�
√
ε and |pf−cf |6�

√
ε},

provided R∈R(Γ1, ε,�
16) and ε∈]0, ε0[ (a constant depending on �). As a consequence,

this inclusion holds for R∈R(Γ1, ε, δ) and ε∈]0, δ[, with δ=min(�16, ε0). The suspended
Mañé set sÑ (c) is then contained in the domain called W in the statement of Theo-
rem 1.3. It is thus contained in C, hence Ñ (c)⊂C0.

Let us consider a weak KAM solution u of Nε at cohomology c and prove the projec-
tion part of the statement. Let (θi, pi), i=1, 2 be two points in Ĩ(u, c). By Theorem 4.2,
we have

‖p2−p1‖6 9
√
Dε‖θ2−θ1‖6 9

√
Dε(‖θf

2−θ
f
1‖+‖θs

2−θs
1‖).

Since the points belong to C0, the last estimate in Theorem 1.3 implies that

‖θs
2−θs

1‖6C

(
1+

√
δ

ε

)
(‖θf

2−θ
f
1‖+‖p2−p1‖).

We get

‖p2−p1‖6 9C
√
D

(
2
√
ε+

√
δ
)
‖θf

2−θ
f
1‖+9C

√
D

(√
ε+

√
δ
)
‖p2−p1‖.
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If δ is small enough and ε<δ, then

9C
√
D

(√
ε+

√
δ
)
6 9C

√
D

(
2
√
ε+

√
δ
)
6 1

2 ,

hence

‖p2−p1‖6 9C
√
D

(
2
√
ε+

√
δ
)
‖θf

2−θ
f
1‖+ 1

2‖p2−p1‖,

thus

‖p2−p1‖6 9C
√
D

(
4
√
ε+2

√
δ
)
‖θf

2−θ
f
1‖6 ‖θf

2−θ
f
1‖.

1.4.4. Structure of Aubry sets inside the cylinder and existence of diffusing
orbits

This last result, in conjunction with the theory of circle homeomorphisms, has strong
consequences:

All the orbits of Ã0(c) have the same rotation number %(c)=(%f (c), 0), with %f (c)∈R.
Since the sub-differential ∂α(c) of the convex function α is the rotation set of Ã(c), we
conclude that the function α is differentiable at each point of Γ1, with dα(c)=(%s(c), 0).

When %s(c) is rational, the Mather minimizing measures are supported on periodic
orbits.

When %s(c) is irrational, the invariant set Ã(c) is uniquely ergodic. As a consequence,
there exists one and only one weak KAM solution (up to the addition of an additive
constant), hence Ñ (c)=Ã(c).

In the irrational case, we will have to consider homoclinic orbits. Such orbits can be
dealt with by considering the two-fold covering

ξ:Tn −!Tn,

θ=(θf , θs
1, θ

s
2, ..., θ

s
n−1) 7−! ξ(θ) = (θf , 2θs

1, θ
s
2, ..., θ

s
n−1).

The idea of using a covering to study homoclinic orbits comes from Fathi; see [30]. This
covering lifts to a symplectic covering

Ξ:Tn×Rn −!Tn×Rn,

(θ, p) = (θ, pf , ps
1, p

s
2, ..., p

s
n−1) 7−!Ξ(θ, p) =

(
ξ(θ), pf , 1

2p
s
1, p

s
2, ..., p

s
n−1

)
,

and we define the lifted Hamiltonian Ñ=N �Ξ. It is known, see [30], [25], [8], that

ÃH�Ξ(ξ∗c) =Ξ−1(ÃH(c)),
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where ξ∗c=
(
cf , 1

2c
s
1, c

s
2, ..., c

s
n−1

)
. On the other hand, the inclusion

ÑN�Ξ(ξ∗c)⊃Ξ−1(ÑN (c))= Ξ−1(ÃN (c))

is not an equality. More precisely, in the present situation, the set ÃN�Ξ(c̃) is the union of
two disjoint homeomorphic copies of the circle ÃN (c̃), and ÑN�Ξ(c̃) contains heteroclinic
connections between these copies (which are the liftings of orbits homoclinic to ÃN (c)).
More can be said if we are allowed to make a small perturbation to avoid degenerate sit-
uations. We recall that a metric space is called totally disconnected if its only connected
subsets are its points. The hypothesis of total disconnectedness in the following state-
ment can be seen as a weak form of transversality of the stable and unstable manifolds
of the invariant circle ÃN (c).

Theorem 1.5. In the context of Theorems 1.3 and 1.4, the following property holds
for a dense subset of functions R∈R(Γ1, ε, δ0) (for the Cr topology). Each c∈Γ1 is in
one of the following cases:

(1) θf (I(u, c)) T for each weak KAM solution u at cohomology c;
(2) %(c) is irrational, θf (NN (c))=T (hence, ÑN (c) is an invariant circle), and

ÑN�Ξ(ξ∗c)\Ξ−1(ÑN (c))

is totally disconnected.
The arc Γ1 is then contained in a forcing class, and hence the conclusion of Theo-

rem 1.2 holds.

Proof. By general results on Hamiltonian dynamics, the set R1⊂R(Γ1, ε, δ0) of func-
tions R such that the flow map φ does not admit any non-trivial invariant circle of rational
rotation number is Cr-dense. This condition holds for example if N is Kupka Smale (in
the Hamiltonian sense, see [59] for example).

Since the coordinate map θf is a homeomorphism when restricted to Ĩ(u, c), this set
is an invariant circle if θf (I(u, c))=T. If R∈R1, this implies that the rotation number
%f (c) is irrational. In other words, for R∈R1, condition (1) can be violated only at points
c when %f (c) is irrational, and then Ĩ(u, c)=Ã(c)=Ñ (c) is an invariant circle.

When R∈R1, it is possible to perturb R away from C0 in such a way that

ÑN�Ξ(ξ∗c)\Ξ−1(ÑN (c))

is totally disconnected for each value of c such that Ñ (c) is an invariant circle. This
second perturbation procedure is not easy because there are uncountably many such
values of c. This is the result of Theorem 5.1. A result of this kind was obtained in [24],
here we give a self-contained proof with many new ingredients; see §5.
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We now explain, under the additional condition ((1) or (2)), how the variational
mechanisms of [8] can be applied to prove that Γ1 is contained in a forcing class. It is
enough to prove that each point c∈Γ1 is in the interior of its forcing class. We treat
separately the two cases.

In the first case, we can apply the Mather mechanism, see (0.11) in [8, §0.11]. In that
paper, the subspace Y (u, c)⊂Rn, defined as the set of cohomology classes of closed 1-
forms whose support is disjoint from I(u, c), is associated with each weak KAM solution
u at cohomology c (in [8], the notation R(G) is used). In the present case, we know that
the map θf restricted to Ĩ(u, f) is a bi-Lipschitz homeomorphism which is not onto. We
conclude that Y (u, c)=Rn. Since this holds for each weak KAM solution u, we conclude
that

Y (c) :=
⋂
u

Y (u, c) =Rn.

The result called Mather mechanism in [8] states that there is a small ball B⊂Y (c)
centered at 0 in Y such that the forcing class of c contains c+B. In the present situation,
we conclude that c is in the interior of its forcing class.

In the second case, we can apply the Arnold’s mechanism; see [8, §9]. We work with
the Hamiltonian N �Ξ lifted to the 2-fold cover. By Proposition (7.3) in [8], it is enough
to prove that ξ∗c is in the interior of its forcing class for the lifted Hamiltonian N �Ξ;
this implies that c is in the interior of its forcing class for N .

The preimage Ξ−1(ÑN (c)) is the union of two closed curves S̃1 and S̃2. The set
ÑN�Ξ(ξ∗c) contains these two curves, as well as a set H̃12 of heteroclinic connections
from S̃1 to S̃2, and a set H̃21 of heteroclinic connections from S̃2 to S̃1. Theorem (9.2) in
[8] states that ξ∗c is in the interior of its forcing class, provided H̃12 and H̃21 are totally
disconnnected. Actually, the hypothesis is stated in [8] in a slightly different way, we
explain in Appendix B that total disconnectedness actually implies the hypothesis of [8].
We conclude that each c∈Γ1 is in the interior of its forcing class. Since Γ1 is connected,
it is contained in a single forcing class. It is then a simple consequence of the definition
of the forcing relation, see [8, §5], that the conclusion of Theorem 1.2 holds. This ends
the proof of Theorem 1.2, using the results proved in the rest of the paper.

1.5. Bifurcation points and a longer diffusion path

This section discusses some improvements on Theorems 1 and 1.2. There are two lim-
itations to the size of the resonant arc Γ1⊂Γ to which the above construction can be
applied.

The first limitation comes from the assumption that hypothesis (HZλ) should hold
on Γ1. Given a resonant arc Γ2⊂Γ, it is generic to satisfy this condition on a certain
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subarc Γ1⊂Γ2, but it is not generic to satisfy (HZλ) on the whole of Γ2. The presence
of values of c∈Γ2 such that Z( · , c) has two non-degenerate maxima cannot be excluded.
In this section, we explain how a modification of the proof of Theorem 1.2 allows us to
get rid of this limitation.

The second limitation comes from the normal form theorem, and from the impos-
sibility to incorporate a finite set of additional resonances (punctures) in the domain
of our normal forms. This limitation is serious, and bypassing it would require specific
work around additional resonances, which will not be discussed here. Some preprints
on this issue appeared after the first version of the present work; see [20], [39], [40] (the
latter ones being sequels to the present work, and the first one is independent). Here,
the best we can achieve is to prove existence of diffusion orbits between two consecutive
punctures. The number of punctures is independant from ε, it depends on the parameter
δ in Theorem 1.2, which can be computed using the non-degeneracy parameter λ; see
Remark 2.1.

In order to get rid of the first limitation, we consider a second hypothesis on Z.

Hypothesis 2. There exists a real number λ>0 and two points ϑs
1, ϑ

s
2 in Tn−1 such

that the balls B(ϑs
1, 3λ) and B(ϑs

2, 3λ) are disjoint and such that, for each p∈Γ1, there
exist two local maxima θs

1(p)∈B(ϑs
1, λ) and θs

2(p)∈B(ϑs
2, λ) of the function Z( · , p) in

Tn−1 satisfying
∂2

θsZ(θs
1(p), p) 6λI, ∂2

θsZ(θs
2(p), p) 6λI,

and

Z(θs, p) 6max{Z(θf
1 (p), p), Z(θf

2 (p), p)}−λ(min{d(θs−θs
1), d(θ

s−θs
2)})2

for each p∈Γ1 and each θs∈Tn−1.

Given an arc Γ2∈Rn, the following property is generic in Cr(Tn−1×Rn,R):
The arc Γ2 is a finite union of subarcs such that either Hypothesis 1 or 2 holds on

each of these subarcs, with a common constant λ>0.
We have the following improvement on Theorem 1.2.

Proposition 1.6. For the system (3), assume that there exists λ>0 such that for
each c∈Γ1, either Hypothesis 1 or 2 holds for each c∈Γ1. Then there exists δ>0, which
depend only on n, H0, and λ, and such that, for each ε∈]0, δ[, the following property
holds for a dense subset of functions R∈R(Γ1, ε, δ) (for the Cr topology):

There exist an orbit (θ, p) and an integer T∈N such that

p(0)= p∗(a−) and p(T ) = p∗(a+).
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Proof of Proposition 1.6. We use the same framework as in the proof of Theorem 1.2,
so it is enough to prove that each element of Γ1 is in the interior of its forcing class.

Observe first that Theorem 3.1 can be applied to prove the existence of two invariant
cylinders C1 and C2 in the extended phase space Tn×Rn×T. Moreover, we can choose
the parameter � smaller than λ, in such a way that

θs(C1)⊂B(ϑs
1, 2λ) and θs(C2)⊂B(ϑs

2, 2λ).

As earlier, we denote by C1
0 and C2

0 the intersections with the section {t=0}. By Theo-
rem 4.12, we have

Ã(c)⊂C1
0∪C2

0

for each c∈Γ1. Let us now introduce two smooth functions Fi(θs):Tn−1![0, 1], i∈{1, 2},
with the property that F1=1 in B(ϑs

2, 2λ), F1=0 outside of B(ϑs
2, 3λ), F2=1 in B(ϑs

1, 2λ)
and F2=0 outside of B(ϑs

1, 3λ)
Considering the modified HamiltoniansN−Fi will help the description of the Mather

sets of N . One can check by inspection in the proofs (using that Fi does not depend on
p) that Theorem 4.1 applies to N−Fi, and allows to conclude that the Mañé set Ñi(c) of
N−Fi is contained in Ci

0. Let us denote by αi(c) the α function of N−Fi. These objects
are closely related to Mather’s local Aubry sets.

Lemma 1.7. For each c∈Γ1, the αi(c) are differentiable at c, and

α(c) =max{α1(c), α2(c)}.

Moreover,
• if α(c)=α1(c)>α2(c), then Ñ (c)=Ñ1(c);
• if α(c)=α2(c)>α1(c), then Ñ (c)=Ñ2(c);
• if α(c)=α1(c)=α2(c), then Ñ1(c)∪Ñ2(c) Ñ (c).

Proof. The functions αi(c) are C1 for the same reason as α(c) is C1 in the one-peak
case.

Since N−Ni6N , we have αi(c)6α(c). On the other hand, we know that

α(c) =max
µ

(
c·%(µ)−

∫
(p ∂pN−N) dµ

)
,

where the maximum is taken over the set of invariant measures µ. Since we know that
Ã(c)⊂C1

0∪C2
0 , and since the maximizing measures are supported on the Aubry set, we

conclude that each ergodic maximizing measure is supported either on C1 or on C2. If
the measure is supported in Ci, then we have

αi(c) > c·%(µ)−
∫

(p ∂pN−N+Fi) dµ= c·%(µ)−
∫

(p ∂pN−N) dµ=α(c).
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This proves the equality α(c)=max{α1(c), α2(c)}.
As is explained in the proof of Theorem 4.12, there are two possibilities for the Mañé

set Ñ (c): either it is contained in one of the Ci
0, or it intersects both of them, and then

also contains connections (because it is necessarily chain transitive).
If the Mañé set Ñ (c) intersects Ci

0, then the intersection is a compact invariant
set, which thus support an invariant measure. This measure must be maximizing the
functional c·%(µ)−

∫
(p ∂pN−N dµ), and thus also the functional

c·%(µ)−
∫

(p ∂pN−N+Fi) dµ.

As a consequence, we must have α(c)=αi(c).

We can prove, by the variational mechanisms of [8], that a point c is in the interior
of its forcing class in the following three cases:

First case: the Mañé Ñ (c) set is contained in one of the cylinders Ci
0, and it does not

contain any invariant circle. Then the Mather mechanism applies as in the single-peak
case, and c is contained in the interior of its forcing class.

Second case: the Mañé set is an invariant circle (then necessarily contained in one of
the cylinders Ci

0), it is uniquely ergodic, and ÑN�Ξ(c)\Ξ−1(Ñ (c)) is totally disconnected.
Then the Arnold’s mechanism applies as in the single peak case, and c is contained in
the interior of its forcing class.

Third case: the sets Ñi(c) are both non-empty and uniquely ergodic, and

Ñ (c)\(Ñ1(c)∪Ñ2(c))

is totally disconnected. Then the Arnold’s mechanism applies directly (without taking a
cover), and c is contained in the interior of its forcing class.

Each c∈Γ1 is in one of these three cases provided the following set of additional
conditions holds:

• the sets Ñi(c) are uniquely ergodic;
• the equality α1(c)=α2(c) has finitely many solutions on Γ1;
• the set Ñ (c)\(Ñ1(c)∪Ñ2(c)) is totally disconnected (and not empty) in case

α1(c)=α2(c);
• the set ÑN�Ξ(c)\Ξ−1(Ñ (c)) is totally disconnected whenever Ñ (c) is an invariant

circle.
Let us now explain how these conditions can be imposed by a Cr perturbation of R.
We start by considering a perturbation R1 of R such that, for each rational number

%∈Q\{0}, there exists a unique Mather minimizing measure of rotation number %. Such
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a condition is known to be generic (because it concerns only countably many rotation
numbers); see [47], [25], [12], [11].

We then consider a perturbation R2 of the form R1−sF1, with a small s>0. It is
easy to see that the functions α2

i (c), c∈Γ1, associated with the Hamiltonian H0+εZ+εR2

are

α2
1(c) =α1

1(c) and α2
2(c) =α1

2(c)+s,

where α1
i (c) are the functions associated with H0+εZ+εR1. By Sard’s theorem, there

exist arbitrarily small regular values s of the difference α1
1−α1

2. If s is such a value, then
0 is a regular value of the difference α2

1−α2
2, hence the equation α2

1(c)=α
2
2(c) has only

finitely many solutions on Γ. Note that the perturbation is locally constant around the
cylinders Ci, hence this second perturbation does not destroy the first property.

We then perform new perturbations supported away from Ci, which preserve the
first two properties. The third property is not hard to obtain since it now concerns only
finitely many values of c. The last property is obtained using arguments of §5.

We have proved that the Hamiltonian R can be perturbed in such a way that each
point of Γ1 is in the interior of its forcing class.

2. Normal forms

The goal of the present section is to prove Proposition 1.1 which allows to reduce The-
orem 1 to Theorem 1.2. This reduction to the normal form does not use the convexity
assumption. We put the initial Hamiltonian Hε in normal form around a compact subarc
Γ2 of the resonance

Γ = {ps = p∗(pf )}= {p∈Rn : ∂psH0 =0}.

This global normal form is obtained by using mollifiers to glue local normal forms that
depends on the arithmetic properties of the frequencies. This allows a simpler proof for
instability, as we avoid the need to justify transitions between different local coordinates.

Recall that we study a resonance of order n−1 or, equivalently, of codimension 1.
The resonance of order n−1 is given by a lattice Λ spanned by n−1 linearly independent
vectors k1, ..., kn−1∈(Zn\{0})×Z. Denote by θs

j =kj ·θ, ωs
j =kj ·∇H0(p), j=1, ..., n−1

and θs=(θs
1, ..., θ

s
n−1) the slow angles and by ωs=(ωs

1, ..., ω
s
n−1) the slow actions, respec-

tively. Choose a complement angle θf so that (θs, θf )∈Tn−1×T form a basis.

For p∈Γ we have ω(p)=(0, ∂pfH0(p)). We say that p has an additional resonance
if the remaining frequency ∂pfH0(p) is rational. In order to reduce the system to an
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appropriate normal form, we must remove some additional resonances. More precisely,
we denote by D(K, s)⊂B the set of momenta p such that

• ‖∂psH0(p)‖6s, and
• |kf∂pfH0(p)+kt|>3Ks for each (kf , kt)∈Z2 satisfying max{|kf |, |kt|}∈]0,K].
The following result, which does not use the convexity of H0, is a refinement of

Proposition 1.1:

Theorem 2.1. (Normal Form) Let H0(p) be a C4 Hamiltonian. For each δ∈]0, 1[,
there exist positive parameters K0, ε0, and β such that, for each C4 Hamiltonian H1 with
‖H1‖C4 61, each K>K0, and each ε6ε0, there exists a smooth change of coordinates

Φ:Tn×B×T−!Tn×Rn×T

satisfying ‖Φ−id ‖C0 6
√
ε and ‖Φ−id ‖C2 6δ and such that, in the new coordinates, the

Hamiltonian H0+εH1 takes the form

Nε =H0(p)+εZ(θs, p)+εR(θ, p, t),

with ‖R‖C2 6δ on Tn×D(K,βε1/4)×T. We can take K0=cδ−2, β=cδ−1−n, and ε0=
δ6n+5/c, where c>0 is some constant depending only on n and ‖H0‖C4 .

The proof actually builds a symplectic diffeomorphism Φ̃ of Tn+1×Rn+1 of the form

Φ̃(θ, p, t, e) = (Φ(θ, p, t), e+f(θ, p, t))

and such that
Nε+e=(Hε+e)�Φ̃.

We have the estimates ‖Φ̃−id ‖C0 6
√
ε and ‖Φ̃−id ‖C2 6δ.

Remark 2.1. (Distance between punctures) On the interval, the distance between
two adjacent rationals with denominator at most K is 1/K2. Choose K=K0 as in
Theorem 2.1, the distance between adjacent punctures is at least D−1/K2>D−1c−1δ4.

The length of Γ1 is determined by the choice of δ, which can be chosen optimally
in Theorem 1.3 and Theorem 4.1. Upon inspection of the proof, it is not difficult to
determine that δ can be chosen to a power of λ, which shows the distance between
punctures is polynomial in λ.

To prove Theorem 2.1 we proceed in three steps. We first obtain a global normal
form Nε adapted to all resonances. We then show that this normal form takes the desired
form on the domain D(K, s). However, the averaging procedure lowers smoothness, in
particular, the technique requires the smoothness r>n+5. To obtain a result that does
not require this relation between r and n, we use a smooth approximation trick that goes
back to Moser.
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2.1. A global normal form adapted to all resonances

We first state a result for autonomous systems. The time-periodic version will come
as a corollary. Consider the Hamiltonian Hε(φ, J)=H0(J)+εH1(φ, J), where (φ, J)∈
Tm×Rm (later, we will take m=n+1). Let B={|J |61} be the unit ball in Rm. Given
any integer vector k∈Zm\{0}, let [k]=maxi{|ki|}. To avoid zero denominators in some
calculations, we make the unusual convention that [(0, ..., 0)]=1. We fix once and for all
a bump function %:R!R to be a C∞ such that

%(x) =
{

1, if |x|6 1,
0, if |x|> 2,

and 0<%(x)<1 in between. For each β>0 and k∈Zm, we define the function %k(J)=
%(k ·∂JH0/βε

1/4[k]), where β>0 is a parameter.

Theorem 2.2. There exists a constant cm>0, which depends only on m, such that
the following holds: given

• a C4 Hamiltonian H0(J);
• a Cr Hamiltonian H1(ϕ, J) with ‖H1‖Cr =1;
• parameters r>m+4, δ∈]0, 1[, ε∈]0, 1[, β>0, K>0,

satisfying
• K>cmδ−1/(r−m−3);
• β>cm(1+‖H0‖C4)δ−1/2;
• βε1/46‖H0‖C4 ,

there exists a C2 symplectic diffeomorphism Φ:Tm×B!Tm×Rm such that, in the new
coordinates, the Hamiltonian Hε=H0+εH1 takes the form

Hε�Φ =H0+εR1+εR2

with
• R1=

∑
k∈Zm:|k|6K %k(J)hk(J)e2πi(k·φ), where hk(J) is the k-th coefficient for the

Fourier expansion of H1;
• ‖R2‖C2 6δ;
• ‖Φ−id ‖C0 6δ

√
ε and ‖Φ−id ‖C2 6δ.

If both H0 and H1 are smooth, then so is Φ.

We now prove Theorem 2.2. To avoid cumbersome notation, we will denote by cm
various different constants depending only on the dimension m. We have the following
basic estimates about the Fourier series of a function g(φ, J). Given a multi-index α=
(α1, ..., αm), we set |α|=α1+...+αm. We also set �m=

∑
k∈Zm [k]−m−1.
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Lemma 2.3. For g(φ, J)∈Cr(Tm×B), we have the following.
(1) If l6r, we have ‖gk(J)e2πi(k·ϕ)‖Cl 6[k]l−r‖g‖Cr .
(2) Let gk(J) be a series of functions such that the inequality

‖∂Jαgk‖C0 6M [k]−|α|−m−1

holds for each multi-index α with |α|6l, for some M>0. Then, we have∥∥∥∥ ∑
k∈Zm

gk(J)e2πi(k·ϕ)

∥∥∥∥
Cl

6 c�mM.

(3) Let Π+
Kg=

∑
|k|>K gk(J)e2πi(k·φ). Then, for l6r−m−1, we have

‖Π+
Kg‖Cl 6�mK

m−r+l+1‖g‖Cr .

Proof. (1) Let us assume that k 6=0 and take j such that kj =[k]. Let α and η be
two multi-indices such that |α+η|6l. Finally, let b=r−l, and let β be the multi-index
β=(0, ..., 0, b, 0, ..., 0), where βj =b. We have

gk(J)e2πi(k·ϕ) =
∫

Tm

g(θ, J)e2πi(k,ϕ−θ) dθ=
∫

Tm

g(θ+ϕ, J)e−2πi(k·θ) dθ,

and hence

∂ϕαJη (gk(J)e2πi(k·ϕ)) =
∫

Tm

∂ϕαJηg(θ+ϕ, J)e−2πi(k·θ)dθ,

=
∫

Tm

∂ϕα+βJηg(θ+ϕ, J)
(2πikj)b

e−2πi(k·θ) dθ.

Since |α+β+η|6r, we conclude that

‖gk(J)e2πi(k·ϕ)‖Cl 6
‖g‖Cr

(2π[k])b
6 ‖g‖Cr [k]l−r.

(2) We have

‖gk(J)e2πi(k·ϕ)‖Cl 6

∥∥∥∥ ∑
k∈Zm

hk(J)e2πi(k·ϕ)

∥∥∥∥
Cl

6
∑

k∈Zm

cl|k|−r+lM 6 cl�mM

(recall that �m=
∑

k∈Zm |k|−m−1).
(3) Using (1), we get

‖Π+
Kg‖Cl 6

∑
|k|>K

[k]l−r‖g‖Cr 6 ‖g‖CrKm−r+l+1
∑
|k|>K

[k]−m−1

6 ‖g‖CrKm−r+l+1
∑

k∈Zm

[k]−m−1.
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Proof of Theorem 2.2. Let G̃(φ, J) be the function that solves the cohomological
equation

{H0, G̃}+H1 =R1+R+,

where R+=Π+
KH1. Observing that %k(J)=1 when k ·∂JH0=0, we have the following

explicit formula for G:

G̃(ϕ, J) = (2πi)−1
∑
|k|6K

(1−%k(J))hk(J)
k ·∂JH0(J)

e2πi(k·φ)

where each of the functions (1−%k(J))hk(J)/(k ·∂JH0) is extended by continuity at the
points where the denominator vanishes. This function hence takes the value zero at these
points. G is well defined thanks to the smoothing terms 1−%k we introduced, as whenever
k ·∂JH0=0 we also have 1−%k=0 and that term is considered non-present. Since G̃ as
defined above is only C3, we will consider a smooth approximation

G(ϕ, J) =
∑
|k|6K

gk(J)e2πi(k·φ)

where gk(J) are smooth functions which are sufficiently close to

(1−%k(J))hk(J)
(2πi)k ·∂JH0(J)

in the C3 norm.
Let Φt be the Hamiltonian flow generated by εG. Setting

Ft =R1+R++t(H1−R1−R+),

we have the standard computation

∂t((H0+εFt)�Φt) = ε∂tFt�Φt+ε{H0+εFt, G}�Φt

= ε(∂tFt+{H0, G})�Φt+ε2{Ft, G}�Φt = ε2{Ft, G}�Φt,

from which it follows that

Hε�Φ1 =H0+εR1+εR++ε2
∫ 1

0

{Ft, G}�Φt dt.

Let us estimate the C2 norm of the function R2 :=R++ε
∫ 1

0
{Ft, G}�Φt dt. It follows from

Lemma 2.3 that
‖R+‖C2 6�mK

−r+m+2‖H1‖Cr 6 1
2δ.
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We now focus on the term
∫ 1

0
{Ft, G}�Φt dt. To estimate the norm of Ft, it is convenient

to write Ft=F̃t+(1−t)R1, where F̃t=(1−t)R++tH1. Notice that the Fourier expansion
of F̃t is simply a constant times that of H1, Lemma 2.3 then implies that

‖F̃t‖C3 6
∑

k∈Zm

[k]3−r‖H1‖Cr =�m‖H1‖Cr

provided that r>m+4, where we set �m=
∑

Zm [k]−m−1.
We now have to estimate the norm of R1 and G. This requires additional estimates

of the smoothing terms %k as well as the small denominators k ·∂JH0. We always assume
that l∈{0, 1, 2, 3} in the following estimates:

– if %k(J) 6=1 then |(k ·∂JH0)−1|6β−1ε−1/4|k|−1;
– ‖(k ·∂JH0)−1‖Cl 6cmβ−l−1ε−(l+1)/4‖H0‖l+1

C4 on {%k 6=1};
– ‖%k(J)‖Cl 6cmβ−lε−l/4‖H0‖l

C4 and ‖1−%k(J)‖Cl 6cmβ−lε−l/4‖H0‖l
C4 .

We have been using the following estimates on the derivative of composition of
functions: For f :Rm!R and g:Rm!Rm we have ‖f �g‖Cl 6cm,l‖f‖Cl(1+‖g‖l

Cl).
– For each multi-index α, with |α|63, we have that

‖∂Jα((1−%k(J))hk(J)(k ·∂JH0)−1)‖C0

6
∑

α1+α2+α3=α

‖1−%k(J)‖C|α1|‖hk‖C|α2|‖(k ·∂JH0)−1‖C|α3|({%k 6=1})

6 cm
∑

α1+α2+α3=α

(
β−|α1|ε−|α1|/4‖H0‖|α1|

C4 [k]−r+|α2|‖H1‖Cr

×β−|α3|−1ε−(|α3|+1)/4‖H0‖|α3|+1
C4

)
6cmβ

−|α|−1ε−(|α|+1)/4[k]|α|−r‖H0‖|α|+1
C4 ‖H1‖Cr .

In these computations, we have used the hypothesis βε1/46‖H0‖C4 . Since

G(ϕ, J) =
∑

k∈Zm

(1−%k(J))hk(J)(k ·∂JH0)−1e2πi(k·ϕ),

Lemma 2.3 implies (since r>m+1) the following:
– ‖G‖Cl 6cmβ−l−1ε−(l+1)/4‖H0‖l+1

C4 ‖H1‖Cr 6ε−1.
We now turn our attention to R1=

∑
|k|6K %k(J)hk(J)e2πi(k·φ), getting

– ‖hk‖Cl 6[k]l−r‖H1‖Cr .
– ‖%khk‖Cl 6cmβ−lε−l/4[k]−r+l‖H0‖l

C4‖H1‖Cr .
– ‖R1‖Cl 6cmβ−lε−l/4‖H0‖l

C4‖H1‖Cr , provided r>m+4.
We obtain

‖Ft‖Cl 6 ‖R1‖Cl +‖F̃t‖Cl 6 cmβ
−lε−l/4‖H0‖l

C4‖H1‖Cr
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and
‖{Ft, G}‖C2 6

∑
|α1+α2|63

‖Ft‖C|α1|‖G‖C|α2| 6 cmβ
−4ε−1‖H0‖4

C4‖H1‖2
Cr .

Concerning the flow Φt, we observe that ‖εG‖C3 61, and get the following estimates (see,
e.g., [28, Lemma 3.15]):

– ‖Φt−id ‖C2 6cmε‖G‖C3 6cmβ−4‖H0‖4
C4‖H1‖Cr 6δ;

– ‖Φt−id ‖C0 6cmε‖G‖C1 6cmβ−2
√
ε‖H0‖2

C4‖H1‖C2 6δ
√
ε.

Finally, we obtain

ε‖{Ft, G}�Φt‖C2 6 cmε‖{Ft, G}‖C2‖Φt‖2
C2 6 cmβ

−4‖H0‖4
C4‖H1‖2

Cr 6 1
2δ.

2.2. Normal form away from additional resonances

We now return to our non-autonomous system and apply Theorem 2.2 around the reso-
nance under study. With the non-autonomous Hamiltonian

Hε(θ, p, t) =H0(p)+εH1(θ, p, t):Tn×Rn×T−!R

we associate the autonomous Hamiltonian

H̃e(ϕ, J) =H0(I)+e+εH1(θ, I, t):Tn+1×Rn+1 −!R,

where ϕ=(θ, t) and J=(I, e). We denote the frequencies ω∈Rn+1 by ω=(ωf , ωs, ωt)∈
Rn−1×R×R, and define the set

Ω(K, s) := {ω ∈Rn+1 : ‖ωs‖>s and |kfωf +ktωt|> 3sK for all (ks, kt)∈Z2
K},

where Z2
K denotes the set of pairs (kf , kt) of integers such that 0<max{kf , kt}6K. Note

that
D(K, s) = {p∈Rn : (∂pH0(p), 1)∈Ω(K, s)}.

Corollary 2.4. There exists a constant cn>0, which depends only on n, such that
the following holds. Given

• a C4 Hamiltonian H0(p),
• a Cr Hamiltonian H1(θ, p, t) with ‖H1‖Cr =1,
• parameters r>n+5, δ∈]0, 1[, ε∈]0, 1[, β>0, K>0,

satisfying
• K>cnδ−1/(r−n−4),
• β>cn(1+‖H0‖C4)δ−1/2,
• βε1/46‖H0‖C4 ,
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there exists a C2 symplectic diffeomorphism Φ̃ of Tn+1×Rn+1 such that, in the new
coordinates, the Hamiltonian Hε=H0+εH1 takes the form

Nε =H0+εZ+εR,

with
• ‖R‖C2 6δ on Tn×D(K,βε1/4)×T,
• ‖Φ̃−id ‖C0 6δ

√
ε and ‖Φ̃−id ‖C2 6δ.

The symplectic diffeomorphism Φ̃ is of the form

Φ̃(θ, p, t, e) = (Φ(θ, p, t), e+f(θ, p, t))

where Φ is a diffeomorphism of Tn×Rn×T fixing the last variable t. The maps Φ̃ and
Φ are smooth if H0 and H1 are.

Proof. We apply Theorem 2.2 with H̃ε, m=n+1 and δ̃= 1
2δ. We get a diffeomor-

phism Φ̃ of Tn+1×Rn+1 as the time-1 flow of the Hamiltonian G. By inspection in the
proof of Theorem 2.2, we observe that G does not depend on e, which implies that Φ̃ has
the desired form. We have

H̃ε�Φ̃ = H̃0(J)+εR̃1+εR̃2,

where ‖R̃2‖C2 6 1
2δ and

R̃1(θ, p, t) =
∑

[k]6K

%

(
kf ·∂pfH0+ks∂psH0+kt

βε1/4[k]

)
gk(p)e2πik·(θ,t).

Let us compute this sum under the assumption that p∈D(K,βε1/4) (or equivalently, that
(∂pH0, 1)∈Ω(K,βε1/4)). We have ∣∣∣∣kf ·∂pfH0

βε1/4[k]

∣∣∣∣ 6 1,

and hence

%

(
kf ·∂pfH0+ks∂psH0+kt

βε1/4[k]

)
=1

for k such that ks=0=kt. For the other terms, we have, by definition of Ω(K, s),∣∣∣∣ks∂psH0+kt

βε1/4[k]

∣∣∣∣ >

∣∣∣∣ks∂psH0+kt

βε1/4K

∣∣∣∣ > 3,

and hence ∣∣∣∣kf ·∂pfH0+ks∂psH0+kt

βε1/4[k]

∣∣∣∣ > 2



26 p. bernard, v. kaloshin and k. zhang

and these terms vanish in the expansion of R̃1. We conclude that

R̃1(θ, p, t) =
∑

kf∈Zn−1,[kf ]6K

g(kf ,0,0)(p)e2πikf ·θf

hence R̃1=Z−Π+
K(Z), with the notation of Lemma 2.3. Finally H̃ε�Φ̃=H̃0+εZ+εR2

with R2=R̃2−Π+
KZ. From Lemma 2.3, we see that

‖Π+
KZ‖C2 6 cnK

m+3−r‖Z‖Cr 6 cnK
m+3−r‖H1‖Cr 6 cnK

m+3−r 6 1
2δ.

On the other hand, ‖R̃2‖C2 6 1
2δ, and hence ‖R2‖C2 6δ.

2.3. Smooth approximation

We finally remove the restriction on r and obtain a smooth change of coordinates. If
r<n+5, we use Lemma 2.5 below to approximate H1 by an analytic function H∗

1 :=SτH1

(with a parameter τ that will be specified later).

Lemma 2.5. ([60]) Let f :Rn!R be a Cr function, with r>4. Then, for each τ>0,
there exists an analytic function Sτf such that

‖Sτf−f‖C3 6 c(n, r)‖f‖C3τ r−3 and ‖Sτf‖Cs 6 c(n, r)‖f‖Csτ−(s−r)

for each s>r, where c(n, r) is a constant which depends only on n and r.

In order to obtain a smooth change of variables, it is also convenient to approximate
H0(p) in C4(B) by a smooth H∗

0 (p) (using a standard mollification). We then apply
Corollary 2.4 to the Hamiltonian

H∗
ε :=H∗

0 +εH∗
1 =H∗

0 +ε2H2

with H2=H∗
1/‖H∗

1‖Cr2 , ε2=ε‖H∗
1‖Cr2 , and some parameters r2>r and δ26δ to be spec-

ified later. We find a smooth change of coordinates Φ̃ such that

H̃∗
ε �Φ̃ = H̃∗

0 +ε2Z2+ε2R2 = H̃∗
0 +εZ∗+ε‖H∗

1‖Cr2R2

and ‖R2‖C2 6δ2, where Z2(θs, p)=
∫
H2 dθ

f dt and Z∗(θs, p)=
∫
H∗

1 dθ
f dt. As usual, we

have denoted by H̃∗
ε and H̃∗

0 the autonomized Hamiltonians H̃∗
ε =H∗

ε +e and H̃∗
0 =H∗

0 +e,
respectively. With the same map Φ̃, we obtain

H̃ε�Φ̃ = H̃0+εZ+εR
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with

R= ‖H∗
1‖Cr2R2+(Z−Z∗)+(H∗

1−H1)�Φ+
H̃∗

0−H̃0+(H̃0−H̃∗
0 )�Φ̃

ε
.

In the expression above, the map Φ is the trace on the (θ, p, t) variables of the map Φ̃.
Choosing τ=δ1/(r2−3)

2 , and assuming that ‖H∗
0−H0‖C4 6εδ/c(n, 4) we get

– ‖H∗
1−H1‖C3 6c(n, r2)δ

(r−3)/(r2−3)
2 ,

– ‖H∗
1‖Cr2 6c(n, r2)δ

−(r2−r)/(r2−3)
2 ,

– ‖Z∗−Z‖C2 6‖H∗
1−H1‖C2 6c(n, r2)δ

(r−3)/(r2−3)
2 ,

– ‖Φ̃−id ‖C2 6δ26δ61,
– ‖(H∗

1−H1)�Φ‖C2 6c(n, r2)‖H∗
1−H1‖C2(‖Φ‖C2 +‖Φ‖2

C2)6c(n, 5)‖H∗
1−H1‖C2 ,

– ‖(H̃0−H̃∗
0 )�Φ̃‖C2 6δ/c(n, r2),

and finally

‖R‖C2 6 c(n, r2)δ
(r−3)/(r2−3)
2 +

δ

c(n, r2)
.

We now set

δ2 =
δ(r2−3)/(r−3)

c(n, r2)
6
δ

2

and get ‖R‖C2 6δ. To apply Corollary 2.4 as we just did, we need the following conditions
to hold on the parameters:

– K>c(n, r2)δ(r2−3)/(r−3)(r2−n−4), which implies K>cnδ
−1/(r−n−4)
2 ,

– β>c(n, r2)(2+‖H0‖C4)δ−(r2−3)/2(r−3) which implies β>cn(1+‖H∗
0‖C4)δ−1/2

2 ,
– βε1/46(1+‖H0‖C4)δ(r2−r)/4(r−3) which implies βε1/4

2 6‖H∗
0‖C4 .

We apply the above discussion with r2=2n+5 and get Theorem 2.1. Note the estimate

‖ id−Φ̃‖C0 6 δ2
√
ε2 6 δ

1−(r2−r)/2(r2−3)
2

√
ε6

√
ε.

3. Normally hyperbolic cylinders

In this section, we study the C2 Hamiltonian

Nε(θ, p, t) =H0(p)+εZ(θs, p)+εR(θ, p, t).

In the above notations we denote by ps
∗(p

f )∈Rn−1 the solution of the equation

∂psH0(ps
∗(p

f ), pf ) = 0.

We recall also the notation p∗(pf ):=(ps
∗(p

f ), pf ) from the introduction. We assume that
‖Z‖C3 61, and that D−1I6∂2

ppH06D I for some D>1. To simplify the notation, we will
be using the O( ·) notation, where f=O(g) means |f |6Cg for a constant C independent
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of ε, λ, δ, r, a−, and a+. We will not be keeping track of the parameter D, which is
considered fixed throughout the paper.

Given parameters
λ∈ ]0, 1] and a−<a+,

we assume that for each pf∈[a−, a+] there exists a local maximum θs
∗(p

f ) of the map
θs 7!Z(θs, p∗(pf )), and that θs

∗ is a C2 function of pf . We assume in addition that

−I 6 ∂2
θsθsZ(θs

∗(p
f ), p∗(pf ))6−λI (7)

for each pf∈[a−, a+], where as before I is the identity matrix. We shall at some occasions
lift the map θs

∗ to a C2 map taking values in Rn−1 without changing its name.

Theorem 3.1. The following conclusion holds if b∈]0, 1[ is a sufficiently small con-
stant (how small does not depend on the parameters ε, λ, δ, a−, a+): If the parameters
λ∈]0, 1], a−<a+, ε, and δ satisfy

0<ε<bλ9/2 and 0 6 δ < bλ5/2,

if ‖R‖C2 6δ, on the open set

{(θ, p, t) : pf ∈ ]a−, a+[ and ‖ps−ps
∗(p

f )‖<ε1/2}, (8)

and if (7) holds for each pf∈[a−, a+], then there exists a C2 map

(Θs, P s)(θf , pf , t):T×[a−+
√
δε, a+−

√
δε ]×T−!Tn−1×Rn−1

such that the cylinder

C = {(θs, ps) = (Θs, P s)(θf , pf , t) : pf ∈ [a−+
√
δε, a+−

√
δε] and (θf , t)∈T×T}

is weakly invariant with respect to Nε in the sense that the Hamiltonian vector field is
tangent to C. The cylinder C is contained in the set

V := {(θ, p, t) : pf ∈ [a−+
√
δε, a+−

√
δε], ‖θs−θs

∗(p
f )‖6 b1/5λ3/2

and ‖ps−ps
∗(p

f )‖6 b1/5λ3/2ε1/2},

and it contains all the full orbits of Nε contained in V . We have the estimates

‖Θs(θf , pf , t)−θs
∗(p

f )‖6O(λ−1δ+λ−3/4
√
ε),

‖P s(θf , pf , t)−ps
∗(p

f )‖6
√
εO(λ−3/4δ+λ−1/2

√
ε),∥∥∥∥∂Θs

∂pf

∥∥∥∥=O

(
λ−2

√
ε+λ−5/4

√
δ√

ε

)
,

∥∥∥∥ ∂Θs

∂(θf , t)

∥∥∥∥=O(λ−2
√
ε+λ−5/4

√
δ),∥∥∥∥∂P s

∂pf

∥∥∥∥=O(1),
∥∥∥∥ ∂P s

∂(θf , t)

∥∥∥∥=O(
√
ε ).
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Notice that the domain V is contained in the domain (8) where the assumption on
R is made.

Proof of Theorem 1.3. We derive Theorem 1.3 from Theorem 3.1 as follows. We
assume that Hypothesis (HZλ) holds on

Γ1 := {p∗(pf ) : pf ∈ [a−, a+]}.

Then the inequality

−I 6 ∂2
θsθsZ(θs

∗(p
f ), p∗(pf ))6−2λI

holds for pf∈[a−, a+]. Since ‖Z‖C3 61, the inequality

−I 6 ∂2
θsθsZ(θs, p) 6−λI

holds for each (θs, p) in the λ-neighborhood of (θs
∗(a−), p∗(a−)). The inequality

Z(θs, p∗(a−))6Z(θs
∗(a−), p∗(a−))−λd2(θs, θs

∗(a−))

implies that the function Z( · , p∗(pf )) has a global maximum θs
∗(p

f ), which is contained
in the ball B(θs

∗(a−), λ), provided |pf−a−|6bλ3 and b is small enough. By a similar
reasoning at a+, we extend the map pf 7!θs

∗(p
f ) to the interval [a−−bλ3, a++bλ3] in

such a way that, for each pf in this interval, the point θs
∗(p

f ) is a local (and even global)
maximum of the function Z( · , p∗(pf )) which satisfies the inequalities

−I 6 ∂2
θsθsZ(θs

∗(p
f ), p∗(pf ))6−λI.

Taking a small b>0, we set �=b1/5λ3/2 and δ=b3λ9. Assuming as in the statement of
Theorem 1.3 that the estimate ‖R‖C2<δ holds on Tn×Uε1/3×T, hence on

{
(θ, p, t) : pf ∈

]
a−− 1

2ε
1/3, a++ 1

2ε
1/3

[
and ‖ps−ps

∗(p
f )‖< 1

2ε
1/3

}
,

and that ε∈
]
0, δ

[
, we apply Theorem 3.1 on the interval

[a−, a+] :=
[
a−− 1

2ε
1/3, a++ 1

2ε
1/3

]
⊂ [a−−bλ3, a++bλ3].

If b (hence �) is small enough, then we have the inclusion

[a−+
√
εδ, a+−

√
εδ ]⊃ [a−−�ε1/3, a++�ε1/3].
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The proof of Theorem 3.1 occupies the rest of the section.
The Hamiltonian flow admits the following equation of motion:

θ̇s = ∂psH0+ε∂psZ+ε∂psR,

ṗs =−ε∂θsZ−ε∂θsR,

θ̇f = ∂pfH0+ε∂pfZ+ε∂pfR,

ṗf =−ε∂θfR,

ṫ=1.

(9)

The Hamiltonian structure of the flow is not used in the following proof.
It is convenient in the sequel to lift the angular variables to real variables and to

consider the above system as defined on Rn−1×Rn−1×R×R×R. We will see this system
as a perturbation of the model system

θ̇s = ∂psH0, ṗs =−ε∂θsZ, θ̇f = ∂pfH0, ṗf =0, ṫ=1. (10)

The graph of the map

(θf , pf , t) 7−! (θs
∗(p

f ), ps
∗(p

f ))

on R×]a−, a+[×R is obviously invariant for the model flow. For each fixed pf , the point
(θs
∗(p

f ), ps
∗(p

f )) is a hyperbolic fixed point of the partial system

θ̇s = ∂psH0(ps, pf ), ṗs =−ε∂θsZ(θs, ps, pf ),

where pf is seen as a parameter. This hyperbolicity is the key property we will use,
through the theory of normally hyperbolic invariant manifolds. It is not obvious to
apply this theory here because the model system itself depends on ε, and because we
have to deal with the problem of non-invariant boundaries. We will however manage to
apply the quantitative version exposed in Appendix A.

We perform some changes of coordinates in order to put the system in the framework
of Appendix A. These coordinates appear naturally from the study of the model system
as follows. We set

B(pf ) := ∂2
pspsH0(p∗(pf )) and A(pf ) :=−∂2

θsθsZ(θs
∗(p

f ), p∗(pf )).

If we fix the variable pf and consider the model system in (θs, ps), we observed that this
system has a hyperbolic fixed point at (θs

∗(p
f ), ps

∗(p
f )). The linearized system at this

point is

θ̇s =B(pf ) ps, ṗs = εA(pf ) θs.
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To put this system under a simpler form, it is useful to consider the matrix

T (pf ) := (B1/2(pf )(B1/2(pf )A(pf )B1/2(pf ))−1/2B1/2(pf ))1/2,

which is symmetric, positive definite, and satisfies T 2(pf )A(pf )T 2(pf )=B(pf ), as can be
checked by a direct computation. We finally introduce the symmetric positive definite
matrix

Λ(pf ) :=T (pf )A(pf )T (pf ) =T−1(pf )B(pf )T−1(pf ).

In the new variables

ξ=T−1(pf )θs+ε−1/2T (pf )ps and η=T−1(pf )θs−ε−1/2T (pf )ps,

the linearized system is reduced to the following block-diagonal form:

ξ̇= ε1/2Λ(pf )ξ, η̇=−ε1/2Λ(pf )η,

see [10] for more details. This leads us to introduce the following set of new coordinates
for the full system

x=T−1(pf )(θs−θs
∗(p

f ))+ε−1/2T (pf )(ps−ps
∗(p

f )),

y=T−1(pf )(θs−θs
∗(p

f ))−ε−1/2T (pf )(ps−ps
∗(p

f )),

I = ε−1/2pf and Θ = γθf ,

where γ is a parameter which will be taken later equal to δ1/2. Note that

θs = θs
∗(ε

1/2I)+ 1
2T (ε1/2I)(x+y) and ps = ps

∗(ε
1/2I)+ 1

2ε
1/2T−1(ε1/2I)(x−y).

Lemma 3.2. We have Λ(pf )>
√
λ/D I for each pf∈[a−, a+].

Proof. The matrix Λ is symmetric, hence it satisfies Λ>λ∗I, where λ∗>0 is its
smallest eigenvalue. The real number λ∗ is then an eigenvalue of the matrix[

Λ 0
0 −Λ

]
which is similar to

[
0 B

A 0

]
.

Since both A and B are square matrices of equal size, we conclude that λ−2
∗ is an

eigenvalue of A−1B−1. Since ‖A−1‖6λ−1 and ‖B−1‖6D, we have

λ−2
∗ 6 ‖A−1B−1‖6Dλ−1.

We conclude that λ∗>
√
λ/D.
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The links between the various parameters ε, δ, γ, λ, and % which appear in the
computations below will be specified later. We will however assume from the beginning
that

δ6 %6λ< 1,
√
ε6 %< 1, and 0<γ6λ< 1.

Let us first collect some estimates that will be useful to see that the system (9) is indeed
a perturbation of the model system.

Lemma 3.3. We have the estimates

‖T‖=O(λ−1/4), ‖T−1‖=O(1), ‖∂pfT‖6O(λ−5/4), ‖∂pfT−1‖6O(λ−3/4),

‖∂pf θs
∗‖6O(λ−1), ‖ps

∗‖C2 =O(1), ‖θs−θs
∗‖6O(λ−1/4%), ‖ps−ps

∗‖6O(ε1/2%),

where %=max{‖x‖, ‖y‖}.

Proof. We recall that

T =(B1/2(B1/2AB1/2)−1/2B1/2)1/2 and T−1 =(B−1/2(B1/2AB1/2)1/2B−1/2)1/2.

As D−1I6B6D I and λI6A6I, we obtain that ‖T‖6O(λ−1/4) and that ‖T−1‖6O(1).
To estimate the derivative of T , we consider the map F :M 7!M1/2 defined on positive
symmetric matrices. It is known that that

dFM ·N =
∫ ∞

0

e−tM1/2
Ne−tM1/2

dt.

To verify this one can diagonalize M , perform integration, and match terms in
(M1/2+εdFM ·N)(M1/2+εdFM ·N)=M+εN+O(ε2). This implies that

‖dFM‖6 1
2‖M

1/2‖−1 6 1
2‖M

−1/2‖.

As a consequence, if M(pf ) is a positive symetric matrix depending on pf , we have

‖∂pfM‖6 1
2‖M

−1/2‖ ‖∂pfM‖.

We apply this bound several times to estimate ∂pfT and ∂pfT−1. In our situation, we
have ∂pfA=O(1) and ∂pfB=O(1). Using M=A and B, we get ∂pf (A1/2)=O(λ−1/2)
and ∂pf (B1/2)=O(1), respectively. Using M=B1/2AB1/2, we get

∂pf [(B1/2AB1/2)1/2] =O(λ−1/2),

and then

‖∂pf [T−1]‖6 ‖(B−1/2(B1/2AB1/2)1/2B−1/2)−1/2‖ ‖∂pf [B−1/2(B1/2AB1/2)1/2B−1/2]‖

=O(λ−1/4)O(λ−1/2) =O(λ−3/4).
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Recalling that

‖∂pf (M−1)‖6 ‖M−1‖2 ‖∂pfM‖,

we obtain (with M=T−1)

‖∂pfT‖6 ‖T‖2 ‖∂pf [T−1]‖6 ∂pf (M1/2) =O(λ−5/4).

The other estimates are straightforward.

Corollary 3.4. Let Ṽ be the image in the (x, y, I,Θ, t) coordinates of the domain
called V in the statement. We have

Ṽ ⊂{x : ‖x‖6 b1/6λ5/4}×{y : ‖y‖6 b1/6λ5/4}×R×
[
a−√
ε
+
√
δ,
a+

√
ε
−
√
δ

]
×R,

Ṽ ⊃{x : ‖x‖6 2b1/4λ7/4}×{y : ‖y‖6 2b1/4λ7/4}×R×
[
a−√
ε
+
√
δ,
a+

√
ε
−
√
δ

]
×R

provided b is small enough.

From now on, we work on the region

pf ∈ [a−, a+], ‖x‖6 %, ‖y‖6 %.

In view of Lemma 3.3, this region is contained in the (image in the new coordinates of
the) domain where the inequality ‖R‖C2 6δ was assumed.

Lemma 3.5. The equations of motion in the new coordinates take the form

ẋ=−
√
εΛ(

√
εI)x+ε1/2O(λ−1/4δ+λ−3/4%2)+O(ε),

ẏ=
√
εΛ(

√
εI)y+ε1/2O(λ−1/4δ+λ−3/4%2)+O(ε),

İ =O(
√
εδ),

where %=max{‖x‖, ‖y‖} is assumed to satisfy %6λ. The expression for Θ̇ is not useful
here.

Proof. The last part of the statement is obvious. We prove the part concerning ẋ,
the calculations for ẏ are exactly the same. In the original coordinates the vector field
(9) can be written as

θ̇s =B(pf )(ps−ps
∗(p

f ))+O(‖ps−ps
∗(p

f )‖2)+O(ε),

ṗs = εA(pf )(θs−θs
∗(p

f ))+O(ε‖θs−θs
∗(p

f )‖2)+O(εδ).
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As a consequence, we have

ẋ=T−1B(ps−ps
∗)+ε

1/2TA(θs−θs
∗)

+T−1 ·O(‖ps−ps
∗‖2+ε)+ε1/2T ·O(‖θs−θs

∗‖2+δ)

+(∂pfT−1)ṗf (θs−θs
∗)+ε

−1/2(∂pfT )ṗf (ps−ps
∗)

−T−1(∂pf θs
∗)ṗ

f−ε−1/2T (∂pf ps
∗)ṗ

f .

We use the estimates of Lemma 3.3 to simplify (recall also that ṗf =O(εδ)):

ẋ=T−1B(ps−ps
∗)+ε

1/2TA(θs−θs
∗)

+O(ε%2+ε)+O(ε1/2λ−3/4%2+ε1/2λ−1/4δ)

+O(λ−1εδ%)+O(λ−5/4εδ%)+O(λ−1εδ+λ−1/4ε1/2δ).

Lemma 3.6. In the new coordinate system (x, y,Θ, I, t), the linearized system is
given by the matrix

L=



√
εΛ 0 0 0 0
0 −

√
εΛ 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+O(
√
εδλ−1/4γ−1+

√
ελ−3/4%+ελ−5/4+

√
εγ),

where %=max{‖x‖, ‖y‖}.

Proof. Most of the estimates below are based on Lemma 3.3. In the original coor-
dinates, the matrix of the linearized system is:

L̃=


O(ε) ∂2

pspsH0+O(ε) 0 ∂2
pf psH0+O(ε) 0

−ε∂2
θsθsZ O(ε) 0 O(ε) 0

O(ε) O(1) 0 O(1) 0
0 0 0 0 0
0 0 0 0 0

+O(δε),

In our notations we have

L̃=


O(ε) B+O(ε+

√
ε%) 0 ∂2

pf psH0+O(ε) 0
εA+O(ελ−1/4%) O(ε) 0 O(ε) 0

O(ε) O(1) 0 O(1) 0
0 0 0 0 0
0 0 0 0 0

+O(δε),
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In the new coordinates, the matrix is the product

L=
[

∂(x, y,Θ, I, t)
∂(θs, ps, θf , pf , t)

]
·L̃·

[
∂(θs, ps, θf , pf , t)
∂(x, y,Θ, I, t)

]
.

We have

[
∂(θs, ps, θf , pf , t)
∂(x, y,Θ, I, t)

]
=



1
2T

1
2T 0 O(

√
ελ−1) 0

1
2

√
εT−1 − 1

2

√
εT−1 0

√
ε∂pf ps

∗+O(ελ−3/4%) 0
0 0 γ−1 0 0
0 0 0

√
ε 0

0 0 0 0 1

 ,

and hence

L̃

[
∂(θs, ps, θf , pf , t)
∂(x, y,Θ, I, t)

]
=O(γ−1δε)

+



1
2

√
εBT−1+O(ελ−1/4) − 1

2

√
εBT−1+O(ελ−1/4) 0 O(ελ−3/4%+ε3/2λ−1) 0

1
2εAT+O(ελ−1/2%) 1

2εAT+O(ελ−1/2%) 0 ε3/2O(λ−5/4%+λ−1) 0
O(

√
ε) O(

√
ε) 0 O(

√
ε) 0

0 0 0 0 0
0 0 0 0 0

 .

This expression is the result of a tedious, but straightforward, computation. Let us just
detail the computation of the coefficient on the first line, fourth row, which contains an
important cancellation:

√
ε∂2

pspsH0∂pf ps
∗+

√
ε∂2

pf psH0+O(ελ−3/4%+ε3/2λ−1)

=
√
ε∂pf (∂psH0(p∗(pf )))+O(ελ−3/4%+ε3/2λ−1) =O(ελ−3/4%+ε3/2λ−1).

We now write

[
∂(x, y,Θ, I, t)

∂(θs, ps, θf , pf , t)

]
=


T−1 ε−1/2T 0 O(ε−1/2λ−1/4) 0
T−1 −ε−1/2T 0 O(ε−1/2λ−1/4) 0
0 0 γ 0 0
0 0 0 ε−1/2 0
0 0 0 0 1

 ,

and compute that

L=



√
εΛ+O(

√
ελ−3/4%) O(

√
ελ−3/4%) 0 O(ελ−5/4) 0

O(
√
ελ−3/4%) −

√
εΛ+O(

√
ελ−3/4%) 0 O(ελ−5/4) 0

O(
√
εγ) O(

√
εγ) 0 O(

√
εγ) 0

0 0 0 0 0
0 0 0 0 0


+O(

√
εδλ−1/4γ−1).
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In order to prove the existence of a normally hyperbolic invariant strip (for the lifted
system), we apply Proposition A.7 to the system in coordinates (x, y,Θ, I, t). More
precisely, with the notations of appendix A, we set u=x, s=y, c1=(Θ, t), c2=I, and
consider the domain

Ω =R2×Ωc2 =R2×
[
a−√
ε
+
√
δ,
a+

√
ε
−
√
δ

]
.

We fix

γ=
√
δ, α=

√
ελ

4D
, σ=

√
δ, (11)

observe that
√
εΛ>2αI, by Lemma 3.2. We assume, as in the statement of the theorem,

that 0<ε<bλ9/2 and that 06δ<bλ5/2. We apply Proposition A.7 with Bu={u:‖u‖6%}
and Bs={s:‖s‖6%} under the constraint

b−1/4(λ−3/4δ+λ−1/2
√
ε) 6 %6 b1/6λ5/4, (12)

provided b∈]0, 1[ is small enough. Observe that, if b is small enough, the inequalities

b−1/4(λ−3/4δ+λ−1/2
√
ε ) 6 2b1/4λ7/4 6 b1/6λ5/4

holds under our assumptions on the parameters, hence values of % satisfying (12) do exist.
It is easy to check under our assumptions on the parameters that such values of % exist.
Let us check the isolating block condition under the condition (12). By Lemma 3.5, we
have

ẋ·x> 2α‖x‖2−‖x‖ O(ε1/2λ−1/4δ+ε1/2λ−3/4%2+ε)

if x∈Bu and y∈Bs. If, in addition, ‖x‖=%, then

λ−3/4δ6 b1/4‖x‖, λ−5/4%2 6 b1/6‖x‖,
√
ε/λ6 b1/4‖x‖,

and hence

ẋ·x> 2α‖x‖2−‖x‖2b1/6O(
√
ελ ) >α‖x‖2,

provided b is small enough. Similarly, ẏ ·y6−α‖y‖2 on Bu×∂Bs, provided b is small
enough. Concerning the linearized system, we have

Luu =
√
εΛ+O(

√
εδλ−1/4γ−1+

√
ελ−3/4%+ελ−5/4+

√
εγ) =

√
εΛ+O(b1/6

√
ελ) >αI,

Lss =−
√
εΛ+O(b1/6

√
ελ) 6−αI
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on Bu×Bs×Ωr. These inequalities holds when b is small enough because
√
εΛ>2αI and√

ελ6O(α). Finally, still with the notations of Proposition A.7, we can take

m=O

(√
εδλ−1/4γ−1+

√
ελ−3/4%+ελ−5/4+

√
εγ+

√
εδ

σ

)
=
√
ελO(

√
δλ−3/4+%λ−5/4+

√
ελ−7/4) =

√
ελO(b1/6).

(13)

If b is small enough, we have 16m<α, and hence

K 6
2m
α
<

1
8
,

and Proposition A.7 can be applied. The invariant strip obtained from the proof of
Proposition A.7 does not depend on the choice of %, as long as (12) holds. It contains all
the full orbits contained in

{x : ‖x‖6 b1/6λ5/4}×{y : ‖y‖6 b1/6λ5/4}×R×
[
a−√
ε
+
√
δ,
a+

√
ε
−
√
δ

]
×R⊃ Ṽ ,

where Ṽ is the image in the new coordinates of the domain V defined in the statement
of Theorem 3.1 and where the last inclusion holds provided b is small enough, as follows
from Corollary 3.4. So our invariant strip contains all the full orbits contained in Ṽ . On
the other hand, we can take %=2b1/4λ7/4, and since

{x : ‖x‖6 2b1/4λ7/4}×{y : ‖y‖6 2b1/4λ7/4}×R×
[
a−√
ε
+
√
δ,
a+

√
ε
−
√
δ

]
×R⊂ Ṽ

(still for b small enough, by Corollary 3.4), our invariant strip is contained in Ṽ .
The possibility of taking %=b−1/4

1 (λ−3/4δ+λ−1/2
√
ε ) now implies that the cylinder

is actually contained in the domain where

‖x‖, ‖y‖6 b
−1/4
1 (λ−3/4δ+λ−1/2

√
ε ).

Moreover, with this choice of % and using thatK=O(m/
√
ελ ), we can obtain an improved

estimate of the Lipschitz constant K (notation from the appendix):

K =O(
√
δλ−3/4+%λ−5/4+

√
ελ−7/4)

=O(
√
δλ−3/4+b−1/4

1 δλ−2+b−1/4
1

√
ελ−7/4+

√
ελ−7/4)

=O(
√
δλ−3/4+

√
δλ−1+b−1/4

1

√
ελ−7/4)

=O(
√
δλ−1+b−1/4

1

√
ελ−7/4).
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Observe finally that, since the system is (1/γ)-periodic in Θ and 1-periodic in t, so is the
invariant strip given by Proposition A.7. We have obtained the existence of a C1 map

wc =(wc
u, w

c
s): (Θ, I, t)∈R×

[
a−√
ε
+
√
δ,
a+

√
ε
−
√
δ

]
×R−!Rn−1×Rn−1

which is 2K-Lipschitz, (1/γ)-periodic in Θ, 1-periodic in t, and the graph of which is
tangent to the vector field. Our last task is to return to the original coordinates by
setting

Θs(θf , pf , t) = θs
∗(p

f )+ 1
2T (pf )·(wc

u+wc
s)(γθ

f , ε−1/2pf , t),

P s(θf , pf , t) = ps
∗(p

f )+ 1
2

√
εT−1(pf )·(wc

u−wc
s)(γθ

f , ε−1/2pf , t).
(14)

All the estimates stated in Theorem 3.1 follow directly from these expressions, and from
the fact that ‖dwc‖62K. This concludes the proof of Theorem 3.1.

4. Localization and Mather’s projected graph theorem

We study the system in normal form Nε=H0+εZ+εR of Theorem 1.2 from the point of
view of Mather theory at a fixed cohomology c∈Rn such that ∂psH0(c)=0 (or in other
words such that c∈Γ). We assume that ‖Z‖C2 61, and that ‖R‖C2 6δ on {‖p−c‖<ε1/3}.
We continue to assume (1), and, for simplicity, we assume that D is large enough and ε
small enough for the following inequality to also hold:

1
D
I 6 ∂2

pNε 6DI.

Most of our statement depend on the shape of the function Zc: θs 7−!Z(θ, c). We will
most of the time assume that (HZλ) holds at c: There exists θs

∗ such that

Z(θs, c) 6Z(θs
∗, c)−λd2(θs, θs

∗).

We will rewrite this inequality as

Ẑc(θs) 6−λd2(θs, θs
∗),

with the notation Ẑc=Zc−maxZc. Later in §4.4, we also consider the double peak
case, which is not necessary for the proof of Theorem 1.2, but is very natural. Our first
statement localizes the Mañé set.

Theorem 4.1. In the single peak case (when (HZλ) holds at c), if δ>0 is small
enough with respect to n, D, λ, and ε is small enough with respect to n, D, λ, δ, then
the Mañé set at cohomology c of the Hamiltonian Nε satisfies

sÑ (c)⊂B(θs
∗, δ

1/5)×T×B(c,
√
εδ1/16)×T⊂Tn−1×T×Rn×T.
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This statement is proved in §4.2. Our second statement is a quantitative version
of the celebrated Mather Lipschitz graph theorem, it does not rely on any particular
assumption on Z, besides ‖Z‖C2 61:

Theorem 4.2. For each weak KAM solution u of Nε at cohomology c, the set
Ĩ(u, c)⊂Tn×Rn is contained in a 9

√
Dε-Lipschitz graph above Tn.

This theorem is proved in §4.3. We will always assume in this section that δ is
sufficiently small with respect to n,H0 and λ, and that ε is sufficiently small with respect
to n, H0, λ and δ.

4.1. Some inequalities

We will denote by N the Hamiltonian Nε and by L the associated Lagrangian function,
which is defined by

L(θ, v, t) = max
p∈Rn

(p·v−N(θ, p, t)).

The function L is then C2, and the maps

(θ, p, t) 7−! ∂pN(θ, p, t) and (θ, v, t) 7−! ∂vL(θ, v, t)

are diffeomorphisms of Tn×Rn×T, which are inverses of each other. The maximum in
the definition of L is reached at p=∂vL(θ, v, t). Since I/D6∂ppN6DI, we have

I

D
6 ∂vvL6DI.

We will also denote by L0(v) the Lagrangian associated with H0, or more explicitly
L0(v):=supp(p·v−H0(p)). It satisfies

I

D
6 ∂vvL0 6DI.

Lemma 4.3. For each %∈[4Dε, ε1/4], the image of the open set Tn×B(c, %)×T under
the diffeomorphism ∂pN contains the set

Tn×B
(
∂pH0(c),

%

2D
−2ε

)
×T.

In particular, if ε is small enough, the image of Tn×B(c, ε1/4)×T contains

Tn×B
(
c,
ε1/4

4D

)
×T.
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Proof. In view of the estimate ∂2
pH>I/D, each of the applications p 7!∂pN(θ, p, t)

sends the ball B(c, r) to a set which contains the ball B(∂pN(θ, c, t), r/2D). Since

|∂pN(θ, c, t)−∂pH0(c)|6 ε+εδ6 2ε,

we conclude that the image contains B(∂pH0(c), %/2D−2ε).

Lemma 4.4. The estimates

‖∂θvL‖C0 6 2Dε and ‖∂θθL‖C0 6 3ε

hold on Tn×B(c, ε1/3/4D)×T.

Proof. Note first that the estimates

‖∂θpH‖6 2ε and ‖∂θθH‖6 2ε

hold on the domain Tn×B(c, ε1/3)×T, which contains the image of

Tn×B
(
c,
ε1/3

4D

)
×T

under ∂vL. Observing that ∂θL=−∂θN(θ, ∂vLε(θ, v)), which implies that

∂vθL(θ, v, t) =−∂pθNε(θ, ∂vL(θ, v, t), t)∂vvL(θ, v, t)

we deduce that ‖∂θvL‖62Dε on Tn×B(c, ε1/3/4D)×T. The equality

∂θθL(θ, v, t) =−∂θθN(θ, ∂vL(θ, v, t), t)−∂pθN(θ, ∂vL(θ, v, t), t)∂θvL(θ, v, t),

implies that ‖∂θθL‖62ε+(2ε)(2Dε) on Tn×B(c, ε1/3/4D)×T.

Lemma 4.5. We have the estimate

|L(θ, v, t)−(L0(v)−εZ(θs, c))|6 2εδ

if |v−∂pH0(c)|<ε1/3/4D.

Proof. On the domain {|p−c|<ε1/3}, we have

|N(θ, p, t)−(H0(p)+εZ(θs, c))|6 ε5/4+εδ6 2εδ.

If |v−∂pH0(c)|<ε1/3/4D, then, by Lemma 4.3,

L(θ, v, p) = sup
|p−c|<ε1/3

[p·v−N(θ, p, t)]

and, by Lemma 4.3 applied with R≡0 and Z(θs, p)≡Z(θs, c),

L0(v)−εZ(θs, c) = sup
p

(p·v−H0(p)−εZ(θs, c))= sup
|p−c|<ε1/3

(p·v−H0(p)−εZ(θs, c)).
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Let us now estimate the value α(c) of the Mather function of N . We use the notation
Zc(θs):=Z(θs, c).

Lemma 4.6. The value α(c) of the Mather function of N satisfies

|α(c)−(H0(c)+εmaxθs Zc)|6 2εδ.

The reason behind this inequality is that the value α(c) of the Hamiltonian H0+εZc

is H0(c)+εmaxθs Zc.

Proof. On one hand, we have

α(c) 6max
(t,θ)

Nε(t, θ, c) 6H0(c)+εmax
θs

Zc+ε max
(t,θ)∈Tn+1

R(θ, c, t) 6H0(c)+εmax
θs

Zc+εδ.

For the other inequality, we use that ∂psH0=0. We consider the Haar measure µ of the
torus T×{θs

∗(c)}×{∂H0(c)}×T, where θs
∗(c) is any point maximizing Zc. This measure

is not necessarily invariant under the Lagrangian flow of L, but it is invariant under the
Lagrangian flow of L0−Zc (because ∂psH0=0) hence it is closed, which means that∫

(∂tf+∂θf ·v) dµ(θ, v, t) = 0

for each smooth function f(t, θ). See [4] and [32] (both inspired by [47]) for the notion of
closed measures. Each closed measure µ has a rotation vector %(µ):=

∫
v dµ(θ, v, t)∈Rn,

and its action is not less than c·%(µ)−α(c). Here, we have %(µ)=∂pH0(c), and hence

α(c) > c·∂pH0(c)−
∫
Ldµ= c·∂pH0(c)−L0(ω)+εZc(θs

∗(c))−2εδ

=H0(c)+εmaxθs Zc−2εδ.

Lemma 4.7. If ε is small enough (with respect to D and δ), we have the estimates

L(θ, v, t)−c·v+α(c) >
‖v−∂H0(c)‖2

4D
−εẐc(θs)−4εδ, (15)

L(θ, v, t)−c·v+α(c) 6D‖v−∂H0(c)‖2−εẐc(θs)+4εδ, (16)

for each (θ, v, t)∈Tn×Rn×R, where Ẑc(θs):=Z(θs, c)−maxθs Z(θs, c).

Proof. It is a direct computation:

L(θ, v, t) > c·v−N(θ, c, t)+
‖v−∂pN(θ, c, t)‖2

2D

> c·v−H0(c)−εZc(θs)−εδ+ (‖v−∂pH0(c))‖−2ε)2

2D

> c·v−α(c)+ε(maxθs Zc−Zc(θs))−3εδ+ ‖v−∂pH0(c))‖2

4D −16ε2,

L(θ, v, t) 6 c·v−N(θ, c, t)+ 1
2D‖v−∂pN(θ, c, t)‖2

6 c·v−H0(c)−εZc(θs)+εδ+ 1
2D(‖v−∂pH0(c))‖+2ε)2

6 c·v−α(c)+ε(maxθs Zc−Zc(θs))+3εδ+D‖v−∂pH0(c))‖2+8Dε2.
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It is useful to consider suspended weak KAM solutions. Recall that we defined weak
KAM solutions associated with a Lagrangian L at cohomolgy c as functions u on Tn such
that, for each t∈N,

u(θ) = inf
γ

(
u(γ(0))+

∫ t

0

(L(γ(s), γ̇(s), s)−c·γ̇(s)+α(c)) ds
)
,

where the infimum is taken over the set of C1 curves γ:R!Tn such that γ(t)=θ. We can
similarly define suspended weak KAM solutions as functions u:Tn×T−!R such that

u(θ, T mod1) = inf
γ

(
u(γ(S), Smod1)+

∫ T

S

(L(γ(t), γ̇(t), t)+c·γ̇(t)) dt
)
,

for all real times S6T , where the infimum is taken over the space of C1 curves γ: [S, T ]!
Tn such that γ(T )=θ. There is a bijection between suspended weak KAM solutions u(θ, t)
and genuine weak KAM solutions: Each suspended weak KAM solution u(θ, t) restricts
to a genuine weak KAM solution u(θ)=u(θ, 0), and each genuine weak KAM solution
u(θ) is the restriction of a unique suspended weak KAM solution u(θ, t) which can be
defined by

u(θ, tmod1) = inf
γ

(
u(γ(0))+

∫ t

0

(L(γ(s), γ̇(s), s)+c·γ̇(s)+α(c)) ds
)
,

for each t>0, where the infimum is taken on C1 curves γ:R−!Tn such that γ(t)=θ. We
shall use the same notation for a weak KAM solution u and the associated suspended
weak KAM solution. Curves γ calibrated by the weak KAM solutions u(θ) are also
calibrated by the corresponding suspended weak KAM solution in the sense that

u(γ(t2), t2 mod1)−u(γ(t1), t1 mod1) =
∫ t2

t1

(L(γ(s), γ̇(s), s)+c·γ̇(s)+α(c)) ds

for each time interval [t1, t2]. Let us now estimate the oscillation oscu:=maxu−minu of
suspended weak KAM solutions. We consider a convex subset Ω⊂Tn−1, meaning that it
is the projection of a convex subset Ω̃ of Rn−1, of diameter less than 2

√
n.

Lemma 4.8. Let u(θ, t) be a suspended weak KAM solution of N at cohomology c.
Given two points (θ1, t1), (θ2, t2)∈T×Ω×T, we have

u(θ2, t2)−u(θ1, t1) 6 10
√
nDε(m+4δ),

where m:=− infΩ Ẑc. We can in particular take Ω=Tn−1, then m61 and we conclude
that oscu610

√
2nDε.
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Proof. We have 0>Ẑc>−m on Ω. We take two points (θi, ti), i=1, 2, in the domain
T×Ω×T, and consider the curve

θ(t) = θ1+(t− t̃1)
θ̃2−θ̃1+[(T+ t̃2− t̃1)∂H0(c)]

T+ t̃2− t̃1
,

where T∈N is a parameter to be fixed later, t̃i∈[0, 1[, and θ̃i∈[0, 1[×Ω̃ are representatives
of the angular variables ti and θi, and [ω]∈Zn is the component-wise integral part of ω.
Note that θ(t̃1)=θ1 and θ(t̃2+T )=θ2, hence

u(θ2, t2)−u(θ1, t1) 6
∫ t̃2+T

t̃1

(L(θ(t), θ̇(t), t)−c·θ̇(t)+α(c)) dt

6
∫ t̃2+T

t̃1

(D‖θ̇−∂H0(c)‖2−εẐc(θs(t))+4εδ) dt

6
∫ t̃2+T

t̃1

(
9Dn

(T+ t̃2− t̃1)2
+εm+4εδ

)
dt

6
9Dn

T+ t̃2− t̃1
+(T+ t̃2− t̃1)ε(m+4δ).

This inequality holds for all T∈N, in particular, we can choose T∈N so that

2

√
nD

ε(m+4δ)
6T+ t̃2− t̃1 6 3

√
nD

ε(m+4δ)

and obtain u(θ2, t2)−u(θ1, t1)610
√
nDε(m+4δ).

4.2. Localization of the invariant sets

We prove Theorem 4.1. It is enough to prove that the inclusion

sĨ(u, c)⊂B(θs
∗(c), δ

1/5)×T×B(c,
√
εδ1/16)×T

holds for each (suspended) weak KAM solution u. We fix such a solution u(θ, t) and prove
the inclusion. The following preliminary localization, which does not use any assumption
on the shape of Z, implies that the set sĨ(u, c) is contained (when ε is small enough) in
the domain {‖p−c‖<ε1/3} where the assumption ‖R‖C2 6δ is made.

Lemma 4.9. Let (θ, p): [t1, t2]!Tn×Rn be an orbit calibrated by u. If t1 and t2 are
such that t2−t1>ε−1/2, then

‖p(t)−c‖6C
√
ε

for each t∈[t1, t2], where C is a constant which depends on n and D. In particular,

sĨ(u, c)⊂Tn×B(c, C
√
ε )×T⊂Tn×B(c, ε1/3)×T.
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Proof. We denote by Ci various positive constants which depend on n and D. Since
Ẑc60, we have

L(θ, v, t) >
‖v−∂pH0(c)‖2

4D
−4εδ.

As a consequence, L(θ, v, t)>20ε
√
nD if ‖v−∂pH0(c)‖>C1

√
ε. In view of Lemma 4.3,

we thus have
L(θ(t), θ̇(t), t) > 20

√
nDε

for each t such that ‖p(t)−c‖>C2
√
ε. Since θ is a calibrated curve, we have∫ t′2

t′1

L(θ(t), θ̇(t), t) dt6 oscu

for each [t′1, t
′
2]⊂[t1, t2]. In particular, by Lemma 4.8 we have 20ε

√
nD(t2−t1)>oscu.

Therefore, there exists a time t0∈[t1, t2] such that ‖p(t0)−c‖=C2
√
ε. Let t3∈[t1, t2]

be the time maximizing ‖p(t)−c‖. We assume for definiteness that t3>t0, and that
‖p(t)−c‖>C2

√
ε for each t∈[t0, t3] (otherwise we reduce the interval). The equations of

motion imply that ‖ṗ‖62ε on [t0, t3], hence t3>t0+(‖p(t3)−c‖−C2
√
ε)/2ε, and, using

the above lower bound on L(θ(t), θ̇(t), t),

20
√
nDε> oscu>

∫ t3

t0

L(θ(t), θ̇(t), t) dt> 10
√
nD(‖p(t3)−c‖−C2

√
ε ),

which implies that ‖p(t3)−c‖6(2+C2)
√
ε.

We now assume that Z(θs, c)6Z(θs
∗, c)−λd2(θs, θs

∗), or, equivalently, that

Ẑc(θs) 6−λd2(θs, θs
∗),

and prove the horizontal part of Theorem 4.1, or more precisely that

sI(u, c)⊂T×B(θs
∗(c), δ

1/5)×T. (17)

We consider the domain Ω=B(θs
∗, 4

√
δ/λ ). On this domain, we have −8δ/λ6Ẑc,

hence, by Lemma 4.8, the oscillation of u on T×Ω×T satisfies

oscT×Ω×T u6 40

√
nDεδ

λ
.

For θs /∈Ω, we have

L(θ, v, t)−c·v−α(c) >
‖v−∂pH0(c)‖2

4D
+
λεd2(θs, θs

∗)
2

>
‖vs‖2

4D
+λε

d2(θs, θs
∗)

2
,
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by Lemma 4.7. Let θ:R!Tn be a curve calibrated by u, and let [t1, t2] be an excur-
sion of θs outside of Ω, meaning that d(θs(t), θs

∗)>4
√
δ/λ for each t∈]t1, t2[, and that

d(θs(t1), θs
∗)=4

√
δ/λ=d(θs(t2), θs

∗). We have the inequalities

40

√
nDεδ

λ
>

∫ t2

t1

(L(θ(t), θ̇(t), t)−c·θ̇(t)+α(c)) dt

>
∫ t2

t1

(
‖θ̇s(t)‖2

4D
+λε

d2(θs(t), θs
∗(c))

2

)
dt.

If the curve θs(t) is not contained in B(θs
∗, δ

1/5) for t∈[t1, t2], then there exists a time
interval [t3, t4]⊂[t1, t2] such that d(θ(t), θs

∗)>
1
2δ

1/5 for t∈[t3, t4], d(θ(t3), θs
∗)=

1
2δ

1/5=
d(θ(t4), θs

∗), and maxt∈[t3,t4] d(θ(t), θ
s
∗)>δ

1/5. We then have
∫ t4

t3
‖θ̇s(t)‖ dt>δ1/5, and

hence

40

√
nDεδ

λ
>

∫ t2

t1

(
‖θ̇s(t)‖2

4D
+λε

d2(θs(t), θs
∗(c))

2

)
dt

>
∫ t4

t3

(
‖θ̇s(t)‖2

4D
+
λεd2(θs(t), θs

∗(c))
2

)
dt

>
1

4D(t4−t3)

(∫ t4

t3

‖θ̇s(t)‖ dt
)2

+
λε(t4−t3)δ2/5

8

>
1

4D(t4−t3)
δ2/5+

λεδ2/5(t4−t3)
8

>

√
λε

8
√
D
δ2/5,

which is a contradiction when δ is small enough with respect to n, D, and λ. We have
proved (17).

We can now prove a better vertical localization of the set sĨ(u, c) than was obtained
in Lemma 4.9. On the domain T×B(θs

∗, δ
1/5)×T, we have Ẑc>− 1

2δ
2/5. We deduce from

Lemma 4.8 that

10δ1/5
√
nDε>u(θ(t2), t2)−u(θ(t1), t1) =

∫ t2

t1

(L(θ(t), θ̇(t), t)−c·θ̇(t)+α(c)) dt

for each curve θ:R!Tn calibrated by u and each time interval [t1, t2]. We can choose the
time interval [t1, t2] as a maximal excursion outside of

{
‖p−c‖< 1

2

√
εδ1/16

}
. On [t1, t2],

we have ‖θ̇−∂pH0(c)‖>
√
εδ1/16/5D (by Lemma 4.3), and hence

L(θ, θ̇, t)−c·θ̇+α(c) >
εδ1/8

100D2
−4εδ>

εδ1/8

200D
.

We thus have
(t2−t1)εδ1/8

200D
6 10δ1/5

√
nDε,

and so 2ε(t2−t1)6 1
2

√
εδ1/16 (if δ is small enough). As ‖ṗ‖62ε and ‖p(t1)−c‖= 1

2

√
εδ1/16,

we conclude that ‖p(t)−c‖6
√
εδ1/16 on [t1, t2]. This ends the proof of Theorem 4.1.
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4.3. The Lipschitz constant

We prove Theorem 4.2. We will work here with weak KAM solutions rather than sus-
pended weak KAM solutions. We recall the concept of semi-concave function on Tn. A
function u:Tn!R is called K-semi-concave if the function

x 7−!u(x)− 1
2K‖x‖2

is concave on Rn, where u is seen as a periodic function on Rn. It is equivalent to require
that, for each θ∈Tn, there exists a linear form l on Rn such that the inequality

u(θ+y) 6u(θ)+l·y+ 1
2K‖y‖2

holds for each y∈Rn. It is sufficient to check that, for each θ, there exists l such that
this inequality holds for ‖y‖61. We will need the following regularity result of Fathi; see
[31].

Lemma 4.10. Let u1 and u2 be K-semi-concave functions, and let I⊂Tn be the
set of points where the sum u1+u2 is minimal. Then the functions u1 and u2 are
differentiable at each point of I, and the differential x 7!du1(x) is 6K-Lipschitz on I.

The weak KAM solutions of cohomology c are the functions u:Tn!R such that

u(θ) := min
γ

(
u(γ(0))+

∫ T

0

(L(γ(t), γ̇(t), t)−c·γ̇(t)+α(c)) dt
)
,

for each T∈N, where the minimum is taken over the set of C1 curves γ: [0, T ]!Tn

satisfying the final condition γ(T )=θ.

Proposition 4.11. For each c∈Rn, each weak KAM solution u at cohomology c is
3
2

√
Dε-semi-concave.

Proof. Given T∈N and θ∈Tn, there exists a curve Θ: [0, T ]−!Tn such that Θ(T )=θ
which is calibrated by u, which means that

u(θ) =u(Θ(0))+
∫ T

0

(L(t,Θ(t), Θ̇(t))−c·Θ̇(t)+α(c)) dt.

We assume that T>ε−1/2, which implies by Lemma 4.9 that ‖p(t)−c‖6C
√
ε, for a

constant C independant of ε and δ. We deduce that ‖Θ̇−∂pH0(c)‖6C
√
ε (with a higher

constant C) for each t∈[0, T ]. We lift Θ (and the point θ=Θ(T )) to a curve in Rn without
changing its name, and consider, for each x∈Rn, the curve

Θx(t) := Θ(t)+
tx

T
,
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so that Θx(T )=θ+x. Each of the curves Θx, ‖x‖61, satisfy ‖Θ̇x−∂pH0(c)‖6C
√
ε6ε1/3

(provided ε is small enough). We have the inequality

u(θ+x)−u(θ) 6
∫ T

0

(
L(Θx(t), Θ̇x(t), t)−L(Θ(t), Θ̇(t), t)− cx

T

)
dt.

Use Lemma 4.4, we get

L(Θx(t), Θ̇x(t), t) 6L(Θ(t), Θ̇(t), t)+∂θL(Θ(t), Θ̇(t), t)· tx
T

+∂vL(Θ(t), Θ̇(t), t)· x
T

+
3ε
2

∣∣∣∣ txT
∣∣∣∣2+2Dεt

∣∣∣∣ xT
∣∣∣∣2+

D

2

∣∣∣∣ xT
∣∣∣∣2. (18)

Using the Euler–Lagrange equation and integrating by parts, we conclude that

u(θ+x)−u(θ) 6 (c+∂vL(T,Θ(T ), Θ̇(T )))·x+
(
εT

2
+Dε+

D

2T

)
|x|2

for each T∈N, T>ε−1/2. Taking T∈
[√

D/ε,
√

2D/ε
]
, we obtain

u(θ+x)−u(θ) 6 (c+∂vL(T,Θ(T ), Θ̇(T )))·x+ 3
2

√
Dε|x|2

for each x∈Rn, ‖x‖61. This ends the proof of the semi-concavity.

Proof of Theorem 4.2. Let u be a weak KAM solution, and let ǔ be the conjugated
dual weak KAM solution. Then the set Ĩ(u, c) can be characterized as follows: Its
projection I(u, c) on Tn is the set where u=ǔ, and

Ĩ(u, c) = {(x, c+du(x)) :x∈I(u, c)}.

Since −ǔ is semi-concave, it is a consequence of Lemma 4.10 that the differential du(x)
exists for x∈I(u, c). Moreover, we can prove exactly as in Proposition 4.11 that −ŭ is
3
2Dε-semi-concave. Lemma 4.10 then implies that the map x 7!du(x) is 9

√
Dε-Lipschitz

on I(u, c).

4.4. Double peak case

We now localize the Aubry and Mañé sets in the more general case where (HZλ) is
replaced by

Ẑc(θs) 6−λmin{d(θs−θs
1), d(θ

s−θs
2)}2.

It is natural to relax (HZλ) in this way because, for a generic family of functions Ẑc, c∈Γ,
there exist values of c for which Ẑc has two degenerate maxima. Note that Theorem 4.2
is still valid in this case, its proof does not use (HZλ). On the other hand, Theorem 4.1
is replaced by the following result.
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Theorem 4.12. If δ>0 is small enough with respect to n, D and λ, and if ε is
small enough with respect to n, D, λ and δ, then the Aubry set at cohomology c of the
Hamiltonian Nε satisfies

sÃ(c)⊂ (B(θs
1, δ

1/5)∪B(θs
2, δ

1/5))×T×B(c,
√
εδ1/16)×T⊂Tn−1×T×Rn×T.

If, moreover, the projection θs(sA(c))⊂Tn−1 is contained in one of the (disjoint) balls
B(θs

i , δ
1/5), then the projection θs(sN (c))⊂Tn−1 of the Mañé set is contained in the

same ball B(θs
i , δ

1/5).

Proof. We assume that θs
1 6=θs

2, and that δ is small enough for the balls B(θs
i , 2δ

1/5),
i=1, 2, to be disjoint. We first show that

θs(sA(c))⊂B(θs
1, δ

1/5)∪B(θs
2, δ

1/5).

As in the single peak case, we set r1=4
√
δ/λ, and observe that

L(θ, v, t)−c·v−α(c) >
‖vs‖2

4D
+
λεmin{d(θs−θs

1), d(θ
s−θs

2)}2

2

for θs /∈B(θs
1, r1)∪B(θs

2, r1). The θs component of each orbit of the Aubry set spends
a finite amount of time outside of B(θs

1, r1)∪B(θs
2, r1). Each maximal orbit segment

outside of this union connects B(θs
i , r1) to B(θs

j , r1) for some i∈{1, 2} and some j∈{1, 2}.
Exactly as in the single peak case, the orbits segments connecting B(θs

i , r1) to itself are
contained in B(θs

i , δ
1/5). So the claim holds, provided there exists no orbit segment in

sA(c) connecting B(θs
i , r1) to B(θs

j , r1) with i 6=j.
Assume for example that there exists an orbit segment θ: [t1, t2]!Tn connecting

B(θs
1, r1) to B(θs

2, r1). Then, given any suspended weak KAM solution u, the same
action estimates as in the single peak case imply that

u(θ(t2), t2)−u(θ(t1), t1) >

√
λε

8
√
D
δ2/5.

As the Aubry set is chain recurrent, there must exist an orbit segment θ̌: [ť1, ť2]!Tn

connecting B(θs
2, r1) to B(θs

1, r1), and we have

u(θ̌(ť2), ť2)−u(θ̌(ť1), ť1) >

√
λε

8
√
D
δ2/5.

By using Lemma 4.8 with Ω=B(θs
1, r1) and Ω=B(θs

2, r1), we get that

u(θ̌(ť2), ť2)−u(θ(t1), t1) 6 40

√
nDεδ

λ
and u(θ(t2), t2)−u(θ̌(ť1), ť1) 6 40

√
nDεδ

λ
.
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All these inequalities together imply that

40

√
nDεδ

λ
>

√
λε

8
√
D
δ2/5,

which does not hold if δ is small enough. This contradiction proves that no excursion
connecting B(θs

1, r1) to B(θs
2, r1) can exist in the Aubry set. Note that we have used the

chain recurrence of the Aubry set, and that the conclusion does not in general apply to
the Mañé set. We have proved that

sA(c)⊂T×(B(θs
1, δ

1/5)∪B(θs
2, δ

1/5))×T.

The vertical part of the localization follows exactly as in the single peak case.
In general, such a localization does not hold for the Mañé set, which may contain

connections from one of the regions T×B(θs
i , δ

1/5)×T to the other (but, in view of the
calculations above, not in both direction). If such a connection exists, then its α-limit is
contained in one of the domains T×B(θs

i , δ
1/5)×T, say T×B(θs

1, δ
1/5)×T, and its ω-limit

is contained in the other domain T×B(θs
2, δ

1/5)×T. Recalling that the α and ω limits of
the Mañé set are contained in the Aubry set, we conclude that each of the intersections

sA(c)∩(T×B(θs
i , δ

1/5)×T)

is non-empty. This proves the last part of the statement

5. Non-degeneracy of the barrier functions

In this section we prove the following result.

Theorem 5.1. In the context of Theorem 1.5, by possibly taking a smaller δ0, for
a residue set of R∈R=R(r, ε, δ0) the following hold : for any c∈Γ1 such that %(c) is
irrational and θf (NN (c))=T, the set ÑN�Ξ(ξ∗c)−Ξ−1(ÑN (c)) is totally disconnected.

This is a delicate perturbation problem, and a version of it for a-priori unstable
systems appeared in [24] and was discussed in [51]. In this section we give a self-contained
proof with many new ingredients.

5.1. Outline of the proof

In this section we prove Theorem 5.1 assuming some statements that are proved in later
subsections. Let L denote the Lagrangian associated with N .

• We define R1⊂R(r, ε, δ) to be the set of R such that θf (NN (c)) 6=T whenever
%f (c) is rational. The set R1 is a residue subset of R. We also abuse notation and
denote by R1 the set of Hamiltonians of the form N=H0+εZ+εR, R∈R1.
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• We define
Γ∗(N) = {c∈Γ1 : θf (NN (c))=T},

according to the previous item, for N∈R1 and c∈Γ∗(N), we necessarily have %f (c)
irrational. In particular, AN (c)=NN (c) contains a unique static class. In view of the
upper semi-continuity of the Mañé set, Γ∗(N) is a compact subset of Γ1.

• If N∈R1 and c∈Γ∗(N), then the Aubry set ÃN�Ξ(ξ∗c)=Ξ−1ÃN (c) contains ex-
actly two static classes denoted S̃1 and S̃2 (with projections S1 and S2). Then the Mañé
set is the disjoint union

ÑN�Ξ(ξ∗c) = S̃1∪S̃2∪H̃12∪H̃21, (19)

where H̃12 (and H̃21) is the set of heteroclinic orbits from S̃1 to S̃2 (and vice versa).
Projections are denoted H12 and H21. Note that ÑN�Ξ(ξ∗c)−Ξ−1ÑN (c)=H̃12∪H̃21.
We will also use the notation S̃i(N, c) and H̃ij(N, c) when discussing the dependence on
N and c.

• For N∈R1 and c∈Γ∗(N), the static classes S̃1 and S̃2 determine two elementary
forward and two backward weak KAM solutions

h(ζ1, ·), h(ζ2, ·), h( · , ζ1), h( · , ζ2), ζi ∈Si, i=1, 2,

where the barrier functions are evaluated for N �Ξ and ξ∗c. The associated pseudographs
are denoted Ei(N, c) and Ěi(N, c), i=1, 2, respectively, and they do not depend of the
choices of points ζ1∈S1 and ζ2∈S2. Define

b−N,c(θ) =h(ζ1, θ)+h(θ, ζ2)−h(ζ1, ζ2)

and b+N,c is similarly defined with ζ1 and ζ2 switched. The functions b±N,c do not depend
on the choice of points ζ1∈S1 and ζ2∈S2, they are non-negative, and vanish, respectively,
on H12∪S1∪S2 and on H21∪S1∪S2.

Given c∈Γ1, we consider the compact subset K⊂Tn formed by points θ such that
d(θs(c), θs)> 1

10 . There exists σ>0 such that the Mañé set N (N, c) is disjoint from K
for each c∈Γ1∩Bσ(c) and N∈R(r, ε, δ0). The compact set K=ξ−1(K) (ξ is the double
covering) is then disjoint from AN�Ξ(ξ∗c). Moreover, for these N and c, the set π−1(K)
intersects each orbit of ÑN�Ξ(ξ∗c)−ÃN�Ξ(ξ∗c).

Since the compact interval Γ1 is the union of finitely many compact segments, each
contained in a ball of the form Bσ(c), it suffices to prove Theorem 5.1 for each segment.
Therefore, we may assume without loss of generality that Γ1 is actually contained in one
of these balls. Then, there exists a compact set K such that

• For each c∈Γ1 and N∈R(r, ε, δ0), K is disjoint from AN�Ξ(ξ∗c) and π−1(K) in-
tersects each orbit of ÑN�Ξ(ξ∗c)−ÃN�Ξ(ξ∗c).
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We make this additional assumption for the sequel of the section.

Lemma 5.2. For each (N, c)∈R1×Γ1, the set ÑN�Ξ(ξ∗c)−Ξ−1ÑN (c) is totally dis-
connected if and only if the set

NN�Ξ(ξ∗c)∩K=(H12(N, c)∪H21(N, c))∩K

is totally disconnected.

Proof. The set NN�Ξ(ξ∗c)∩K is a compact metric space, so it is totally disconnected
if and only if it has topological dimension zero, see [38]. Assuming that this property
holds, the set ÑN�Ξ(ξ∗c)∩π−1(K) is the disjoint union of two homeomorphic copies of
NN�Ξ(ξ∗c)∩K, hence it is compact and of zero topological dimension. As a consequence,
each of the sets φk(NN�Ξ(ξ∗c)∩K), k∈Z, is compact and of zero topological dimension,
where φk is the time-k Hamiltonian flow of N . The countable union

ÑN�Ξ(ξ∗c)−ÃN�Ξ(ξ∗c) =
⋃
k∈Z

φk(NN�Ξ(ξ∗c)∩K)

is then also of zero dimension. As a consequence, the projection NN�Ξ(ξ∗c)−AN�Ξ(ξ∗c)
is of zero topological dimension, and hence it is totally disconnected.

We want to prove that a dense Gδ set of Hamiltonians N∈R1 have the property
that NN�Ξ(ξ∗c)∩K is totally disconnected for each c∈Γ∗(N). The Gδ part follows from
the next lemma.

Lemma 5.3. Let J⊂Γ1 and K⊂Tn be compact subsets, then the set of remainders
R∈R such that for all c∈J∩Γ∗(N) the set of points

Q(N, c,K) :=NN�Ξ(ξ∗c)∩K (20)

is totally disconnected, is a Gδ set.

Proof. Consider a Hamiltonian N satisfying the conditions of the lemma. Then, for
every c∈J∩Γ∗(N), Q(N, c,K) is compact and totally disconnected, and hence has zero
topological dimension.

We call a compact subset (1/k)-disconnected if it admits a finite disjoint covering
by compact subsets of diameter at most 1/k. If N satisfies the conditions of the lemma,
then NN�Ξ(ξ∗c)∩K is (1/k)-disconnected for each k∈N and each c∈J∩Γ∗(N). Since
the Mañé set is upper semi-continuous in the Hamiltonian (in the C2 topology), so is
NN�Ξ(ξ∗c)∩K and we have, for each fixed k, the following result:

There exists an open set Γ′ containing Γ∗(N)∩J and a neighborhood U of N in C2

such that the set NN ′
�Ξ(ξ∗c′)∩K is (1/k)-disconnected for all c′∈Γ′ and all N ′∈U .
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We now use the observation that Γ∗(N) is upper semi-continuous in N , hence so
is J∩Γ∗(N) since J is compact. We deduce the existence of a smaller neighborhood
U ′⊂U of N , such that J∩Γ∗(N ′)⊂Γ′ for each N ′∈U ′. We have proved: the property
that NN�Ξ(ξ∗c)∩K is (1/k)-disconnected for each c∈Γ∗(N)∩J is C2 open (and hence
Cr open). The lemma follows by taking the intersection over k.

We now adress the density part. Let us consider the product space

Cr(Tn×Rn×T)×Rn

with the standard norms on both spaces. Define the following subset

Q= {(N, c) : N ∈R1, c∈Γ∗(N)}⊂R×Γ1 ⊂Cr(Tn×Rn×T)×Rn.

The following proposition allows us to perturb the functions b±N,c locally simultane-
ously for an open set of c. The proof is given in §5.2.

Proposition 5.4. Let (N0, c0)∈Q and let K⊂Tn be a compact set disjoint from
AN0�Ξ(ξ∗c0). Then there is σ>0 such that for all N∈R1∩Bσ(N0), θ0∈K∩H12(N0, c0),
and ϕ∈Cr

c (Bσ(θ0)) with ‖ϕ‖Cr<σ, there exists a Hamiltonian Nϕ such that the following
conditions hold :

(1) For all c∈Bσ(c0), the Aubry set ÃNϕ�Ξ(ξ∗c) coincides with ÃN�Ξ(ξ∗c), with the
same static classes. In particular, Bσ(c0)∩Γ∗(N)=Bσ(c0)∩Γ∗(Nϕ).

(2) For all c∈Bσ(c0)∩Γ∗(N), there exists a constant e∈R such that

b+Nϕ,c(θ) = b+N,c(θ)+ϕ(θ)+e, θ∈Bσ(θ0). (21)

The same holds for θ0∈K∩H21(N0, c0), with b+ replaced by b− in (21). Moreover, for
each N∈R1∩Bσ(N0), ‖Nϕ−N‖Cr!0 when ‖ϕ‖Cr!0.

We will use Proposition 5.4 to perturb all barrier functions near a given c0 simultane-
ously. Because we are perturbing an uncountable family of functions, we need additional
information on how the functions b±N,c depends on c. The proof is given in §5.3.

Proposition 5.5. For each N∈R1, the maps c 7!b+N,c and c 7!b−N,c are 1
2 -Hölder

from Γ∗(N) to C0(Tn,R).

This regularity implies that the set {b±N,c :c∈Γ∗(N)} is compact and has Hausdorff
dimension at most 2 in C0(Tn,R). The following lemma will allow us to take advantage
of this fact.
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Lemma 5.6. Let F⊂C0([−1, 1]n,R) be a compact set of finite Hausdorff dimension.
The following property is satisfied on a residue set of functions ϕ∈Cr(Rn,R) (with the
uniform Cr norm):

For each f∈F , the set of minima of the function f+ϕ on [−1, 1]n is totally discon-
nected.

As a consequence, for each open neighborhood Ω of [−1, 1]n in Rn, there exist arbi-
trarily Cr-small compactly supported functions ϕ: Ω!R satisfying this property.

Proof. We first consider the case n=1. The set F̃={c−f :f∈F , c∈R} is compact
and of finite Hausdorff dimension (one more than the dimension of F). For each compact
subinterval J⊂[−1, 1], the set F̃J⊂C(J,R) is also compact and finite-dimensional, since
the restriction map is Lipschitz. If J is non-trivial, the complement

Φ(J) :=Cr(R,R)−(F̃J∩Cr(R,R))

is open and dense in Cr(R,R). To prove density, we consider a subspace H⊂Cr(R,R) of
finite dimension larger than the Hausdorff dimension of F̃ . We moreover assume that all
functions of H are compactly supported inside the interior of J . Given ϕ∈Cr(R,R), we
consider the affine space ϕ+H. Considering the C0([−1, 1],R) distance, the Hausdorff
dimension of F̃J∩(ϕ+H) is not greater than the Hausdorff dimension of F̃ , hence it is
less than the dimension of H. This implies that the complement (ϕ+H)−F̃ is dense
in ϕ+H endowed with the C0 distance. Since the C0 and Cr norms are equivalent on
the finite-dimensional space ϕ+H, we conclude that ϕ belongs to the closure of Φ(J) in
Cr(R,R).

Let Jk be a sequence of compact subintervals of [−1, 1] such that each open interval
contains one of the Jk. Then if ϕ∈

⋂
k Φ(Jk) (this intersection is a dense Gδ set), each of

the functions f+ϕ, f∈F , has the property that it is not constant on any open interval,
hence its set of minima in [−1, 1] is totally disconnected.

Let us now turn to the general case. We denote by πi: [−1, 1]n![−1, 1] the projec-
tions on the factors. We associate with each function f∈C0([−1, 1]n,R) the functions

fi: [−1, 1]3xi 7−! fi(xi) = min
πi(x)=xi

f(x).

For each k and i, the following property holds on an open and dense subset of functions
ϕ∈Cr(Rn,R): None of the functions (f+ϕ)i, f∈F , is constant on Jk.

To prove density, we consider a function ϕ∈Cr(Rn,R). The map f 7!fi is Lips-
chitz, and hence the set Fi(ϕ)={(f+ϕ)i :f∈F}⊂C0([−1, 1],R) is compact and has finite
Hausdorff dimension. We can apply the result for n=1 to this family and obtain that
for generic ϕ1∈Cr(R,R), none of the functions

(f+ϕ)i+ϕi =(f+ϕ+ϕi)i
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for f∈F is constant on the interval Jk.
By taking the intersection over n and k, we obtain that, for generic ϕ∈Cr(Rn,R),

each of the functions (f+ϕ)i has a totally disconnected set of minima in [−1, 1].
Since πi(argmin(f+ϕ))⊂argmin(f+ϕ)i, this implies that argmin(f+ϕ) is totally

disconnected.

Proof of Theorem 5.1. Let R2⊂R1 be the set of Hamiltonians N which have the
property that NN�Ξ(ξ∗c)∩K is totally disconnected for each c∈Γ∗(N).

By Lemma 5.1, it is enough to prove that R2 is a dense Gδ set. By Lemma 5.3, R2

is a Gδ, so left to prove is density.
Let us fix N0∈R1. For each θ0∈NN�Ξ(ξ∗c)∩K, we consider σ>0 small enough so

that Proposition 5.4 applies. We define the cube

Dσ(θ0) =
{
θ :max

i
|θi−θi

0|6
σ

2
√
n

}
⊂Bσ(θ0).

In view of Proposition 5.5, we may apply Lemma 5.6 to the family of functions b±N,c,
c∈Γ1∩Γ∗(N) on the cube Dσ(θ0) for each N∈R1. We find arbitrarily small functions ϕ
compactly supported in Bσ(θ0) and such that each of the functions b±N,c+ϕ, c∈Γ∗(N)∩Γ1

have a totally disconnected set of minima in Dσ(θ0). If N∈R1∩Bσ(N0), we can apply
Proposition 5.4 to get Hamiltonians Nϕ approximating N . We obtain the following
results:

• The set of Hamiltonians N such that NN�Ξ(ξ∗c)∩Dσ(θ0) is totally disconnected
for each c∈Γ∗(N) is dense in R1∩Bσ(N0). By Lemma 5.3, it is a Gδ set.

Since K is compact, there is a finite cover K⊂
⋃k

i=1Dσi(θi), such that the above can
be applied on each Dσi(θi) for some constant σi>0. For σ0=mini σi>0, we obtain the
following statement:

• For a residue set of N∈Bσ0(N0), the set NN�Ξ(ξ∗c)∩Dσi(θi) is totally discon-
nected for all i=1, ..., k and c∈Γ∗(N).

Taking the intersection over i, we obtain the following statement:
• For a residue set of N∈Bσ0(N0), the set NN�Ξ(ξ∗c)∩K is totally disconnected for

all c∈Γ∗(N).
In particular, N0 is in the closure of R2.

5.2. Perturbing the Peierls’ barrier functions

Let L be the Lagrangian for N=H0+εZ+εR. We define the generating function

GN :Rn×Rn −!R
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by

GN (x, x′) =min
γ

∫ 1

0

L(γ, γ̇, t) dt, γ(0)=x, γ(1)=x′.

Note thatGN (x+k, x′+k)=GL(x, x′) for all x, x′∈Rn and k∈Zn. If ε is sufficiently small,
there is a one-to-one correspondence between the time-1 map of the Euler–Lagrange flow
of L, and the generating function GN . We will also consider the generating function of
the Hamiltonian N �Ξ (pull back of the double covering), which satisfies

GN�Ξ(x, x′) =GN (ξx, ξx′), (22)

where we have lifted ξ to a map Rn!Rn. It is important to keep in mind that GN�Ξ

has an additional symmetry GN�Ξ(x, x′)=GN�Ξ

(
x+ 1

2e1, x
′+ 1

2e1
)
, where e1=(1, 0, ..., 0),

corresponding to the deck transformation of ξ. We also denote

AM
N,c(θ1, θ2) =min

γ

∫ M

0

(L(γ, γ̇, t)−c·γ̇+αN (c)) dt, γ(0)= θ1, γ(M) = θ2 ∈Tn,

and note that AM
N,c and therefore hN,c is completely determined by GN . We will perturb

the barrier functions by perturbing GN .
Let U, V ⊂Rn be open sets which projects injectively to Tn, namely U∩(U+k)=∅

for all k∈Zd. We define a perturbation block to be the set

BN (U, V ) :=φN (U×Rn)∩(V ×Rn)⊂Rn×Rn.

In other words, this is the set of pairs (θ, p) such that θ∈V and πθΦ−1
N (θ, p)∈U , where

φN is the time-1 map of the Hamiltonian N . We can also consider BN as a subset of
Tn×Rn since V projects injectively to Tn.

Given U1⊂U2⊂Rn and V ⊂Rn as before, for ϕ∈Cr
c (V ), we define a perturbation of

the generating function (depending on ϕ, U1, U2, and V ) by

Gϕ(x, x′) =GN (x, x′)+%(x)ϕ(x′), (23)

and extend it by periodicity:

Gϕ(x+k, x′+k) =Gϕ(x, x′) for all k∈Zn.

Here %:Rn!R+∪{0} is a standard mollifier function such that

%|U1 =1 and %|Uc
2

=0.

Lemma 5.7. When ‖ϕ‖Cr is small enough, there exists a Tonelli Hamiltonian Nϕ

whose generating function is equal to Gϕ. Moreover, ‖Nϕ−N‖Cr!0 as ‖ϕ‖Cr!0.
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Proof. Let g(x, x′)=%(x)ϕ(x′), extended by periodicity, then ‖g‖Cr 6C‖ϕ‖Cr for
some C>0 depending on %. Let Gt(x, x′) be the generating function of the time-t map
of the Hamiltonian N . We consider the following functions

G′
t(x, x

′) =Gt(x, x′)+s(t)g(x, x′),

where s: [0, 1]![0, 1] is a C∞ mollifier function with s(t)=0 for t∈
[
0, 1

3

]
and s(t)=1

for t∈
[
2
3 , 1

]
. When ‖g‖C2 is small enough, the functions G′

t uniquely determines exact
symplectic maps ψt:Tn×Rn!Tn×Rn.

It is easy to see that there exists an exact symplectic isotopy between ψt and φt,
then there is an exact symplectic isotopy between φ−1

t �ψt and id. In view of Propo-
sition 9.19 and Corollary 9.20 of [55], we get that {ψt}06t61 is a Hamiltonian isotopy.
Moreover, since dψt/dt is periodic in t, it must be generated by a time-periodic Hamil-
tonian N ′(θ, p, t). The maps are Cr−1 in (θ, p) and C∞ in t, the vector fields are Cr−1

and the Hamiltonians are Cr.
Moreover, it is easy to see that ψt�φ

−1
t converges in Cr−1 to the identity uniformly

over t as ‖g‖Cr!0. Since ψt�φ
−1
t has −Nt�φt+N ′

t �φt as Hamiltonian function (see [55,
Proposition 10.2]) we conclude that ‖Nt−N ′

t‖Cr!0 as ‖g‖Cr!0.

The following lemma prepares us for the perturbation. For an orbit contained in
the psudograph E1(N, c), there exists a perturbation block that the orbit of (θ, p) never
returns to in backward time. Moreover, the orbit also does not return to the “copy” of
the perturbation block under the deck transformation of Ξ. This is important because
we would like to perturb the generating function GN�Ξ by perturbing only N .

Lemma 5.8. Consider (N0, c0)∈Q and (θ0, p0)∈H̃12(N0, c0). Then there exist σ>0,
and open sets V 3θ0 and U1⊂U2⊂Rn, such that the following conditions hold :

• the covering map ξ:Tn!Tn is injective on 
U2 and 
V ;
• 
U2∪

(

U2+ 1

2e1
)

and 
V ∪
(

V + 1

2e1
)

are disjoint from AN0�Ξ(ξ∗c).
The following hold for each (N, c)∈Q∩Bσ(N0, c0):

(1) For θ∈V , let (θ, p) be contained in the closure of the psudograph E1(N, c).
(1.a) (θ, p)∈BN�Ξ(U1, V );
(1.b) the backward orbit φ−k

N�Ξ(θ, p) is asymptotic to S̃1(N, c);
(1.c) for k>1, φ−k

N�Ξ(θ, p) is not contained in BN�Ξ(U2, V ), nor in

BN�Ξ

(
U2+ 1

2e1, V + 1
2e1

)
.

(2) For θ∈V , let (θ, p) be contained in the closure of the psudograph Ě2(N, c).
(2.a) The forward orbit φk

N (θ, p) is asymptotic to S̃2;
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(2.b) for k>1, φk
N (Ξ(θ, p)) is not contained in BN�Ξ(U2, V ), nor in

BN�Ξ

(
U2+ 1

2e1, V + 1
2e1

)
.

Moreover, an analogous statement holds for H21, where the roles of E1 and Ě2 are
replaced by E2 and Ě1, respectively.

Proof. First we claim the following statement: for any ι>0 there is σ>0 such that,
if ‖θ−θ0‖<σ and (N, c)∈Bσ(N0, c0)∩Q, then (θ, p)∈Ẽ1(N, c) implies the following con-
ditions:

(c1) ‖p−p0‖<ι;
(c2) the backward orbit φ−k

N�Ξ(θ, p) is asymptotic to S̃1(N, c);
(c3) there exists M>0 such that k>M implies dist(φ−k

N�Ξ(θ, p), S̃1(N, c))<ι.
We note that θ0∈H12(N0, c0) implies that the weak KAM solution h(ζ1, ·) is differ-

entiable at θ0, and therefore p0 is the unique super-differential. Item (c1) then follows
from semi-continuity of super-differentials, see Proposition C.1.

Since θ0∈H12(N0, c0), we have, for h=hN0�Ξ,ξ∗c,

h(ζ1, θ0)+h(θ0, ζ2) =min
θ

(h(ζ1, ·)+h( · , ζ2))=h(ζ1, ζ2). (24)

Assume, by contradiction, that for (Nk, ck)!(N0, c0) in Q, and (θk, pk)∈E1(Nk, ck) with
θk!θ0, the backward orbit of (θk, pk) accumulates to S2(Nk, ck). This implies that

hNk�Ξ,ξ∗ck
(ζk

1 , θk) =hNk�Ξ,ξ∗ck
(ζk

1 , ζ
k
2 )+hNk�Ξ,ξ∗ck

(ζk
2 , θk), ζk

1 ∈S1, ζ
k
2 ∈S2.

Taking the limit as k!∞ (by Proposition C.1), we obtain

hN0�Ξ,ξ∗c0(ζ1, θ0) =hN0�Ξ,ξ∗c0(ζ1, ζ2)+hN0�Ξ,ξ∗c0(ζ2, θ0), ζ1 ∈S1, ζ2 ∈S2.

Combining this with (24), we get (omitting the subscript of h)

h(ζ1, ζ2) =h(ζ1, θ0)+h(θ0, ζ2) =h(ζ1, ζ2)+h(ζ2, θ0)+h(θ0, ζ2),

or h(ζ2, θ0)+h(θ0, ζ2)=0, which is in contradiction with θ0 /∈S2.
To prove (c3) we again argue by contradiction. Let Nk, ck, θk, and pk be as before.

We assume that there exists Mk!∞ such that dist(φ−Mk

N�Ξ (θk, pk), S̃1(N, c))>ε. Let
mk=πφ−Mk

N�Ξ (θk, pk), using the fact that backward orbit of (θk, pk) is calibrated, we have

hNk�Ξ,ξ∗ck
(ζ1, θk) =hNk�Ξ,ξ∗ck

(ζ1,mk)+AMk

Nk�Ξ,ξ∗ck
(mk, θk).

Up to taking a subsequence, assume mk!m0 and take the limit as k!∞ to get

h(ζ1, θ0) >h(ζ1,m0)+h(m0, θ0) =h(ζ1,m0)+ min
i=1,2

(h(m0, ζi)+h(ζi, θ0)),
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where h is evaluated at N0�Ξ, ξ∗c0. Since h(ζ1,m0)+h(m0, ζ1)>0, the above minimum
is not reached at ζ1. Therefore

h(ζ1, θ0) >h(ζ1,m0)+h(m0, ζ2)+h(ζ2, θ0) >h(ζ1, ζ2)+h(ζ2, θ0),

but we showed (in the proof of (c2)) that this is also impossible.
We now define the sets U and V . Since φ−k

N0�Ξ
(θ0, p0) is asymptotic to S1(N0, c0),

projection via Ξ implies that φ−k
N0

(Ξ(θ0, p0)) is asymptotic to Ξ(S1)=AN0(c0). There
exists ι1>0 such that

φ−k
N (Ξ(θ0, p0))∩Ξ(Bε(θ0, p0))=∅,

and ξ(Bι1(θ0))∩AN =∅ for all N∈Bι1(N0)∩R1.
Applying claim (c1)–(c3) to ι= 1

2 ι1, we obtain the parameters σ and M . Since the
orbit of (θ0, p0) is wandering, there exists 0<σ1<σ such that (θ, p)∈Bσ1(θ0, p0) and
N∈Bσ1(N0) imply that

φ−k
N (Ξ(Bσ1(θ0, p0)))∩Ξ(Bσ1(θ0, p0))=∅, 1 6 k6M.

Applying the relation Ξ�φN�Ξ=φN �Ξ, we get

φ−k
N�Ξ(Ξ(Bσ1(θ0, p0)))∩Ξ−1Ξ(Bσ1(θ0, p0))=∅, 1 6 k6M. (25)

For a pair σ2<σ1, which is determined later, choose σ3<σ2 using claim (c1) again
to ensure that any (θ, p)∈E1(N, c) with ‖θ−θ0‖<σ3 implies that ‖p−p0‖<σ2. Define
V =Bσ3(θ0),

U1 =
⋃

N∈Bσ3 (N0)

πφ−1
N�Ξ(Bσ3(θ0)×Bσ2(p0)), (26)

and U2=Bσ2(U1). Since U1!πφ−1
N0�Ξ

(θ0, p0), as σ2, σ3!0, we can choose σ2, σ3 small
enough such that

BN�Ξ(
U2,
V )⊂Bσ1(θ0, p0), for all N ∈Bσ3(N0).

We now verify that for θ∈V and (θ, p)∈E1(N, c), one has φ−1
N�Ξ(θ, p)∈U1, due to (26).

Moreover, since

BN�Ξ(
U2,
V )∪BN�Ξ

(

U2+ 1

2e1,

V + 1

2e1
)
⊂Ξ−1ΞBσ1(θ0, p0).

Formula (25) implies (1.c) for 16k6M . On the other hand, (c3) ensures the same for
k>M as well.

The proof of (2.a) and (2.b) and the remaining part is analogous, so we omit it.
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Proof of Proposition 5.4. Given θ0∈K∩H12(N0, c0), let (θ0, p0) be the correspond-
ing point in H̃12(N0, c0). Choose σ>0, U1, U2, and V as in Lemma 5.8. For ϕ∈Cr

c (ξV ),
consider the perturbation Nϕ via (23) using the neighborhoods ξU1, ξU2 and ξV . Note
that for W=Ui or W=V we have ξ−1ξW=W∪

(
W+ 1

2e1
)
, and we will use this notation

throughout the proof. First, notice that according to Lemma 5.7, ‖Nϕ−N‖Cr!0 as
‖ϕ‖Cr!0.

Item 1. We first show that the perturbationNϕ does not affect the Aubry set and the
static classes. Lemma 5.8 asserts that ξ−1ξ
U2 and ξ−1ξ
V are disjoint from AN0�Ξ(ξ∗c0).
For (N, c)∈Bσ(N0, c0) and σ small enough, using semi-continuity, ξ−1ξ
U2 and ξ−1ξ
V

are disjoint from AN�Ξ(ξ∗c) and ANϕ�Ξ(ξ∗c). Then (23) and (22) implies that the LN�Ξ

action and LNϕ�Ξ action coincide on orbits of ÃN�Ξ(ξ∗c) and ÃNϕ�Ξ(ξ∗c). As a result,
ÃN�Ξ(ξ∗c) and ÃNϕ�Ξ(ξ∗c) must coincide with the same static classes.

Item 2. We proceed to prove (21). Let (θ, p)∈E1(N, c), then γ(t):=πθ �φ
t(θ, p) is a

calibrated orbit (on (−∞, 0]) for the weak KAM solution hNϕ�Ξ,ξ∗c(ζ1, ·), with ζ1∈S1.
Write γt=γ(t). Since γ(t) is backward asymptotic to S1, there is ik!∞ such that

hNϕ�Ξ,ξ∗c(ζ1, θ) = lim
k!∞

Aik

Nϕ�Ξ,ξ∗c(γ−ik
, γ0)

= lim
k!∞

−1∑
j=−ik

(GNϕ�Ξ(γj , γj+1)−ξ∗c·(γj+1−γj)+αNϕ�Ξ(ξ∗c)),
(27)

where in the last line γ is lifted to Rn. In view of (1.c) and (23), for any j6−2 we have

GNϕ�Ξ(γj , γj+1) =GNϕ
(ξγj , ξγj+1) =GN (ξγj , ξγj+1) =GN�Ξ(γj , γj+1).

By the same reasoning, we have

GNϕ�Ξ(γ−1, γ0) =GN�Ξ(γ−1, γ0)+%(γ−1)ϕ(γ0) =GN�Ξ(γ−1, γ0).

Using (27), we get

hNϕ�Ξ,ξ∗c(ζ1, θ) = lim
k!∞

Aik

N�Ξ,ξ∗c(γ−ik
, γ0) 6hN�Ξ,ξ∗c(ζ1, θ).

Observe that the previous arguments hold when Nϕ and N are switched, and the last
displayed formula becomes an equality. By the same reasoning, using Lemma 5.8, (2.a)
and (2.b), we obtain

hNϕ�Ξ, ξ∗c(θ, ζ2) =hN�Ξ,ξ∗c(θ, ζ2), ζ2 ∈S2.

Thus (21) follows. The proof for b− is identical with two static classes switched.
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5.3. Hölder continuity of the barrier functions

We prove Proposition 5.5 by relating the barriers to the stable and unstable manifolds
of the Aubry sets.

Recall that the system N admits a weakly invariant cylinder C which contains the
Aubry set ÃN (c) for c∈Γ1. Using the covering map Ξ, we obtain Ξ−1C=C1∪C2 and
denote S̃i(N, c)=Ci∩Ξ−1(Ã(c)), i=1, 2, for all c∈Γ∗(N).

Recall that Γ∗(N) is the set of c∈Γ1 such that AN (c) is an invariant curve contained
in C. Let c± be the c∈Γ∗(N) with the smallest and largest pf component. Then the
component of C bounded by AN (c±) is an invariant set for φN , we denote it Λ∗. Let Λ1

and Λ2 be the lifts under Ξ, then Λi⊂Ci are normally hyperbolic invariant manifolds for
φN�Ξ.

They admit C2 center stable and center unstable manifolds W cs/cu, which locally
are graphs above (θ, pf ). These manifolds are foliated by the strong stable and unstable
manifoldsW s,u(z) of the points of Λi, see Appendix A. The leavesW s,u(z) of this foliation
are C2, they are locally graphs above θs. The foliation itself is C1.

Consider c∈Γ∗(N), then for i=1, 2, S̃i(N, c) is a Lipschitz invariant curve. Define
the sets

W
u/s
i (N, c) =

⋃
z∈S̃i(N,c)

Wu/s(z).

Since S̃i(N, c) are Lipschitz graphs over θf , and since Wu,s are C1 foliations whose
leaves are graphs over θs, Wu/s

i (N, c) are Lipschitz graphs over θ in a neighborhood of
S̃i. We will show that they coincide with the pseudographs Ei(N, c) in a neighborhood
of Si(N, c).

Lemma 5.9. For i, j=1, 2, if (θ, p)∈Ei(N, c) is backward asymptotic to Sj(N, c),
then there exists M>0 such that φ−k

N�Ξ∈Wu
j (N, c) for each k>M .

Suppose an orbit is backward asymptotic to S1(N, c), then it is asymptotic to the
normally hyperbolic set Λ1. This orbit is contained in the strong manifold of a point
z′∈Λ1 which is asymptotic to S1(N, c), but which in principle may not belong to S1(N, c).
To prove that z′∈S1(N, c), we need an argument similar to Theorem 1.4.

We need the following version of Proposition 4.11.

Proposition 5.10. Suppose k>1/
√
ε. Then for each semi-concave function u0, the

function uk=T k
c u0 is 6D

√
ε−semi-concave and 6D

√
nε−Lipschitz. A similar statement

holds for �T k
c u. As a result, for any weak KAM solution u and k>1/

√
ε, the set

φ−k
N (�Gc,u)

is a 6D
√
ε−Lipschitz graph over the θ component.
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Proof. We observe that the proof of Proposition 4.3 applies as long as we replace
u(θ) by uk and u(Θ(0)) by u0(Θ(0)). The assumption k>1/

√
ε ensures that we can

choose T∈[1/2
√
ε, 1/

√
ε ] in that proof.

For the second part, observe that

φ−k
N (�Gc,u)⊂Gc,u∧̃Ǧc,�T k

c u

and the proof is similar to that of Theorem 4.1.

For the rest of this section, φ denotes φN�Ξ.

Proof of Lemma 5.9. We only prove the lemma for the case i=j=1 as the other
cases are similar. Since z :=(θ, p) is backward asymptotic to S1(N, c)⊂Λ1, then there
exists z1∈Λ1 such that (θ, p)∈Wu(z1). Necessarily φ−k(z1) converges to S1(N, c). We
will show that z1∈S1(N, c).

Arguing by contradiction, suppose z1 /∈S1(N, c), then using the fact that TC1 is the
central direction, dist(φ−kz1,S1(N, c)) converges at a maximal rate of %n.

Set zk
1 =φ−k(z1). Since S1(N, c) projects onto the θf component, for each k∈N

there exists zk
2∈S1(N, c) such that θf (zk

1 )=θf (zk
2 ). According to Theorem 3.1, there

exists D1>1 such that C is a (D1/
√
ε )-graph over (θf , pf ), which implies that

‖pf (zk
1 )−pf (zk

2 )‖>

√
ε‖zk

1−zk
2‖

D1
>

√
ε%k

D2
(28)

for some D2>1. Let zk=φ−k(z), then we have ‖zk−zk
1‖<Cλk. Suppose that k is large

enough so that Cλk< 1
2D

−1
2

√
ε%k. Then

‖pf (zk)−pf (zk
2 )‖> ‖pf (zk

1 )−pf (zk
2 )‖−‖pf (zk)−pf (zk

1 )‖> 1
2‖p

f (zk
1 )−pf (zk

2 )‖. (29)

Assume that k>1/
√
ε. We now use Proposition 5.10 to get, for some D3>1,

‖p(zk)−p(zk
2 )‖6D3

√
ε(‖θs(zk)−θs(zk

3 )‖+‖θf (zk)−θf (zk
3 )‖)

6D3

√
ε(‖θs(zk)−θs(zk

3 )‖+‖θf (zk)−θf (zk
1 )‖)

6D2

√
ε(‖θs(zk)−θs(zk

2 )‖)+D2D3

√
ελk

(30)

keeping in mind that θf (zk
1 )=θf (zk

2 ). Since zk
1 , z

k
2∈C1, using Theorem 1.4, we get, for

small ε,

‖θs(zk)−θs(zk
2 )‖6 ‖θs(zk

1 )−θs(zk
2 )‖+Cλk

6
1+

√
δ/ε

�
(‖θf (zk

1 )−θf (zk
2 )‖+‖pf (zk

1 )−pf (zk
2 )‖)+Cλk

6 4�−1δ1/2ε−1/2‖pf (zk)−pf (zk
2 )‖+Cλk.
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Combining with (30), we get

‖p(zk)−p(zk
2 )‖6 4C�−1δ1/2‖p(zk)−p(zk

2 )‖+2D2D3

√
ελk.

When �−1δ1/2< 1
2 , we get ‖p(zk)−p(zk

2 )‖64D2D3
√
ελk, but this is in contradiction with

(28) and (29).

Lemma 5.11. Let (N, c0)∈Q. There exist σ1, σ2, and M>0 such that, for all
c∈Bσ1(c0)∩Γ∗(N), we have, for i=1, 2,

(1)

Ei(N, c)∩π−1(Bσ2(Si(N, c0)))⊂Wu
i (N, c).

This also implies that Ei(N, c)=Ei(N, c) and is C1 over Bσ2(Si(N, c0)).
(2) For each (θ, p)∈Ei(N, c), there exists k6M such that

φ−k(θ, p)∈Bσ2(S1(N, c)∪S2(N, c)).

Proof. We prove statement (1) for i=1, the proof for i=2 being identical. We first
prove the statement for c=c0, and then extend to a neighborhood by continuity. First of
all, we refer to [8, Lemma 4.4], to get the existence of σ3>0 such that every (θ, p)∈E1(N, c)
with θ∈Bσ3(S1(N, c0)) is backward asymptotic to S1. By Lemma 5.9, there exists k
such that φ−k(θ, p)∈Wu

1 (N, c). We now show that k can be chosen uniformly for all θ∈
Bσ3/2(S1(N, c0)). Arguing by contradiction, if there is ki!∞ and φ−j(θi, pi) /∈Wu

1 (N, c)
for all 06j6ki, after taking a convergent subsequence, we get (θi, pi)!(θ∗, p∗)∈E1(N, c),
whose backward orbit does not intersect Wu

1 (N, c). This is a contradiction. Using a
similar compactness argument over c, we obtain the following statement:

There exists σ4, σ5>0 and M>0, such that for all c∈Bσ4(c0)∩Γ∗(N) and (θ, p)∈
Bσ5(S(N, c0)) we have φ−k(θ, p)∈Wu

1 (N, c) for all k>M .

Finally, we choose σ6 small enough so that Bσ6(S1(N, c0))⊂φ−M (Bσ5(S1(n, c0))).
Since S1(N, c) is semi-continuous in c, this property extends to a small neighborhood of
c∈Γ∗(N).

We now prove statement (2), for i=1. Assume that there exist σ7>0, ki!∞,
and (θi, pi)∈E1(N, ci) with ci!c0, such that φ−j(θi, pi) /∈Bσ7(S1∪S2) for all 06j6ki.
Taking the limit up to a subsequence, we obtain an orbit (θ∗, p∗)∈E1(N, c0) not backward
asymptotic to S1∪S2, a contradiction.

For each c∈Γ∗(N), the set S̃1(N, c) is a graph over θf , and hence there exists a map
ηc:T−!Tn×Rn such that S1(N,C) is the image of ηc and πθf �ηc(s)=s.
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Lemma 5.12. There exists C1>0 such that

sup
s
‖ηc(s)−ηc′(s)‖6C1‖c−c′‖1/2

for each c and c′ in Γ∗(N).

Proof. We denote by Di different positive constants that may depend on ε and δ.
Since C1 is a Lipschitz graph over (θf , pf ),

sup
s
‖ηc(s)−ηc′(s)‖6D1 sup

s
‖πpf ηc(s)−πpf ηc′(s)‖. (31)

Each weak KAM solution uc is differentiable on S1(N, c), and we have

πp�ηc = c+duc(πθ �ηc).

We have ∫
η

p dθ=
∫

η

c dθ+
∫

η

duc(πθ �ηc) dθ=πpf (c),

hence the symplectic area A(ηc, ηc′) of the domain of C1 delimited by the curves ηc and
ηc′ is

A(ηc, ηc′) =
(∫

η

−
∫

ηc′

)
p dθ=πpf (c)−πpf (c′).

Recall that the cylinder C1 is given by a graph (θs, ps)=(Θs, P s)(θf , pf ). The estimates
(4) imply that, if v, v′ are two vectors tangent to C1, then

|(dΘs∧dP s)(v, v′)|6C
√
δ| dθf∧dpf (v, v′)|,

and hence, if δ is small enough,

|(dΘ∧dP )(v, v′)|> 1
2 |(dθ

f∧dpf )(v, v′)|.

Note that, given two C-Lipschitz functions γ1, γ2:T!R with γ1(s)>γ2(s), one has∫
(γ1−γ2) ds>

1
4C

sup
s
‖γ1(s)−γ2(s)‖2.

Let Ω denote the region on C1 between ηc and ηc′ . For c, c′∈Γ∗, there are D3, D4>1
such that

D3‖c−c′‖> ‖πpf (c)−πpf (c′)‖= |A(ηc, ηc′)|>
1
2

∣∣∣∣∫
Ω

dθf∧ dpf

∣∣∣∣
=

1
2

∣∣∣∣∫ (πpf �ηc(s)−πpf �ηc′(s)) ds
∣∣∣∣ >

1
D4

sup
s
‖πpf �ηc(s)−πpf �ηc′(s)‖2.

(32)

Combining this with (31), we get our conclusion.
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Lemma 5.13. In the context of Lemma 5.11, consider for c, c′∈Bσ1(c0)∩Γ∗(N),
ζ1∈S1(N, c), and ζ ′1∈S1(N, c′), set

uc( ·) =hξ∗c(ζ1, ·) =hN�Ξ,ξ∗c(ζ1, ·) and uc′( ·) =hξ∗c′(ζ2, ·) =hN�Ξ,ξ∗c′(ζ ′1, ·).

Then, for θ∈Bσ2(S1(N, c0)),
(1) |∇uc(θ)−∇uc′(θ)|6C2‖c−c′‖1/2;
(2) |uc(θ)−uc′(θ)−C3|6C2‖c−c′‖1/2.

Moreover, the same holds with S1 replaced with S2.

Proof. For θ∈Bσ2(S1(N, c0)), let y=(θ,∇uc(θ)), and let z∈S1(N, c) be such that
y∈W s(z). We then define z′∈S1(N, c′) to be the unique such point with θf (z′)=θf (z).
Finally, define y′∈Wu(z′) such that θs(y′)=θs(y), which is possible sinceWu(z′) is locally
a graph over θs.

We note that within the center unstable manifold Wu(Λ), the NHIC Λ on one
hand, and θs=θs(y) on the other hand, serves as two transversals to the strong unstable
foliation {Wu( ·)}. Since the foliation is C1, there exists D1>0 such that

‖y−y′‖6D1‖z−z′‖6C1D1‖c−c′‖1/2,

where C1 is the constant from Lemma 5.12. Let w=(θ,∇uc′(θ)), and noting that y′∈
Wu

1 (N, c′)={(x,∇uc′(x))} which is locally a C1 graph, we get, for D2>0,

‖w−y′‖6D2‖πθ(w)−πθ(y′)‖=D2‖πθ(y)−πθ(y′)‖6D2‖y−y′‖,

therefore

‖∇uc(θ)−∇uc′(θ)‖6 ‖w−y‖6 ‖w−y′‖+‖y−y′‖6D3‖y−y′‖6D4‖c−c′‖1/2.

Item (1) follows. For item (2), we consider θ, θ0∈Bσ2(S1(N, c0)), then integrating item
(1) leads to

|uc(θ)−uc′(θ)−(uc(θ0)−uc′(θ0))|6D5‖c−c′‖1/2. (33)

Item (2) follows by taking C3=uc(θ0)−uc′(θ0).

Proof of Proposition 5.5. Fix (N, c0)∈Q and consider c∈Bσ2(c0)∩Γ∗(N) in the con-
text of Lemma 5.11. From item (2) of that lemma, for every θ∈Tn, there exists a
calibrated orbit γ: (−∞, 0]!Tn, with γ(0)=θ, such that γ(t)∈Bσ2(S1(N, c)∪S2(N, c))
whenever t<−M . Then (omitting the subscript N �Ξ)

hξ∗c(ζ1, θ) = min
i=1,2

min
k6M

min
θ′∈Bσ2

{hξ∗c(ζ1, ζi)+hξ∗c(ζi, θ′)+Ak
ξ∗c(θ

′, θ)}.

As hξ∗c(ζi, θ′) is uniformly 1
2 -Holder in c for θ′∈Bσ2(Si(N, c)) and c∈Bσ2(c0)∩Γ∗(N),

each Ak
ξ∗c are uniformly Lipschitz in c, the family hξ∗c(ζ1, θ) is 1

2 -Hölder in c.
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Appendix A. Normally hyperbolic manifold

Let F :Rn−!Rn be a C1 vector field. We give sufficient conditions for the existence of
a Normally hyperbolic invariant graph of F . We split the space Rn as Rnu×Rns×Rnc ,
and denote by x=(u, s, c) the points of Rn. We denote by (Fu, Fs, Fc) the components
of F :

F (x) = (Fu(x), Fs(x), Fc(x)).

We study the flow of F in the domain

Ω =Bu×Bs×Ωc

where Bu and Bs are the open Euclidean balls of radius ru and rs in Rnu and Rns , and
Ωc is a convex open subset of Rnc . We denote by

L(x) = dF (x) =

Luu(x) Lus(x) Luc(x)
Lsu(x) Lss(x) Lsc(x)
Lcu(x) Lcs(x) Lcc(x)


the linearized vector field at the point x. We assume that ‖L(x)‖ is bounded on Ω, which
implies that each trajectory of F is defined until it leaves Ω. We denote by W c the union
of full orbits contained in Ω. In other words, this is the set of initial conditions x∈Ω
such that there exists a solution x:R!Ω of the equation ẋ=F (x) satisfying x(0)=x. We
denote by W sc the set of points whose positive orbit remains inside Ω. In other words,
this is the set of initial conditions x∈Ω such that there exists a solution x: [0,∞)!Ω of
the equation ẋ=F (x) satisfying x(0)=x. Finally, we denote by Wuc the set of points
whose negative orbit remains inside Ω. In other words, this is the set of initial conditions
x∈Ω such that there exists a solution x: (∞, 0]!Ω of the equation ẋ=F (x) satisfying
x(0)=x. These sets have specific features under the following assumptions.

Hypothesis 3. (Isolating block)
• Fc=0 on Bu×Bs×∂Ωc;
• Fu(u, s, c)·u>0 on ∂Bu×
Bs×	Ωc;
• Fs(u, s, c)·s<0 on 
Bu×∂Bs×	Ωc.

Hypothesis 4. There exist positive constants α and m such that
• Luu(x)>αI and Lss(x)6−αI for each x∈Ω in the sense of quadratic forms;
• for each x∈Ω,

‖Lus(x)‖+‖Luc(x)‖+‖Lsu(x)‖+‖Lsc(x)‖+‖Lcu(x)‖+‖Lcs(x)‖+‖Lcc(x)‖6m.
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Theorem A.1. Assume that Hypotheses 3 and 4 hold, and that

0 6K :=
m

α−2m
6

1√
2
.

Then the set W sc is the graph of a C1 function

wsc:Bs×Ωc −!Bu,

the set Wuc is the graph of a C1 function

wuc:Bu×Ωc −!Bs,

and the set W c is the graph of a C1 function

wc =(wc
u, w

c
s): Ω

c −!Bu×Bs.

Moreover, we have the estimates

‖dwsc‖6K, ‖dwuc‖6K, and ‖dwc‖6 2K.

Proof. These results could be reduced to several already existing ones, (see [33], [37],
[56], and [19]) or proved directly by well-known methods. We shall use [64, Theorem 1.1],
which is the closest to our needs because it is expressed in terms of vector fields. We
first derive some conclusions from the isolating block conditions. We denote by πsc the
projection (u, s, c) 7!(s, c), and so on.

Lemma A.2. If Hypothesis 3 holds, then

πsc(W sc) =Bs×Ωc and πuc(Wuc) =Bu×Ωc.

Moreover, the closures of W sc and Wuc satisfy

�W sc ⊂Bu×
Bs×	Ωc and �Wuc ⊂ 
Bu×Bs×	Ωc.

Proof. Let us define T+(x)∈[0,∞] as the first positive time where the orbit of x
hits the boundary ∂Ω. Let us denote by ϕ(t, x) the flow of F . If T+(x)<∞ (which is
equivalent to x /∈W sc), we have ϕ(T+(x), x)∈∂Bu×Bs×Ωc, as follows from Hypothesis 3.
Then, it is easy to check that the function T+ is continuous, and even C1, at x.

We prove the first equality of the lemma by contradiction, and assume that there
exists a point (s, c)∈Bs×Ωc such that W sc does not intersect the disc Bu×{s}×{c}.
Then, the first exit map

Bu 3u 7−!πu
�ϕ(T+(u, s, c), (u, s, c))∈ ∂Bu
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extends by continuity to a continuous retraction from 
Bu to its boundary ∂Bu. Such a
retraction does not exist. The proof of the other equality is similar.

Finally, we have

�W sc ⊂ 
Bu×
Bs×	Ωc =(Bu×
Bs×	Ωc)∪(∂Bu×
Bs×	Ωc).

Hypothesis 3 implies that each point of ∂Bu×
Bs×	Ωc has a neighborhood formed of
points which leave Ω after a small time. As a consequence, the set ∂Bu×
Bs×	Ωc cannot
intersect �Wuc, and we have proved that �W sc⊂Bu×
Bs×	Ωc. The other inclusion can be
proved in a similar way.

In order to prove the statement of the Theorem concerning W sc, we apply [64,
Theorem 1.1]. More precisely, using the notation of that paper, we set

a=
u

K
, z=(s, c), f(a, z) =

Fu(Ka, z)
K

, and g(a, z) = (Fs(Ka, z), Fc(Ka, z)).

We have the estimates

∂af =Luu >α and ∂zg=

[
Lss Lsc

Lcs Lcc

]
6m,

in the sense of quadratic forms. Moreover, we have the estimates

‖∂zf‖6
m

K
and ‖∂ag‖6Km.

Since
m+

m

K
+Km< 2m+

m

K
=α,

we conclude that Hypothesis 2 of [64] is satisfied. Hypothesis 1 of [64] is verified by the
domain Ω, and Hypothesis 3 is precisely the conclusion of Lemma A.2. As a consequence,
we can apply Theorem 1.1 of [64], and conclude that the set W sc is the graph of a C1

and 1-Lipschitz map above Bs×Ωc in (a, z) coordinates, and therefore the graph of a
K-Lipschitz C1 map wsc:Bs×Ωc−!Bu in (u, s, c) coordinates.

In order to prove the statement concerning Wuc, we apply [64, Theorem 1.1] with

a=
s

K
, z=(u, c), f(a, z) =−Fs(Ka, z)

K
, and g(a, z) =−(Fu(Ka, z), Fc(Ka, z)).

It is easy to check as above that all hypotheses are satisfied.
Let us now study the set W c=W sc∩Wuc. First, let us prove that W c is a C1 graph

above Ωc. We know that W sc is the graph of a K-Lipschitz C1 function wsc(s, c) and
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that Wuc is the graph of a K-Lipschitz C1 function wuc(u, c). The point (u, s, c) belongs
to W c if and only if

u=wsc(s, c) and s=wuc(u, c),

or in other words if and only if (u, s) is a fixed point of the K-Lipschitz C1 map

(u, s) 7−! (wsc(s, c), wuc(u, c)).

For each c, this contracting map has a unique fixed point in 
Bu×
Bs, which corresponds
to a point of �W sc∩�Wuc. It follows from Lemma A.2 that this point is contained in
Bu×Bs. Then, it depends in a C1 way on the parameter c. We have proved that W c is
the graph of a C1 function wc. In order to estimate the Lipschitz constant of this graph,
we consider two points (ui, si, ci), i=0, 1, in W c. We have

‖u1−u0‖2 6K2(‖s1−s0‖2+‖c1−c0‖2)

and
‖s1−s0‖2 6K2(‖u1−u0‖2+‖c1−c0‖2).

Taking the sum gives

(1−K2)(‖u1−u0‖2+‖s1−s0‖2) 6 2K2‖c1−c0‖2

and

‖(u1, s1)−(u0, s0)‖6

√
2K2

1−K2
‖c1−c0‖6 2K‖c1−c0‖,

since K61/
√

2. We conclude that wc is 2K-Lipschitz.

It is useful to go a bit further in the study of the invariant manifold

W c = {(wc
u(c), ws

c(c), c)}.

This manifold is a partially hyperbolic invariant set, hence by the usual theory, to each
point x∈W c is attached a strong stable manifold W s(x) and a strong unstable manifold
Wu(x), which are C1 (and even Cr if F is Cr). The manifolds Wu(x), x∈W c, partition
Wuc, although this partition is not usually a C1 foliation. For each x∈Wuc, we denote
by Eu(x) the strong unstable space, which is the tangent space at x of the only unstable
manifold Wu(x0) which contains x0. We define the exponents

eu :=− sup
x∈W c

v∈Eu(x)

lim sup
t!∞

log ‖v(−t)‖
t

=− sup
x∈W uc

v∈Eu(x)

lim sup
t!∞

log ‖v(−t)‖
t

,

e+
c := sup

x∈Wc

v∈TxWc

lim sup
t!∞

log ‖v(t)‖
t

,

e−c := inf
x∈Wc

v∈TxWc

lim inf
t!∞

log ‖v(t)‖
t

,
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where v(t) is the solution of the linearized equation v̇(t)=dFx(t) ·v(t) with initial condition
v(0)=v, and x(t) is the solution of ẋ(t)=F �x(t) starting from x(0)=x.

Lemma A.3. We have

−m−2mK 6 e−c 6 e+
c 6m+2mK.

Proof. We consider an orbit x(t)∈W c, and a variational orbit v(t)=(u′(t), s′(t), c′(t))
tangent to W c. Observe that ‖(u′, s′)‖62K‖c′‖ for each t, which implies that∣∣∣∣ ddt‖c′‖2

∣∣∣∣ =2|〈c′, Lcuu
′+Lcss

′+Lccc
′〉|6 2(m+2Km)‖c′‖2.

The next lemma implies that the manifolds W s,c(x) are the graphs of C1 and K-
Lipschitz maps ws

x:Bs!Bu×Ωc and wu
x :Bu!Bs×Ωc.

Lemma A.4. If x: ]T−, T+[!Ω is an orbit of F , then the linearized equation v̇(t)=
dFx(t) ·v(t) preserves the cone Cu={‖(s′, c′)‖6K‖u′‖} in forward time, and the cone
Cs={‖(u′, c′)‖6K‖s′‖} in backward time.

We have Eu(x)⊂Cu for each x∈Wuc, and Es(x)⊂Cs for each x∈W sc.
Finally we have the estimate

eu >α−2mK> 1
2α.

Proof. Let v(t)=(u′(t), s′(t), c′(t)) be a solution of the linearized equation along x(t).
Then

d

dt
‖u′‖2 = 〈u′, Luuu

′+Luss
′+Lucc

′〉>α‖u′‖2−m‖(s′, c′)‖‖u′‖> (α−mK)‖u′‖2

(this estimate will also provide the desired growth rate in the unstable direction) and

d

dt
‖(s′, c′)‖2 = 〈s′, Lsuu

′+Lsss
′+Lscc

′〉+〈c′, Lcuu
′+Lcss

′+Lccc
′〉

6m‖(s′, c′)‖(‖u′‖+‖(s′, c′)‖) 6mK(1+K)‖u′‖2.

This implies that

d

dt
(K2‖u′‖2−‖(s′, c′)‖2) >K2

(
α−mK−m−m

K

)
‖u′‖2 > 0,

recalling that m+m/K+mK<α. The estimates concerning Cs are similar.

In general, the maps ws
x and wu

x are not better than Hölder continuous in x, but we
can obtain better regularity under stronger hypotheses.
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Theorem A.5. In the context of Theorem A.1, let us assume the additional as-
sumptions that F is C2 and K< 1

8 (or equivalently, m< 1
6α). Then each of the manifolds

W c, Wuc, W sc is C2, and the manifolds Wu(x), x∈W c, form a C1 foliation of Wuc

(similarly for W s in Wus). The foliations are C1 in the strongest possible sense, namely
the map x 7!Eu(x) is C1 on Ecu, which imply that the foliation admits C1 charts, and
that the local holonomies are C1.

Proof. An easy computation shows that m+2mK< 1
4α, and hence we obtain

eu>
1
2α, e+

c <
1
4α, and e−c >− 1

4α.

This implies that eu>2e+
c , and so W c is 2-normally hyperbolic, and hence it is C2, as

well as Wuc and W sc; see [33] and [37].
Moreover, we have the bunching condition eu>e

+
c −e−c , which implies the C1 regu-

larity of the unstable foliation; see [34], [58], and [29].

We need the following easy addendum.

Proposition A.6. Assume in addition that there exists a translation g of Rnc such
that

g(Ωc) =Ωc and F �(id⊗ id⊗g) =F.

Then we have

wsc
�(id⊗g) =wsc, wuc

�(id⊗g) =wuc, and wc
�g=wc.

Proof. It follows immediately from the definition of the sets W sc, Wuc, and W c that
g(W sc)=W sc, g(Wuc)=Wuc, and g(W c)=W c.

In applications the first condition of Hypothesis 3 is usually not satisfied, except in
the case where Ωc=Rnc . In view of the applications we have in mind, it is useful to split
the central variables into two groups and consider

Ωc =Rn1
c×Ωc2 ,

where Ωc2 is a convex open set in Rn2
c , n1

c +n2
c =nc. Given a positive parameter σ, let

Ωc2
σ be the set of points c2∈Rn2

c such that d(c,Ωc2)<σ. This is a convex open subset of
Rn2

c containing Ωc2 . We denote the product Rn1
c×Ωc2

σ by Ωc
σ and Bu×Bs×Ωc

σ by Ωσ.
With the notation Fc=(Fc1 , Fc2), and denoting by W sc(F,Ω),Wuc(F,Ω),W c(F,Ω) the
set of positive half orbits (resp. negative half orbits, full orbits) of F contained in Ω, we
have the following result.
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Proposition A.7. Let F :Rnu×Rns×Ωc
σ!Rnu×Rns×Rnc be a C2 vector field.

Assume that there exist λ,m, σ>0 such that
• Fu(u, s, c)·u>0 on ∂Bu×
Bs×	Ωc

σ;
• Fs(u, s, c)·s<0 on 
Bu×∂Bs×	Ωc

σ;
• Luu(x)>αI and Lss(x)6−αI for each x∈Ωσ in the sense of quadratic forms;
• for each x∈Ωσ,

‖Lus(x)‖+‖Luc(x)‖+‖Lss(x)‖+‖Lsc(x)‖+‖Lcu(x)‖+‖Lcs(x)‖+‖Lcc(x)‖6m;

• for each x∈Ωσ\Ω,

‖Lus(x)‖+‖Luc(x)‖+‖Lss(x)‖+‖Lsc(x)‖

+‖Lcu(x)‖+‖Lcs(x)‖+‖Lcc(x)‖+
2‖Fc2(x)‖

σ
6m.

Assume furthermore that

K :=
m

α−2m
6

1
8
,

then there exist C2 maps

wsc:Bs×Ωc
σ −!Bu, wuc:Bu×Ωc

σ −!Bs, and wc: Ωc
σ −!Bu×Bs

satisfying the estimates

‖dwsc‖6K, ‖dwuc‖6K, and ‖dwc‖6 2K,

the graphs of which respectively contain W sc(F,Ω), Wuc(F,Ω), and W c(F,Ω). Moreover,
the graphs of the restrictions of wsc, wuc, and wc to, respectively, Bs×Ωc, Bu×Ωc, and
Ωc, are tangent to the flow.

There exists an invariant C1 foliation of the graph of wuc whose leaves are graphs
of K-Lipschitz maps above Bu. The set Wuc(F,Ω) is a union of leaves: it has the
structure of an invariant C1 lamination. Two points x and x′ belong to the same leaf of
this lamination if and only if d(x(t), x′(t))etα/4 is bounded on R−.

If in addition there exists a group G of translations of Rnc1 such that

F �(id⊗ id⊗g⊗id) =F

for each g∈G, then the maps w∗ can be chosen such that

wsc
�(id⊗g⊗id) =wsc, wuc

�(id⊗g⊗id) =wuc, and wc
�(g⊗id) =wc (34)

for each g∈G. The lamination is also translation invariant.
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In contrast to the earlier results of this section, the map wsc is not uniquely defined,
and neither is its restriction to Bs×Ωc. Moreover, the intersection with Ω of the graph
of wsc is not necessarily positively invariant. It can contain strictly the set W sc(F,Ω).
Similar remarks apply to wuc and wc.

Proof. We take a function %: Ωc2
σ −![0, 1] such that

• %=0 near the boundary of Ωc2
σ ;

• %=1 on Ωc2 ;
• ‖d%‖62/σ uniformly.

We claim that the vector field

F̃ (u, s, c) := (Fu(u, s, c1, c2), Fs(u, s, c1, c2), Fc1(u, s, c1, c2), %(c2)Fc2(u, s, c1, c2))

satisfies all the hypotheses of Theorem A.1 on Ωσ. Note also that F̃=F on Ω. Denoting
by L̃∗∗ the variational matrix associated with F̃ , we see that

L̃cu(u, s, c) = %(c2)Lcu(u, s, c), L̃cs(u, s, c) = %(c2)Lcs(u, s, c),

L̃c1c1(u, s, c) = %(c2)Lc1c1(u, s, c), L̃c1c2(u, s, c) = %(c2)Lc1c2(u, s, c),

and

L̃c2c2(u, s, c) = %(c2)Lc2c2(u, s, c)+d%(c2)⊗Fc2(u, s, c).

As a consequence, we have

‖L̃us(x)‖+‖L̃uc(x)‖+‖L̃ss(x)‖+‖L̃sc(x)‖+‖L̃cu(x)‖+‖L̃cs(x)‖+‖L̃cc(x)‖

= %(c2)(‖Lus(x)‖+‖Luc(x)‖+‖Lss(x)‖+‖Lsc(x)‖+‖Lcu(x)‖+‖Lcs(x)‖+‖Lcc(x)‖)

+‖Fc2(x)‖ ‖d%(c2)‖

6m.

The claim is proved. We define wsc, wuc, and wc as the maps given by Theorem A.1
applied to F̃ on Ωσ. Since F̃=F on Ω, we have W ∗(F,Ω)⊂W ∗(F̃ ,Ωσ) for ∗∈{sc, uc, c}.
These maps may depend on the choice of the function % but, once the function % is
chosen, they are uniquely defined. In the case where a group G of translations exists
as in the statement, then we have F̃ �(id⊗ id⊗g⊗id)=F̃ for each g∈G. The uniqueness
then implies (34). By definition, W ∗(F̃ ,Ωσ) is the graph of w∗, the statement follows
from this observation.
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Appendix B. Disconnectedness of heteroclinic orbits

We consider a Tonelli Hamiltonian H, a cohomology c, and the associated Aubry and
Mañé sets Ã and Ñ . We assume that the Aubry set is the union of two static classes
S̃i, i=1, 2. The Mañé set can then be written as the disjoint union

Ñ = S̃1∪S̃2∪H̃12∪H̃21,

where H̃12 is a set of heteroclinic orbits from S̃1 to S̃2, and H̃21 is a set of heteroclinic
orbits from S̃2 to S̃1. Morever, the sets

Ĩ12 := S̃1∪S̃2∪H̃12 and Ĩ21 := S̃1∪S̃2∪H̃21

are invariant compact Lipschitz graphs. In the notations of [8], we have

Ĩ12 = Ĩ(ES1) =ES1∧�ES2 and Ĩ21 = Ĩ(ES2) =ES2∧�ES1 .

In [8, §9] it is proved that the cohomology c is in the interior of its forcing class
provided each of the sets H̃12 and H̃21 is neat in the following sense:

The set H̃12 is neat if there exists a compact subset K̃12 which contains one and
only one point in each orbit of ϕ|H̃12

and which is acyclic, which means that there exists
an open neighborhood U of K12 in TM such that the inclusion of U into TM generates
the null map in homology.

In §1.4 of the present paper, we apply this result under the assumption that the sets
H̃12 and H̃21 are totally disconnected. We can do so in view of the following.

Proposition B.1. The set H̃12 (or H̃21) is neat if it is totally disconnected.

Proof. We first recall that a compact metric space is totally disconnected if and only
if it has dimension zero, which means that each of its points has a basis of neighborhood
made of open and closed sets, see [38, §II.4].

By removing small open neighborhoods of S̃1 and S̃2 in Ĩ12, we form a compact
subset of H̃12 which contains at least one point in each orbit. This compact subset is
totally disconnected (it is a subset of H̃12) hence each of its points is contained in an open
and closed set which is disjoint from both S̃1 and S̃2. We cover our compact by finitely
many of these neighborhoods. Their union is a compact and open subset Q̃ of H̃12 which
contains at least one point in each orbit. The set K̃12 :=Q̃−ϕ(Q̃) is then compact and
open, and it contains exactly one point of each ϕ-orbit. It is totally disconnected, and
therefore acyclic, in view of the following lemma.

Lemma B.2. Let M be a manifold and let K⊂M be a totally disconnected compact
subset of M . Then K is acyclic.
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Proof. The subset K has dimension zero; see [38]. As a consequence, each point of K
is contained in an open, closed, and acyclic neighborhood (small open sets are contained
in discs hence are acyclic). We cover K by finitely many of these subsets U1, ..., Uk and
set V1=U1, V2=U2\V1 and Vi=Ui\Vi−1. We obtain k open acyclic subsets Vi which are
pairwise disjoint and cover K. This implies that K is acyclic.

Appendix C. Continuity property of the Peierls’ barrier function

We consider here a general Tonelli Lagrangian L. We recall, see [7, §4], that the difference
of two weak KAM solutions is constant on each static class.

Proposition C.1. Let Lk!L be a sequence of Tonelli Lagrangians Tn×Rn×T
converging in the C2 compact open topology, and ck!c∈Rn'H1(Tn,R). Assume that
AL(c) has finitely many static classes. Let ζk∈ALk

(ck) be such that ζk!ζ0∈AL(c), then
for any θ∈Tn, one has

lim
k!∞

hLk,ck
(ζk, θ) =hc(ζ0, θ).

Proof. First, since each AM
L,c(θ1, θ2) is continuous in L and c, we obtain

lim
k!∞

ΦLk,ck
(θ1, θ2) 6 lim

k!∞
(AM

Lk,ck
(θ1, θ2))=AM

L,c(θ1, θ2)

taking infimum over N , we get limk!∞ ΦLk,ck
(θ1, θ2)6ΦL,c(θ1, θ2). Since hL,c(θ1, θ2)=

ΦL,c(θ1, θ2) if either θ1 or θ2 is in AL(c), we obtain

lim
k!∞

hck
(ζk, θ) 6hc(ζ0, θ).

Given εk!0, let γk: [−Qk, 0]!Tn be a sequence of extremal curves such that

γk(−Qk) = ζk, γk(0)= θ

and
AQk

Lk,ck
(ζk, θ) 6hLk,ck

(ζk, θ)+εk.

We note that on each interval [i, j]⊂[−Qk, 0] we have

Aj−i
Lk,ck

(γk(i), γk(j))

=AQk(γk(−Qk), γk(0))−Ai+Qk(γk(−Qk), γk(i))−A−j(γk(j), γk(0))

6h(ζk, θ)−εk−(h(ζk, γk(i))−h(ζk, γk(−Qk)))−(h(ζk, γk(0))−h(ζk, γk(j)))

6hLk,ck
(ζk, γk(j))−hLk,ck

(ζk, γk(i))+εk,

(35)
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since h(ζk, γk(−Qk))=h(ζk, ζk)=0 and γk(0)=θ. Note that we omit the subscript Lk

and ck in the intermediate calculations.
Let ik and i′k be two consecutive visits of γk(i) to U=Bδ(AL(c)), we first show that

i′k−ik must be bounded as k!∞. Assume otherwise, then the curves

γk(t+ik+1)|[0,i′k−ik−2]

converge uniformly over compact sets to γ∗: [0,∞)!Tn. Assume that the weak KAM
solutions hLk,ck

(ζk, ·) converge uniformly to a weak KAM solution u of L at the coho-
mology c; taking limit in (35) implies that γ∗ must be calibrated by u. Therefore γ∗
must accumulate to AL(c), which is a contradiction.

Let S1, ...,Sr be the static classes of A(L). Let Uq=Bδ(Sq) and assume that δ is
small enough so that Uq are all disjoint. Let us note that each γk determines sequences
qs∈{1, ..., r}, s=1, ..., r, and 0=i06j06...6ir6jr6Qk as follows:

• set i0=j0=0;
• let i1 be the first visit of γ(−i) to

⋃
q Uq and Uq1 is the set that γ(−i1) visits; let

j1 be the last visit to Uq1 , namely j1=max{i: γ(−i)∈Uq1)};
• the process stops if js−1=−Qk; we then set set

is = js = ...= ir = jr =Qk and qs = ...= qr = qs−1.

Otherwise, let is be the first visits to
⋃

q Uq for i>js−1, and Uqs
the set it visits.

Define js to be the last visit to Uqs and continue.
Then,

hLk,ck
(ζk, θ)+εk

>AQk

Lk,ck
(γk(−Qk), γk(0))

=
r∑

s=1

Ais−js−1(γk(−is), γk(−js−1))+
r∑

s=1

Ajs−is(γk(−js), γk(−is))

>
r∑

s=1

Ais−js−1(γk(−is), γk(−js−1))+
r∑

s=1

(h(ζk, γk(−is))−h(ζk, γk(−js)))−rεk,

(36)

where the subscript Lk, ck was omitted in the last two lines. By restricting to a subse-
quence, we may assume that, for all γk, the ordering of q1, ... qr is identical. Our previous
observation implies, for s=1, ..., r, that is−js−1 are bounded as k!∞. By restricting to
another subsequence, we may assume is−js−1 is constant for all k, and γk(−is)!θs and
γk(−js)!θ′s as k!∞. Note that, for s=1, ..., r, θs, θ

′
s∈Bδ(Sqs), therefore, there exist

ηs, η
′
s∈Sqs such that ‖θs−ηs‖, ‖θ′s−η′s‖6δ. Let us also note, by definition, that θ0=θ′0=θ
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and θr=θ′r=ζ0. Define η0=η′0=θ and ηr=η′r=ζ0. Up to taking a subsequence, assume
that the weak KAM solutions hLk,ck

(ζk, ·) converge to u( ·) uniformly. Taking the limit
as k!∞ in (36), we obtain

lim
k!∞

hLk,ck
(ζk, θ) >

r∑
s=1

(Ais−js−1
L,c (θs, θ

′
s−1)+u(θs)−u(θ′s))

>
r∑

s=1

(Ais−js−1
L,c (ηs, η

′
s−1)+u(ηs)−u(η′s)−4Cδ)

=
r∑

s=1

(Ais−js−1
L,c (ηs, η

′
s−1)+hL,c(ζ0, ηs)−hL,c(ζ0, η′s)−4Cδ)

>
r∑

s=1

(hL,c(ζ0, η′s−1)−hL,c(ζ0, η′s)−4Cδ)

=hL,c(ζ0, η′0)−hL,c(ζ0, η′s)−4rCδ

=hL,c(ζ0, θ)−4rCδ.

Since δ is arbitrary, we obtain limk!∞ hLk,ck
(ζk, θ)>hL,c(ζ0, θ).
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[30] Fathi, A., Orbites hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math.,
326 (1998), 1213–1216.

[31] — Weak KAM Theorem in Lagrangian Dynamics. Draft book, 2008.
[32] Fathi, A. & Siconolfi, A., Existence of C1 critical subsolutions of the Hamilton–Jacobi

equation. Invent. Math., 155 (2004), 363–388.
[33] Fenichel, N., Persistence and smoothness of invariant manifolds for flows. Indiana Univ.

Math. J., 21 (1971/1972), 193–226.

http://arxiv.org/abs/1207.4016


78 p. bernard, v. kaloshin and k. zhang

[34] — Asymptotic stability with rate conditions. II. Indiana Univ. Math. J., 26 (1977), 81–93.
[35] Gidea, M. & Robinson, C., Shadowing orbits for transition chains of invariant tori al-

ternating with Birkhoff zones of instability. Nonlinearity, 20 (2007), 1115–1143.
[36] — Obstruction argument for transition chains of tori interspersed with gaps. Discrete

Contin. Dyn. Syst. Ser. S, 2 (2009), 393–416.
[37] Hirsch, M.W., Pugh, C.C. & Shub, M., Invariant Manifolds. Lecture Notes in Math-

ematics, 583. Springer, Berlin–New York, 1977.
[38] Hurewicz, W. & Wallman, H., Dimension Theory. Princeton Mathematical Series, 4.

Princeton University Press, Princeton, NJ, 1941.
[39] Kaloshin, K. V. Z, Normally hyperbolic invariant manifolds near strong double resonance.

Preprint, 2012. arXiv:1202.1032 [math.DS].
[40] — A strong form of Arnold diffusion for two and a half degrees of freedom. Preprint, 2012.

arXiv:1212.1150 [math.DS].
[41] Kaloshin, V. & Levi, M., An example of Arnold diffusion for near-integrable Hamilto-

nians. Bull. Amer. Math. Soc., 45 (2008), 409–427.
[42] — Geometry of Arnold diffusion. SIAM Rev., 50 (2008), 702–720.
[43] Kaloshin, V., Levi, M. & Saprykina, M., Arnol′d diffusion in a pendulum lattice.

Comm. Pure Appl. Math., 67 (2014), 748–775.
[44] Kaloshin, V. & Saprykina, M., An example of a nearly integrable Hamiltonian system

with a trajectory dense in a set of maximal Hausdorff dimension. Comm. Math. Phys.,
315 (2012), 643–697.

[45] Kaloshin, V., Zhang, K. & Zheng, Y., Almost dense orbit on energy surface, in XVI
International Congress on Mathematical Physics, pp. 314–322. World Sci., Hackensack,
NJ, 2010.

[46] Lochak, P. & Marco, J.-P., Diffusion times and stability exponents for nearly integrable
analytic systems. Cent. Eur. J. Math., 3 (2005), 342–397.
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