
Acta Math., 206 (2011), 205–243
DOI: 10.1007/s11511-011-0062-2
c© 2011 by Institut Mittag-Leffler. All rights reserved

On locally constructible spheres and balls

by

Bruno Benedetti

Freie Universität Berlin

Berlin, Germany

Günter M. Ziegler

Freie Universität Berlin

Berlin, Germany

1. Introduction

Ambjørn, Boulatov, Durhuus, Jonsson and others have worked to develop a 3-dimensional
analogue of the simplicial quantum gravity theory, as provided for two dimensions by
Regge [42]. (See [3] and [43] for surveys.) The discretized version of quantum gravity
considers simplicial complexes instead of smooth manifolds; the metric properties are
artificially introduced by assigning length a to any edge. (This approach is due to Wein-
garten [47] and known as “theory of dynamical triangulations”.) A crucial path integral
over metrics, the “partition function for gravity”, is then defined via a weighted sum
over all triangulated manifolds of fixed topology. In three dimensions, the whole model
is convergent only if the number of triangulated 3-spheres with N facets grows not faster
than CN , for some constant C. But does this hold? How many simplicial spheres are
there with N facets, for N large?

This crucial question still represents a major open problem, which was put into the
spotlight also by Gromov [19, pp. 156-157]. Its 2-dimensional analogue, however, was
answered a long time ago by Tutte [45], [46], who proved that there are asymptotically
fewer than (16/3

√
3 )N combinatorial types of triangulated 2-spheres. (By Steinitz’ the-

orem, cf. [49, Lecture 4], this quantity equivalently counts the maximal planar maps on
n>4 vertices, which have N=2n−4 faces, and also the combinatorial types of simplicial
3-dimensional polytopes with N facets.)

In the following, the adjective “simplicial” will often be omitted when dealing with
balls, spheres or manifolds, as all the regular cell complexes and polyhedral complexes
that we consider are simplicial.
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Figure 1. How to get an octahedron from a tree of 8 triangles (i.e., a triangulated 10-gon).

Why are 2-spheres “not so many”? Every combinatorial type of triangulation of
the 2-sphere can be generated as follows (see Figure 1): First for some even N>4 build
a tree of N triangles (which combinatorially is the same thing as a triangulation of an
(N+2)-gon), and then glue edges according to a complete matching of the boundary
edges. A necessary condition in order to obtain a 2-sphere is that such a matching is
planar. Planar matchings and triangulations of (N+2)-gons are both enumerated by the
Catalan number CN+2, and since the Catalan numbers satisfy a polynomial bound

CN =
1

N+1

(
2N

N

)
< 4N ,

we get an exponential upper bound for the number of triangulations.
Neither this simple argument nor Tutte’s precise count can be easily extended to

higher dimensions. Indeed, we have to deal with three different problems when trying to
extend results or methods from dimension 2 to dimension 3:

(i) Many combinatorial types of simplicial 3-spheres are not realizable as bound-
aries of convex 4-polytopes; thus, even though we observe below that there are only
exponentially many simplicial 4-polytopes with N facets, the 3-spheres could still be
more numerous.

(ii) The counts of combinatorial types according to the number n of vertices and
according to the number N of facets are not equivalent any more. We have 3n−106

N6 1
2n(n−3) by the lower (resp. upper) bound theorem for simplicial 3-spheres. We

know that there are more than 2n 4√n 3-spheres [30], [40], but less than 220n log n types of
4-polytopes with n vertices [1], [17], yet this does not answer the question for a count in
terms of the number N of facets.

(iii) While it is still true that there are only exponentially many “trees of N tetra-
hedra”, the matchings that can be used to glue 3-spheres are not planar any more; thus,
they could be more than exponentially many. If, on the other hand, we restrict ourselves
to “local gluings”, we generate only a limited family of 3-spheres, as we will show below.
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In the early nineties, new finiteness theorems by Cheeger [12] and Grove, Petersen
and Wu [20] yielded a new approach, namely, to count d-manifolds of “fluctuating topol-
ogy” (not necessarily spheres) but “bounded geometry” (curvature and diameter bounded
from above, and volume bounded from below). This allowed Bartocci, Bruzzo, Carfora
and Marzuoli [6] to bound, for any d-manifold, the number of triangulations with N or
more facets, under the assumption that no vertex had degree higher than a fixed integer.
However, for this it is crucial to restrict the topological type: Already for d=2, there are
more than exponentially many triangulated 2-manifolds of bounded vertex degree with
N facets (see [7]).

In 1995, the physicists Durhuus and Jonsson [14] introduced the class of “locally
constructible” (LC) 3-spheres. An LC 3-sphere (with N facets) is a sphere obtainable
from a tree of N tetrahedra, by identifying pairs of adjacent triangles in the boundary.
“Adjacent” means here “sharing at least one edge”, and represents a dynamic require-
ment. Clearly, every 3-sphere is obtainable from a tree of N tetrahedra by matching the
triangles in its boundary; according to the definition of LC, however, we are allowed to
match only those triangles that are adjacent—or that have become adjacent by the time
of the gluing.

Durhuus and Jonsson proved an exponential upper bound on the number of combi-
natorially distinct LC spheres with N facets. Based also on computer simulations ([4],
see also [11] and [2]) they conjectured that all 3-spheres should be LC. A positive solution
of this conjecture would have implied that spheres with N facets are at most CN , for
a constant C—which would have been the desired missing link to implement discrete
quantum gravity in three dimensions.

In the present paper, we show that the conjecture of Durhuus and Jonsson has a
negative answer: There are simplicial 3-spheres that are not LC. (With this, however,
we do not resolve the question whether there are fewer than CN simplicial 3-spheres on
N facets, for some constant C.)

On the way to this result, we provide a characterization of LC simplicial d-complexes
which relates the “locally constructible” spheres defined by physicists to concepts that
originally arose in topological combinatorics.

Main theorem 1. (Theorem 2.1) A simplicial d-sphere, d>3, is LC if and only if
the sphere after removal of one facet can be collapsed onto a complex of dimension d−2.
Moreover, the following inclusions between families of simplicial d-spheres hold :

{vertex decomposable} {shellable}⊆{constructible} {LC} {all d-spheres}.

We use the hierarchy in conjunction with the following extension and sharpening of
Durhuus and Jonsson’s theorem (who discussed only the case d=3).
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Main theorem 2. (Theorem 4.4) For fixed d>2, the number of combinatorially
distinct simplicial LC d-spheres with N facets grows not faster than 2d2N .

We will give a proof for this theorem in §4; the same type of upper bound, with the same
type of proof, also holds for LC d-balls with N facets.

Already in 1988, Kalai [30] constructed, for every d>4, a family of more than
exponentially many d-spheres on n vertices; Lee [34] later showed that all of Kalai’s
spheres are shellable. Combining this with Theorems 4.4 and 2.1, we obtain the following
asymptotic result.

Corollary. For fixed d>4, the number of shellable simplicial d-spheres grows more
than exponentially with respect to the number n of vertices, but only exponentially with
respect to the number N of facets.

The hierarchy of Main theorem 1 is not quite complete: It is still not known whether
constructible, non-shellable 3-spheres exist (see [15] and [31]). A shellable 3-sphere that
is not vertex-decomposable was found by Lockeberg in his 1977 Ph.D. work (reported in
[33, p. 742]; see also [23]). Again, the 2-dimensional case is much simpler and completely
solved: All 2-spheres are vertex decomposable (see [41]).

In order to show that not all spheres are LC we study in detail simplicial spheres
with a “knotted triangle”; these are obtained by adding a cone over the boundary of
a ball with a knotted spanning edge (as in Furch’s 1924 paper [16]; see also Bing [9]).
Spheres with a knotted triangle cannot be boundaries of polytopes. Lickorish [36] had
shown in 1991 the following:

A 3-sphere with a knotted triangle is not shellable if the knot is at least 3-complicated.

Here “at least 3-complicated” refers to the technical requirement that the funda-
mental group of the complement of the knot has no presentation with less than four
generators. A concatenation of three or more trefoil knots satisfies this condition. In
2000, Hachimori and Ziegler [21], [26] demonstrated that Lickorish’s technical require-
ment is not necessary for his result:

A 3-sphere with any knotted triangle is not constructible.

In the present work, we re-justify Lickorish’s technical assumption, showing that this
is exactly what we need if we want to reach a stronger conclusion, namely, a topological
obstruction to local constructibility. Thus, the following result is established in order to
prove that the last inclusion of the hierarchy in Theorem 2.1 is strict.

Main theorem 3. (Theorem 2.13) A 3-sphere with a knotted triangle is not LC if
the knot is at least 3-complicated.
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The knot complexity requirement is now necessary, as non-constructible spheres with
a single or double trefoil knot can still be LC (see Example 2.26 and Remark 2.32).

The combinatorial topology of d-balls and that of d-spheres are of course closely
related—our study builds on the well-known connections and also adds new ones.

Main theorem 4. (Theorems 3.1 and 3.10) A simplicial d-ball is LC if and only if
after the removal of a facet it collapses down to the union of the boundary with a complex
of dimension at most d−2. We have the following hierarchy:

{
vertex

decomp.

}
 {shellable} {construct.} {LC} 

{
collapsible onto a
(d−2)-complex

}
 {all d-balls}.

All the inclusions of Main theorem 4 hold with equality for simplicial 2-balls. In
the case of d=3, collapsibility onto a (d−2)-complex is equivalent to collapsibility. In
particular, we settle a question of Hachimori (see e.g. [22, pp. 54 and 66]) whether all
constructible 3-balls are collapsible.

Furthermore, we show in Corollary 3.24 that some collapsible 3-balls do not collapse
onto their boundary minus a facet, a property that comes up in classical studies in
combinatorial topology (compare [13] and [35]). In particular, a result of Chillingworth
can be restated in our language as “if for any geometric simplicial complex ∆ the support
(union) |∆| is a convex 3-dimensional polytope, then ∆ is necessarily an LC 3-ball”, see
Theorem 3.27. Thus any geometric subdivision of the 3-simplex is LC.

1.1. Definitions and Notation

1.1.1. Simplicial regular CW complexes

In the following, we present the notion of “local constructibility” (due to Durhuus and
Jonsson). Although in the end we are interested in this notion as applied to finite
simplicial complexes, the iterative definition of locally constructible complexes dictates
that for intermediate steps we must allow for the greater generality of finite “simplicial
regular CW complexes”. A CW complex is regular if the attaching maps for the cells
are injective on the boundary (see e.g. [10]). A regular CW complex is simplicial if for
every proper face F , the interval [0, F ] in the face poset of the complex is boolean. Every
simplicial complex (and in particular, any triangulated manifold) is a simplicial regular
CW complex.

The k-dimensional cells of a regular CW complex C are called k-faces; the inclusion-
maximal faces are called facets, and the inclusion-maximal proper subfaces of the facets
are called ridges. The dimension of C is the largest dimension of a facet; pure complexes
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are complexes where all facets have the same dimension. All complexes that we consider
in the following are finite, most of them are pure. A d-complex is a d-dimensional
complex. Conventionally, the 0-faces are called vertices, and the 1-faces edges. (In the
discrete quantum gravity literature, the (d−2)-faces are sometimes called “hinges” or
“bones”, whereas the edges are sometimes referred to as “links”.) If the union |C| of all
simplices of C is homeomorphic to a manifold M , then C is a triangulation of M ; if C is
a triangulation of a d-ball or of a d-sphere, we will call C simply a d-ball (resp. d-sphere).
The dual graph of a pure d-dimensional simplicial complex C is the graph whose nodes
correspond to the facets of C: Two nodes are connected by an arc if and only if the
corresponding facets share a (d−1)-face.

1.1.2. Knots

All the knots we consider are tame, that is, realizable as 1-dimensional subcomplexes of
some triangulated 3-sphere. A knot is m-complicated if the fundamental group of the
complement of the knot in the 3-sphere has a presentation with m+1 generators, but no
presentation with m generators. By “at least m-complicated” we mean “k-complicated
for some k>m”. There exist arbitrarily complicated knots: Goodrick [18] showed that
the connected sum of m trefoil knots is at least m-complicated.

Another measure of how tangled a knot can be is the bridge index (see e.g. [32,
p. 18] for the definition). If a knot has bridge index b, the fundamental group of the knot
complement admits a presentation with b generators and b−1 relations [32, p. 82]. In
other words, the bridge index of an m-complicated knot is at least m+1. As a matter
of fact, the connected sum of m trefoil knots is m-complicated, and its bridge index is
exactly m+1 [15].

1.1.3. The combinatorial topology hierarchy

In the following, we review the key properties from the inclusion

{shellable} {constructible}

valid for all simplicial complexes, and the inclusion

{shellable} {collapsible}

applicable only for contractible simplicial complexes, both known from combinatorial
topology (see [10, §11] for details).
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Shellability can be defined for pure simplicial complexes as follows:
– every simplex is shellable;
– a d-dimensional pure simplicial complex C which is not a simplex is shellable if

and only if it can be written as C=C1∪C2, where C1 is a shellable d-complex, C2 is a
d-simplex, and C1∩C2 is a shellable (d−1)-complex.

Constructibility is a weakening of shellability, defined by:
– every simplex is constructible;
– a d-dimensional pure simplicial complex C which is not a simplex is constructible

if and only if it can be written as C=C1∪C2, where C1 and C2 are constructible d-
complexes and C1∩C2 is a constructible (d−1)-complex.

Let C be a d-dimensional simplicial complex, not necessarily pure. An elementary
collapse is the simultaneous removal from C of a pair of faces (σ,Σ) with the following
properties:

– dim Σ=dim σ+1;
– σ is a proper face of Σ;
– σ is not a proper face of any other face of C.

(The three conditions above are usually abbreviated in the expression “σ is a free
face of Σ”; some complexes have no free faces.) If C ′ :=(C−Σ)−σ, we say that the
complex C collapses onto the complex C ′. We also say that the complex C collapses
onto the complex D, and write C&D, if C can be reduced to D by a finite sequence
of elementary collapses. Thus a collapse refers to a sequence of elementary collapses. A
collapsible complex is a complex that can be collapsed onto a single vertex.

Since C ′ :=(C−Σ)−σ is a deformation retract of C, each collapse preserves the ho-
motopy type. In particular, all collapsible complexes are contractible. The converse does
not hold in general: For example, the so-called “dunce hat” is a contractible 2-complex
without free edges, and thus with no elementary collapse to start with. However, the
implication “contractible ⇒ collapsible” holds for all 1-complexes, and also for shellable
complexes of any dimension.

A connected 2-dimensional complex is collapsible if and only if it does not contain a
2-dimensional complex without a free edge. In particular, for 2-dimensional complexes,
if C&D and D is not collapsible, then C is also not collapsible. This does not hold
anymore for complexes C of dimension larger than 2 [28].

1.1.4. LC pseudomanifolds

By a d-pseudomanifold (possibly with boundary) we mean a finite regular CW complex
P which is pure d-dimensional, simplicial, and such that each (d−1)-dimensional cell
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belongs to at most two d-cells. The boundary of the pseudomanifold P , denoted ∂P , is
the smallest subcomplex of P containing all the (d−1)-cells of P which belong to exactly
one d-cell of P .

According to our definition, a pseudomanifold need not be a simplicial complex; it
might be disconnected; and its boundary might not be a pseudomanifold.

Definition 1.1. (Locally constructible pseudomanifold) For d>2, let C be a pure
d-dimensional simplicial complex with N facets. A local construction for C is a sequence
T1, ..., TN , ..., Tk, k>N , such that Ti is a d-pseudomanifold for each i and

(1) T1 is a d-simplex;
(2) if i6N−1, then Ti+1 is obtained from Ti by gluing a new d-simplex to Ti

alongside one of the (d−1)-cells in ∂Ti;
(3) if i>N , then Ti+1 is obtained from Ti by identifying a pair σ, τ of (d−1)-cells

in the boundary ∂Ti whose intersection contains a (d−2)-cell F ;
(4) Tk=C.

We say that C is locally constructible, or LC, if a local construction for C exists.
With a little abuse of notation, we will call each Ti an LC pseudomanifold. We also say
that C is locally constructed along T , if T is the dual graph of TN , and thus a spanning
tree of the dual graph of C.

The identifications described in item (3) above are operations which are not closed
with respect to the class of simplicial complexes. Local constructions where all steps
are simplicial complexes produce only a very limited class of manifolds, consisting of
d-balls with no interior (d−3)-faces. (When in an LC step the identified boundary facets
intersect in exactly a (d−2)-cell, no (d−3)-face is sunk into the interior, and the topology
stays the same.)

However, since by definition the local construction in the end must arrive at a
pseudomanifold C that is a simplicial complex, each intermediate step Ti must satisfy
severe restrictions: for each t6d,

– distinct t-simplices which are not in the boundary of Ti share at most one (t−1)-
simplex;

– distinct t-simplices in the boundary of Ti which share more than one (t−1)-simplex
will need to be identified by the time the construction of C is completed.

Moreover,
– if σ and τ are the two (d−1)-cells glued together in the step from Ti to Ti+1, σ

and τ cannot belong to the same d-simplex of Ti; nor can they belong to two d-simplices
which are already adjacent in Ti.

For example, in each step of the local construction of a 3-sphere, no two tetrahedra
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share more than one triangle. Moreover, any two distinct interior triangles either are
disjoint, or they share a vertex, or they share an edge; but they cannot share two edges,
nor three; and they also cannot share one edge and the opposite vertex. If we glued
together two boundary triangles which belong to adjacent tetrahedra, no matter what
we did afterwards, we would not end up with a simplicial complex any more. Roughly
speaking,

a locally constructible 3-sphere is a triangulated 3-sphere obtained from
a tree of tetrahedra TN by repeatedly identifying two adjacent triangles
in the boundary.

As mentioned, the boundary of a pseudomanifold need not be a pseudomanifold.
However, if P is an LC d-pseudomanifold, ∂P is automatically a (d−1)-pseudomanifold.
Nevertheless, ∂P may be disconnected, and thus, in general, it is not LC.

All LC d-pseudomanifolds are simply connected; in case d=3, their topology is
controlled by the following result.

Theorem 1.2. (Durhuus–Jonsson [14]) Every LC 3-pseudomanifold P is homeo-
morphic to a 3-sphere with a finite number of “cacti of 3-balls” removed. (A cactus of
3-balls is a tree-like connected structure in which any two 3-balls share at most one point.)
Thus the boundary ∂P is a finite disjoint union of cacti of 2-spheres. In particular, each
connected component of ∂P is a simply-connected 2-pseudomanifold.

Thus every closed 3-dimensional LC pseudomanifold is a sphere, while for d>3 other
topological types such as products of spheres are possible (see Benedetti [8]).

2. On LC spheres

In this section, we establish the following hierarchy announced in the introduction.

Theorem 2.1. For all d>3, we have the following inclusion relations between fam-
ilies of simplicial d-spheres:

{vertex decomposable} {shellable}⊆{constructible} {LC} {all d-spheres}.

Proof. The first two inclusions, and strictness of the first one, are known; the third
one will follow from Lemma 2.23 and will be shown to be strict by Example 2.26 to-
gether with Lemma 2.24; finally, Corollary 2.22 will establish the strictness of the fourth
inclusion for all d>3.
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2.1. Some d-spheres are not LC

Let S be a simplicial d-sphere, d>2, and T be a spanning tree of the dual graph of S.
We denote by KT the subcomplex of S formed by all the (d−1)-faces of S which are not
intersected by T .

Lemma 2.2. Let S be any d-sphere with N facets. Then for every spanning tree T

of the dual graph of S,
(i) KT is a contractible pure (d−1)-dimensional simplicial complex with

1
2 (dN−N+2)

facets;
(ii) for any facet ∆ of S, we have that S−∆&KT .

Any collapse of a d-sphere S minus a facet ∆ to a complex of dimension at most
d−1 proceeds along a dual spanning tree T . To see this, fix a collapsing sequence. We
may assume that the collapse of S−∆ is ordered so that the pairs ((d−1)-face, d-face)
are removed first. Whenever both the following conditions are met:

(i) σ is the (d−1)-dimensional intersection of the facets Σ and Σ′ of S;
(ii) the pair (σ,Σ) is removed in the collapsing sequence of S−∆;

draw an oriented arrow from the center of Σ′ to the center of Σ. This yields a directed
spanning tree T of the dual graph of S, where ∆ is the root. Indeed, T is spanning
because all d-simplices of S−∆ are removed in the collapse; it is connected, because the
only free (d−1)-faces of S−∆, where the collapse can start at, are the proper (d−1)-faces
of the “missing simplex” ∆; it is acyclic, because the center of each d-simplex of S−∆
is reached by exactly one arrow. We will say that the collapsing sequence acts along the
tree T (in its top-dimensional part). Thus the complex KT appears as an intermediate
step of the collapse: It is the complex obtained after the (N−1)-st pair of faces has been
removed from S−∆.

Definition 2.3. By a facet-killing sequence for a d-dimensional simplicial complex
C we mean a sequence C0, ..., Ct of complexes such that t=fd(C), C0=C and Ci+1 is
obtained by an elementary collapse which removes a free (d−1)-face σ of Ci, together
with the unique facet Σ containing σ.

If C is a d-complex, and D is a lower-dimensional complex such that C&D, there
exists a facet-killing sequence C0, ..., Ct for C such that Ct&D. In other words, the
collapse of C onto D can be rearranged so that the pairs ((d−1)-face, d-face) are removed
first. In particular, for any d-complex C, the following are equivalent:

(i) there exists a facet-killing sequence for C;
(ii) there exists a k-complex D with k6d−1 such that C&D.
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Figure 2. Above. A facet-killing sequence of S−∆, where S is
the boundary of a tetrahedron (d=2), and ∆ one of its facets.
Right. The 1-complex KT onto which S−∆ collapses, and the
directed spanning tree T along which the collapse above acts.

What we argued above can be rephrased as follows.

Proposition 2.4. Let S be a d-sphere and ∆ be a d-simplex of S. Let C be a
k-dimensional simplicial complex, with k6d−2. Then,

S−∆&C ⇐⇒ there exists T such that KT &C.

The right-hand side in the equivalence of Proposition 2.4 does not depend on the
chosen ∆. So, for any d-sphere ∆, either S−∆ is collapsible for every ∆, or S−∆ is not
collapsible for any ∆.

One more convention: by a natural labeling of a rooted tree T on n vertices we mean
a bijection b:V (T )!{1, ..., n} such that if v is the root then b(v)=1, and if v is not the
root then there exists a unique vertex w adjacent to v such that b(w)<b(v).

We are now ready to link the LC concept with collapsibility. Take a d-sphere S, a
facet ∆ of S and a rooted spanning tree T of the dual graph of S, with root ∆. Since S

is given, fixing T is really the same as fixing the manifold TN in the local construction
of S; and at the same time, fixing T is the same as fixing KT .

Once T , TN and KT have been fixed, to describe the first part of a local construction
of S (that is, T1, ..., TN ) we just need to specify the order in which the tetrahedra of S

have to be added, which is the same as to give a natural labeling of T . Besides, natural
labelings of T are in bijection with collapses S−∆&KT (the ith facet to be collapsed is
the node of T labeled i+1; see Proposition 2.4).

What if we do not fix T? Suppose S and ∆ are fixed. Then the previous reasoning
yields a bijection among the following sets:

(i) the set of all facet-killing sequences of S−∆;
(ii) the set of “natural labelings” of spanning trees of S, rooted at ∆;
(iii) the set of the first parts (T1, ..., TN ) of local constructions for S, with T1=∆.

Can we understand also the second part of a local construction “combinatorially”?
Let us start with a variant of the “facet-killing sequence” notion.
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Definition 2.5. A pure facet-massacre of a pure d-dimensional simplicial complex
P is a sequence P0, ..., Pt of (pure) complexes such that t=fd(P ), P0=P and Pi+1 is
obtained by Pi removing:

(a) a free (d−1)-face σ of Pi, together with the unique facet Σ containing σ, and
(b) all inclusion-maximal faces of dimension smaller than d which are left after the

removal of type (a) or, recursively, after removals of type (b).

In other words, the (b) step removes lower-dimensional facets until one obtains a
pure complex. Since t=fd(P ), Pt has no facets of dimension d left, nor inclusion-maximal
faces of smaller dimension; hence Pt is empty. The other Pi’s are pure complexes of
dimension d. Notice that the step Pi 7!Pi+1 is not a collapse, and does not preserve
the homotopy type in general. Of course Pi 7!Pi+1 can be “factorized” in an elementary
collapse followed by a removal of a finite number of k-faces, with k<d. However, this
factorization is not unique, as the next example shows.

Example 2.6. Let P be a full triangle. P admits three different facet-killing collapses
(each edge can be chosen as a free face), but it admits only one pure facet-massacre,
namely P,∅.

Lemma 2.7. Let P be a pure d-dimensional simplicial complex. Every facet-killing
sequence of P naturally induces a unique pure facet-massacre of P . All pure facet-
massacres of P are induced by some (possibly more than one) facet-killing sequence.

Proof. The map consists in taking a facet-killing sequence C0, ..., Ct, and “cleaning
up” the Ci by recursively killing the lower-dimensional inclusion-maximal faces. As the
previous example shows, this map is not injective. It is surjective essentially because the
removed lower-dimensional faces are of dimension “too small to be relevant”. In fact,
their dimension is at most d−1, hence their presence can interfere only with the freeness of
faces of dimension at most d−2; so the list of all removals of the form ((d−1)-face, d-face)
in a facet-massacre yields a facet-killing sequence.

Theorem 2.8. Let S be a d-sphere; fix a spanning tree T of the dual graph of S.
The second part of a local construction for S along T corresponds bijectively to a facet-
massacre of KT .

Proof. Fix S and T ; TN and KT are determined by this. Let us start with a local
construction (T1, ..., TN−1, )TN , ..., Tk for S along T . Topologically, S=TN/∼, where
∼ is the equivalence relation determined by the gluing (two distinct points of TN are
equivalent if and only if they will be identified in the gluing). Moreover, KT =∂TN/∼,
by the definition of KT .
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Define P0 :=KT =∂TN/∼, and Pj :=∂TN+j/∼. We leave it to the reader to verify
that k−N and fd(KT ) are the same integer (see Lemma 2.2), which from now on is
called D. In particular PD=∂Tk/∼=∂S/∼=∅.

In the first LC step, TN 7!TN+1, we remove a free ridge r from the boundary, together
with the unique pair σ′, σ′′ of facets of ∂TN sharing r. At the same time, r and the newly
formed face σ are sunk into the interior. This step ∂TN 7!∂TN+1 naturally induces an
analogous step ∂TN+j/∼7!∂TN+j+1/∼, namely, the removal of r and of the (unique!)
(d−1)-face σ containing it.

In the jth LC step, ∂TN+j 7!∂TN+j+1, we remove a ridge r from the boundary,
together with a pair σ′, σ′′ of facets sharing r; moreover, we sink into the interior a lower-
dimensional face F if and only if we have just sunk into the interior all faces containing
F . The induced step from ∂TN+j/∼ to ∂TN+j+1/∼ is precisely a “facet-massacre” step.

For the converse, we start with a “facet-massacre” P0, ..., PD of KT , and we have
P0=KT =∂TN/∼. The unique (d−1)-face σj killed in passing from Pj to Pj+1 cor-
responds to a unique pair of (adjacent!) (d−1)-faces σ′j , σ′′j in ∂TN+j . Gluing them
together is the LC move that transforms TN+j into TN+j+1.

Remark 2.9. Summing up:
– The first part of a local construction along a tree T corresponds to a facet-killing

collapse of S−∆ (which ends in KT ).
– The second part of a local construction along a tree T corresponds to a pure

facet-massacre of KT .
– A single facet-massacre of KT corresponds to many facet-killing sequences of KT .
– By Proposition 2.4, there exists a facet-killing sequence of KT if and only if KT

collapses onto some (d−2)-dimensional complex C. This C is necessarily contractible,
like KT .

So S is locally constructible along T if and only if KT collapses onto some (d−2)-
dimensional contractible complex C, if and only if KT has a facet-killing sequence. What
if we do not fix T?

Theorem 2.10. Let S be a d-sphere, d>3. Then the following are equivalent :
(1) S is LC;
(2) for some spanning tree T of S, KT is collapsible onto some (d−2)-dimensional

(contractible) complex C;
(3) there exists a (d−2)-dimensional (contractible) complex C such that for every

facet ∆ of S, S−∆&C;
(4) for some facet ∆ of S, S−∆ is collapsible onto a (d−2)-dimensional (con-

tractible) complex C.
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Proof. S is LC if and only if it is LC along some tree T ; thus (1)⇔ (2) follows from
Remark 2.9. Besides, (2)⇒ (3) follows from the fact that S−∆&KT (Lemma 2.2),
where KT is independent of the choice of ∆. The implication (3)⇒ (4) is trivial. To
show (4)⇒ (2), take a collapse of S−∆ onto some (d−2)-complex C; by Lemma 2.4, there
exists some tree T (along which the collapse acts) so that S−∆&KT and KT&C.

Corollary 2.11. Let S be a 3-sphere. Then the following are equivalent :
(1) S is LC;
(2) KT is collapsible for some spanning tree T of the dual graph of S;
(3) S−∆ is collapsible for every facet ∆ of S;
(4) S−∆ is collapsible for some facet ∆ of S.

Proof. This follows from the previous theorem, together with the fact that all con-
tractible 1-complexes are collapsible.

We are now in the position to exploit results by Lickorish about collapsibility.

Theorem 2.12. (Lickorish [36]) Let L be a knot on m edges in the 1-skeleton of a
simplicial 3-sphere S. Suppose that S−∆ is collapsible, where ∆ is some tetrahedron
in S−L. Then |S|−|L| is homotopy equivalent to a connected cell complex with one
0-cell and at most m 1-cells. In particular, the fundamental group of |S|−|L| admits a
presentation with m generators.

Now assume that a certain sphere S containing a knot L is LC. By Corollary 2.11,
S−∆ is collapsible, for any tetrahedron ∆ not in the knot L. Hence by Lickorish’s
criterion the fundamental group π1(|S|−|L|) admits a presentation with m generators.

Theorem 2.13. Any 3-sphere with a 3-complicated 3-edge knot is not LC. More
generally, a 3-sphere with an m-gonal knot cannot be LC if the knot is at least m-
complicated.

Example 2.14. As in the construction of the classical “Furch–Bing ball” [16, p. 73],
[9, p. 110], [50], we drill a hole into a finely triangulated 3-ball along a triple pike dive
of three consecutive trefoils; we stop drilling one step before destroying the property of
having a ball (see Figure 3). If we add a cone over the boundary, the resulting sphere has
a three edge knot which is a connected sum of three trefoil knots. By Goodrick [18] the
connected sum of m copies of the trefoil knot is at least m-complicated. So, this sphere
has a knotted triangle, the fundamental group of whose complement has no presentation
with three generators. Hence, S cannot be LC.

From this we get a negative answer to the Durhuus–Jonsson conjecture.

Corollary 2.15. Not all simplicial 3-spheres are LC.
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Figure 3. Furch–Bing ball with a (corked) tubular hole along a triple-trefoil knot. The cone
over the boundary of this ball is a sphere which is not LC.

Lickorish proved also a higher-dimensional statement, basically by taking successive
suspensions of the 3-sphere in Example 2.14.

Theorem 2.16. (Lickorish [36]) For each d>3, there exists a PL d-sphere S such
that S−∆ is not collapsible for any facet ∆ of S.

To exploit our Theorem 2.10 we need a sphere S such that S−∆ is not even collapsi-
ble to a (d−2)-complex. To establish that such a sphere exists, we strengthen Lickorish’s
result.

Definition 2.17. Let K be a d-manifold, A be an r-simplex in K and Â be the
barycenter of A. Consider the barycentric subdivision sd(K) of K. The dual A∗ of A is
the subcomplex of sd(K) given by all flags

A⊂A0⊂ ...⊂Ar,

where r=dim A and dim Ai+1=dim Ai+1 for each i.

A∗ is a cone with apex Â, and thus collapsible. If K is PL (see e.g. Hudson [29] for
the definition), we can say more:

Lemma 2.18. ([29, Lemma 1.19]) Let K be a PL d-manifold (without boundary),
and let A be a simplex in K of dimension r. Then

(i) A∗ is a (d−r)-ball, and
(ii) if A is a face of an (r+1)-simplex B, then B∗ is a (d−r−1)-subcomplex

of ∂A∗.
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We have observed in Lemma 2.2 that for any d-sphere S and any facet ∆, the ball
S−∆ is collapsible onto a (d−1)-complex: in other words, via collapses one can always
get one dimension down. To get two dimensions down is not so easy: our Theorem 2.10
states that S−∆ is collapsible onto a (d−2)-complex precisely when S is LC.

This “number of dimensions down you can get by collapsing” can be related to the
minimal presentations of certain homotopy groups. The idea of the next theorem is that
if one can get k dimensions down by collapsing a manifold minus one facet, then the
(k−1)-th homotopy group of the complement of any (d−k)-subcomplex of the manifold
cannot be too complicated to present.

Theorem 2.19. Let t and d be such that 06t6d−2, and let K be a PL d-manifold
(without boundary). Suppose that K−∆ collapses onto a t-complex, for some facet ∆
of K. Then, for each t-dimensional subcomplex L of K, the homotopy group

πd−t−1(|K|−|L|)

has a presentation with ft(L) generators, while πi(|K|−|L|) is trivial for i<d−t−1.

Proof. As usual, we assume that the collapse of K−∆ is ordered so that
– first all pairs ((d−1)-face, d-face) are collapsed;
– then all pairs ((d−2)-face, (d−1)-face) are collapsed;

...
– finally, all pairs (t-face, (t+1)-face) are collapsed.
Let us put together all the faces that appear above, maintaining their order, to form

a single list of simplices
A1, ..., A2M .

In such a list, A1 is a free face of A2, A3 is a free face of A4 with respect to the complex
(K−A1)−A2, and so on. In general, A2i−1 is a face of A2i for each i, and in addition, if
j>2i, A2i−1 is not a face of Aj .

We set X0=A0 :=∆̂ and define a finite sequence X1, ..., XM of subcomplexes of sd(K)
by

Xj :=
⋃

i∈{0,...,2j}
Ai /∈L

A∗
i for j ∈{1, ...,M}.

None of the A2i’s can be in L, because L is t-dimensional and dim A2i>dim A2M =t+1.
However, exactly ft(L) of the A2i−1’s are in L. Consider how Xj differs from Xj−1.
There are two cases:

• If A2j−1 is not in L, then

Xj =Xj−1∪A∗
2j−1∪A∗

2j .
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By Lemma 2.18, setting r=dim A2j−1, A∗
2j−1 is a (d−r)-ball which contains in its bound-

ary the (d−r−1)-ball A∗
2j . Thus |Xj | is just |Xj−1| with a (d−r)-cell attached via a cell

in its boundary, and such an attachment does not change the homotopy type.
• If A2j−1 is in L, then

Xj =Xj−1 ∪A∗
2j .

As this occurs only when dim A2j−1=t, we have that dim A2j =t+1 and dim A∗
2j =d−t−1;

hence |Xj | is just |Xj−1| with a (d−t−1)-cell attached via its whole boundary.
Only in the second case does the homotopy type of |Xj | change at all, and this

second case occurs exactly ft(L) times. Since X0 is one point, it follows that XM is
homotopy equivalent to a bouquet of ft(L) many (d−t−1)-spheres.

Now let us list by (weakly) decreasing dimension the faces of K that do not appear
in the previous list A1, ..., A2M . We name the elements of this list

A2M+1, A2M+2, ..., AF

(where F +1 is the number of non-empty faces of K).
Correspondingly, we recursively define a new sequence of subcomplexes of sd(K)

setting Y0 :=XM and

Yh :=
{

Yh−1, if A2M+h ∈L,
Yh−1∪A∗

2M+h, otherwise.

Since dim A2M+h6dim A2M+1=t, we have that |Yh| is just |Yh−1| with possibly a cell of
dimension at least d−t attached via its whole boundary. Let us consider the homotopy
groups of the Yh’s : Recall that Y0 was homotopy equivalent to a bouquet of ft(L)
(d−t−1)-spheres. Clearly, for all h,

πj(Yh) = 0 for each j ∈{1, ..., d−t−2}.

Moreover, the higher-dimensional cell attached to |Yh−1| to get |Yh| corresponds to the
addition of relators to a presentation of πd−t−1(Yh−1) to get a presentation of πd−t−1(Yh).
This means that for all h the group πd−t−1(Yh) is generated by (at most) ft(L) elements.

The conclusion follows from the fact that, by construction, YF−2M is the subcomplex
of sd(K) consisting of all simplices of sd(K) that have no vertex in sd(L); and one
can easily prove (see [36, Lemma 1]) that such a complex is a deformation retract of
|K|−|L|.

Corollary 2.20. Let S be a PL d-sphere with a (d−2)-dimensional subcomplex L.
If the fundamental group of |S|−|L| has no presentation with fd−2(L) generators, then
S is not LC.
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Proof. Set t=d−2 in Theorem 2.19, and apply Theorem 2.10.

Corollary 2.21. Fix an integer d>3. Let S be a 3-sphere with an m-gonal knot
in its 1-skeleton, so that the knot is at least (m2d−3)-complicated. Then the (d−3)-rd
suspension of S is a PL d-sphere which is not LC.

Proof. Let S′ be the (d−3)-rd suspension of S, and let L′ be the subcomplex of
S′ obtained taking the (d−3)-rd suspension of the m-gonal knot L. Since |S|−|L| is a
deformation retract of |S′|−|L′|, they have the same homotopy groups. In particular,
the fundamental group of |S′|−|L′| has no presentation with m2d−3 generators. Now L′

is (d−2)-dimensional, and

fd−2(L′) = 2d−3f1(L) =m2d−3,

whence we conclude via Corollary 2.20, since all 3-spheres are PL (and the PL property
is maintained by suspensions).

Corollary 2.22. For every d>3, not all PL d-spheres are LC.

Theorem 2.19 can be used in connection with the existence of 2-knots, that is, 2-
spheres embedded in a 4-sphere in a knotted way (see Kawauchi [32, p. 190]), to see that
there are many non-LC 4-spheres beyond those that arise by suspension of 3-spheres.
Thus, being “non-LC” is not simply induced by classical knots.

2.2. Many spheres are LC

Next we show that all constructible manifolds are LC.

Lemma 2.23. Let C be a d-pseudomanifold. If C can be split in the form C=
C1∪C2, where C1 and C2 are LC d-pseudomanifolds and C1∩C2 is a strongly connected
(d−1)-pseudomanifold, then C is LC.

Proof. Notice first that C1∩C2=∂C1∩∂C2. In fact, every ridge of C belongs to at
most two facets of C, and hence every (d−1)-face σ of C1∩C2 is contained in exactly
one d-face of C1 and in exactly one d-face of C2.

Each Ci is LC; let us fix a local construction for each of them, and call Ti the tree
along which Ci is locally constructed. Choose some (d−1)-face σ in C1∩C2, which thus
specifies a (d−1)-face in the boundary of C1 and of C2. Let C ′ be the pseudomanifold
obtained attaching C1 to C2 along the two copies of σ. C ′ can be locally constructed
along the tree obtained by joining T1 and T2 by an edge across σ: Just redo the same
moves of the local constructions of the Ci’s. So C ′ is LC.
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Figure 4. Gluing the simplicial 3-balls along the shaded 2-dimensional subcomplex gives an
LC, non-constructible 3-pseudomanifold.

If C1∩C2 consists of one simplex only, then C ′≡C and we are already done. Oth-
erwise, by the strongly connectedness assumption, the facets of C1∩C2 can be labeled
0, ...,m, so that

(i) the facet labeled by 0 is σ;
(ii) each facet labeled by k>1 is adjacent to some facet labeled j with j<k.

Now, for each i>1, glue together the two copies of the facet i inside C ′. All these gluings
are local because of the labeling chosen, and we eventually obtain C. Thus, C is LC.

Since all constructible simplicial complexes are pure and strongly connected [10], we
obtain for simplicial d-pseudomanifolds that

{constructible}⊆{LC}.

The previous containment is strict: Let C1 and C2 be two LC simplicial 3-balls on 7
vertices consisting of 7 tetrahedra, as indicated in Figure 4. (The 3-balls are cones over
the subdivided triangles on their fronts.)

Glue them together in the shaded strongly connected subcomplex in their boundary
(which uses 5 vertices and 4 triangles). The resulting simplicial complex C, on 9 vertices
and 14 tetrahedra, is LC by Lemma 2.23, but the link of the top vertex is an annulus,
and hence not LC. In fact, the complex C is not constructible, since the link of the
top vertex is not constructible. Also, C is not 2-connected, it retracts to a 2-sphere.
So, LC d-pseudomanifolds are not necessarily (d−1)-connected. Since all constructible
d-complexes are (d−1)-connected, and every constructible d-pseudomanifold is either a
d-sphere or a d-ball [25, Proposition 1.4, p. 374], the previous argument produces many
examples of d-pseudomanifolds with boundary which are LC but not constructible.

None of these examples, however, will be a sphere (or a ball). We will prove in
Theorem 3.16 that there are LC 3-balls which are not constructible; we show now that
for d-spheres, for every d>3, the containment {constructible}⊆{LC} is strict.

Lemma 2.24. Suppose that a 3-sphere 	S is LC but not constructible. Then for all
d>3, the (d−3)-rd suspension of 	S is a d-sphere which is also LC but not constructible.
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Proof. Whenever S is an LC sphere, v∗S is an LC (d+1)-ball. (The proof is straight-
forward from the definition of “local construction”.) Thus the suspension (v∗S)∪(w∗S)
is also LC by Lemma 2.23. On the other hand, the suspension of a non-constructible
sphere is a non-constructible sphere [26, Corollary 2].

Of course, we should show that the 3-sphere 	S in the assumption of Lemma 2.24
really exists. This will be established in Example 2.26, using Corollary 2.11 as follows.

Lemma 2.25. Let B be a 3-ball, v be an external point and B∪v∗∂B be the 3-sphere
obtained by adding to B a cone over its boundary. If B is collapsible, then B∪v∗∂B

is LC.

Proof. By Corollary 2.11, and since B is collapsible, all we need to prove is that
(B∪v∗∂B)−(v∗σ) collapses onto B, for some triangle σ in the boundary of B.

As all 2-balls are collapsible, and ∂B−σ is a 2-ball, there is some vertex P in ∂B

such that ∂B−σ&P . This naturally induces a collapse of v∗∂B−v∗σ onto ∂B∪v∗P ,
according to the correspondence

σ is a free face of Σ ⇐⇒ v∗σ is a free face of v∗Σ.

Collapsing the edge v∗P down to P , we get that v∗∂B−v∗σ&∂B.
In the collapse given here, the pairs of faces removed are all of the form (v∗σ, v∗Σ);

thus, the (d−1)-faces in ∂B are removed together with subfaces (and not with superfaces)
in the collapse. This means that the freeness of the faces in ∂B is not needed; so when we
glue back B the collapse v∗∂B−v∗σ&∂B can be read off as B∪v∗∂B−v∗σ&B.

Example 2.26. In [37], Lickorish and Martin described a collapsible 3-ball B with
a knotted spanning edge. This was also obtained independently by Hamstrom and Jer-
rard [27]. The knot is an arbitrary 2-bridge index knot (for example, the trefoil knot).
Merging B with the cone over its boundary, we obtain a knotted 3-sphere 	S which is LC
(by Lemma 2.25; see also [36]) but not constructible (because it is knotted; see [22, p. 54]
or [26]).

Remark 2.27. In his 1991 paper [36, p. 530], Lickorish announced (for a proof see [7,
pp. 100–103]) that “with a little ingenuity” one can get a sphere S with a 2-complicated
triangular knot (the double trefoil), such that S−∆ is collapsible. Such a sphere is LC
by Corollary 2.11. See Remark 2.32.

Example 2.28. The triangulated knotted 3-sphere S3
13,56 realized by Lutz [38] has

13 vertices and 56 facets. Since it contains a 3-edge trefoil knot in its 1-skeleton, S3
13,56

cannot be constructible, according to Hachimori and Ziegler [26].
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Let B13,55 be the 3-ball obtained removing the facet ∆={1, 2, 6, 9} from S3
13,56. Let σ

be the triangle {2, 6, 9}. Then B3
13,55 collapses to the 2-disk ∂∆−σ (F. H. Lutz, personal

communication; see [7, pp. 106–107]). All 2-disks are collapsible. In particular, B3
13,55 is

collapsible, so S3
13,56 is LC.

Corollary 2.29. For each d>3, not all LC d-spheres are constructible. In par-
ticular, a knotted 3-sphere can be LC (but is not constructible) if the knot is just 1-
complicated or 2-complicated.

The knot in the 1-skeleton of the ball B in Example 2.26 consists of a path on the
boundary of B together with a “spanning edge”, that is, an edge in the interior of B with
both extremes on ∂B. This edge determines the knot, in the sense that any other path
on ∂B between the two extremes of this edge closes it up into an equivalent knot. For
these reasons such an edge is called a knotted spanning edge. More generally, a knotted
spanning arc is a path of edges in the interior of a 3-ball, such that both extremes of the
path lie on the boundary of the ball, and any boundary path between these extremes
closes it into a knot. (According to this definition, the relative interior of a knotted
spanning arc is allowed to intersect the boundary of the 3-ball; this is the approach of
Hachimori and Ehrenborg in [15].)

The Example 2.26 can then be generalized by adopting the idea that Hamstrom and
Jerrard used to prove their “Theorem B” [27, p. 331], as follows.

Theorem 2.30. Let K be any 2-bridge knot (e.g. the trefoil knot). For any positive
integer m, there exists a collapsible 3-ball Bm with a knotted spanning arc of m edges,
such that the knot is the connected union of m copies of K.

Proof. By the work of Lickorish–Martin [37] (see also [27] and Example 2.26), there
exists a collapsible 3-ball B with a knotted spanning edge [x, y], the knot being K. So if
m=1 we are already done.

Otherwise, take m copies B(1), ..., B(m) of the ball B and glue them all together
by identifying the vertex y(i) of B(i) with the vertex x(i+1) of B(i+1), for each i in
{1, ...,m−1}. The result is a cactus of 3-balls Cm. By induction on m, it is easy to
see that a cactus of m collapsible 3-balls is collapsible. To obtain a 3-ball from Cm,
we thicken the junctions between the 3-balls by attaching m−1 square pyramids with
apex y(i)≡x(i+1). Each pyramid can be triangulated into two tetrahedra to make the
final complex simplicial. Let Bm be the resulting 3-ball. All the spanning edges of the
B(i)’s are concatenated in Bm to yield a knotted spanning arc of m edges, the knot being
equivalent to the connected union of m copies of K. Moreover, the “extra pyramids”
introduced can be collapsed away. This yields a collapse of the ball Bm onto the complex
Cm, which is collapsible.
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Corollary 2.31. A 3-sphere with an m-complicated (m+2)-gonal knot can be LC.

Proof. Let Sm=Bm∪(v∗∂Bm), where Bm is the 3-ball constructed in the previous
theorem. By Lemma 2.25, Sm is LC. The spanning arc of m edges is closed up in v to
form an (m+2)-gon.

Remark 2.32. The bound given by Corollary 2.31 can be improved: In fact, for each
positive integer m there exists an LC 3-sphere with an (m+1)-complicated (m+2)-gonal
knot. The proof is rather long, so we preferred to omit it, referring the reader to [7,
pp. 100–103].

The spheres mentioned in Corollary 2.31 and Remark 2.32 are not vertex decom-
posable, not shellable and not constructible, because of the following result about the
bridge index.

Theorem 2.33. (Ehrenborg, Hachimori, Shimokawa, [15], [25]) Suppose that a 3-
sphere (or a 3-ball) S contains a knot of m edges.

– If the bridge index of the knot exceeds 1
3m, then S is not vertex decomposable;

– If the bridge index of the knot exceeds 1
2m, then S is not constructible.

The bridge index of a t-complicated knot is at least t+1. So, if a knot is at
least

⌊
1
3m

⌋
-complicated, its bridge index automatically exceeds 1

3m. Thus, Ehrenborg–
Hachimori–Shimokawa’s theorem, the results of Hachimori and Ziegler in [26], the previ-
ous examples, and our present results blend into the following new hierarchy.

Theorem 2.34. A 3-sphere with a non-trivial knot consisting of

3 edges, 1-complicated is not constructible, but can be LC;
3 edges, 2-complicated is not constructible, but can be LC;

3 edges, 3-complicated or more is not LC;
4 edges, 1-complicated is not vertex dec., but can be shellable;

4 edges, 2- or 3-complicated is not constructible, but can be LC;
4 edges, 4-complicated or more is not LC;

5 edges, 1-complicated is not vertex dec., but can be shellable;
5 edges, 2-, 3- or 4-complicated is not constructible, but can be LC;
5 edges, 5-complicated or more is not LC;

6 edges, 1-complicated can be vertex decomposable;
6 edges, 2-complicated is not vertex dec., but can be LC;

6 edges, 3-, 4 or 5-complicated is not constructible, but can be LC;
6 edges, 6-complicated or more is not LC;

... ...
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m edges, k-complicated, k>
⌊

1
3m

⌋
is not vertex decomposable;

m edges, k-complicated, k>
⌊

1
2m

⌋
is not constructible;

m edges, k-complicated, k6m−1 can be LC;
m edges, k-complicated, k>m is not LC.

The same conclusions are valid for 3-balls which contain a knot, up to replacing
the word “LC”, wherever it occurs, with the word “collapsible”. (See Lemma 2.25,
Corollary 3.12 and [26].)

One may also derive from Zeeman’s theorem (“any PL simplicial ball admits a col-
lapsible subdivision” [48, Chapter III, Theorem 4]) that any 3-sphere will become LC
after a suitable subdivision. On the other hand, there is no fixed number r of barycen-
tric subdivisions that is sufficient to make all 3-spheres LC. (For this use sufficiently
complicated knots, together with Theorem 2.13.)

3. On LC balls

The combinatorial topology of d-balls and that of d-spheres are intimately related: Re-
moving any facet ∆ from a d-sphere S we obtain a d-ball S−∆, and adding a cone
over the boundary of a d-ball B we obtain a d-sphere SB . We do have a combinatorial
characterization of LC d-balls, which we will reach in Theorem 3.10; it is a bit more
complicated, but otherwise analogous to the characterization of LC d-spheres as given
in Main theorem 1.

Theorem 3.1. For simplicial d-balls, we have the following hierarchy :{
vertex

decomp.

}
 {shellable} {construct.} {LC} 

{
collapsible onto a
(d−2)-complex

}
 {all d-balls}.

Proof. The first two inclusions are known. We have already seen that all con-
structible complexes are LC (Lemma 2.23). Every LC d-ball is collapsible onto a (d−2)-
complex by Corollary 3.11.

Let us see next that all inclusions are strict for d=3: For the first inclusion this
follows from Lockeberg’s example of a 4-polytope whose boundary is not vertex decom-
posable. For the second inclusion, take Ziegler’s non-shellable ball from [50], which is
constructible by construction. A non-constructible 3-ball which is LC will be provided
by Theorem 3.16. A collapsible 3-ball which is not LC will be given in Theorem 3.23.
Finally, Bing and Goodrick showed that not every 3-ball is collapsible [9], [18].

To show that the inclusions are strict for all d>3, we argue as follows. For the first
four inclusions we get this from the case d=3, since

– cones are always collapsible,
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– the cone v∗B is vertex decomposable (resp. shellable, constructible) if and only if
B is,

– and in Proposition 3.25 we will show that v∗B is LC if and only if B is.
For the last inclusion and d>3, we look at the d-balls obtained by removing a facet

from a non-LC d-sphere. These exist by Corollary 2.21; they do not collapse onto a
(d−2)-complex by Theorem 2.10.

3.1. Local constructions for d-balls

We begin with a relative version of the notions of “facet-killing sequence” and “facet
massacre”, which we introduced in §2.1.

Definition 3.2. Let P be a pure d-complex. Let Q be a proper subcomplex of P ,
either pure d-dimensional or empty. A facet-killing sequence of (P,Q) is a sequence
P0, ..., Pt of simplicial complexes such that t=fd(P )−fd(Q), P0=P and Pi+1 is obtained
from Pi removing a pair (σ,Σ) such that σ is a free (d−1)-face of Σ which does not lie
in Q (which also implies that Σ /∈Q).

It is easy to see that Pt has the same d-faces as Q. The version of facet killing
sequences given in Definition 2.3 is a special case of this one, namely the case when Q is
empty.

Definition 3.3. Let P be a pure d-dimensional simplicial complex. Let Q be either
the empty complex, or a pure d-dimensional proper subcomplex of P . A pure facet-
massacre of (P,Q) is a sequence P0, ..., Pt of (pure) complexes such that t=fd(P )−fd(Q),
P0=P , and Pi+1 is obtained from Pi removing

(a) a pair (σ,Σ) such that σ is a free (d−1)-face of Σ which does not lie in Q, and
(b) all inclusion-maximal faces of dimension smaller than d which are left after the

removal of type (a) or, recursively, after removals of type (b).

Necessarily Pt=Q (and when Q=∅ we recover the notion of facet-massacre of P

introduced in Definition 2.5). It is easy to see that a step Pi 7!Pi+1 can be factorized (not
in a unique way) into an elementary collapse followed by a removal of faces of dimensions
smaller than d which makes Pi+1 a pure complex. Thus, a single pure facet-massacre of
(P,Q) corresponds to many facet-killing sequences of (P,Q).

We will apply both definitions to the pair (P,Q)=(KT , ∂B), where KT is defined
for balls as follows.

Definition 3.4. If B is a d-ball with N facets, and T is a spanning tree of the dual
graph of B, define KT as the subcomplex of B formed by all (d−1)-faces of B which are
not hit by T .
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Lemma 3.5. Under the previous notation,
(i) KT is a pure (d−1)-dimensional simplicial complex, containing ∂B as a sub-

complex ;
(ii) KT has D+ 1

2b facets, where D:= 1
2 (dN−N+2) and b is the number of facets

in ∂B;
(iii) B−∆&KT for any d-simplex ∆ of B;
(iv) KT is homotopy equivalent to a (d−1)-dimensional sphere.

We introduce another convenient piece of terminology.

Definition 3.6. Let B be a simplicial d-ball. A seepage is a (d−1)-dimensional
subcomplex C of B whose (d−1)-faces are exactly given by the boundary of B.

A seepage is not necessarily pure; actually there is only one pure seepage, namely
∂B itself. Since KT contains ∂B, a collapse of KT onto a seepage must remove all the
(d−1)-faces of KT which are not in ∂B: this is what we called a facet-killing sequence
of (KT , ∂B).

Proposition 3.7. Let B be a d-ball, and ∆ be a d-simplex of B. Let C be a
seepage of ∂B. Then,

B−∆&C ⇐⇒ there exists T such that KT &C.

Proof. The proof is analogous to that of Proposition 2.4. The crucial assumption is
that no face of ∂B is removed in the collapse (since all boundary faces are still present
in the final complex C).

If we fix a spanning tree T of the dual graph of B, we then have a one-to-one
correspondence between the following sets:

(i) the set of collapses B−∆&KT ;
(ii) the set of “natural labelings” of T , where ∆ is labeled by 1;
(iii) the set of the first parts (T1, ..., TN ) of local constructions for B, with T1=∆.

Theorem 3.8. Let B be a d-ball. Fix a facet ∆ and a spanning tree T of the
dual graph of B, rooted at ∆. The second part of a local construction for B along T

corresponds bijectively to a facet-massacre of (KT , ∂B).

Proof. Let us start with a local construction (T1, ..., TN−1, )TN , ..., Tk for B along T .
Topologically, B=TN/∼, where ∼ is the equivalence relation determined by the gluing,
and KT =∂TN/∼.

KT has D+ 1
2b facets (see Lemma 3.5), and all of them, except the b facets in

the boundary, represent gluings. Thus we have to describe a sequence P0, ..., Pt with
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t=D− 1
2b. But the local construction (T1, ..., TN−1, )TN , ..., Tk produces B (which has b

facets in the boundary) from TN (which has 2D facets in the boundary, cf. Lemma 4.1)
in k−N steps, each removing a pair of facets from the boundary. So, 2D−2(k−N)=b,
which implies that k−N=t.

Define P0 :=KT =∂TN/∼ and Pj :=∂TN+j/∼. In the first LC step, TN 7!TN+1, we
remove a free ridge r from the boundary, together with the unique pair σ′, σ′′ of facets
of ∂TN sharing r. At the same time, r and the newly formed face σ are sunk into the
interior; so obviously neither σ nor r will appear in ∂B. This step ∂TN 7!∂TN+1 naturally
induces an analogous step ∂TN+j/∼7!∂TN+j+1/∼, namely, the removal of r and of the
unique (d−1)-face σ containing it, with r not in ∂B.

The rest is analogous to the proof of Theorem 2.8.

Thus, B can be locally constructed along a tree T if and only if KT collapses onto
some seepage. What if we do not fix the tree T or the facet ∆?

Lemma 3.9. Let B be a d-ball, let σ be a (d−1)-face in the boundary ∂B, and let
Σ be the unique facet of B containing σ. Let C be a subcomplex of B. If C contains
∂B, the following are equivalent :

(1) B−Σ&C;
(2) (B−Σ)−σ&C−σ;
(3) B&C−σ.

Theorem 3.10. Let B be a d-ball. Then the following are equivalent :
(1) B is LC;
(2) KT collapses onto some seepage C for some spanning tree T of the dual graph

of B;
(3) there exists a seepage C such that B−∆&C for every facet ∆ of B;
(4) B−∆&C for some facet ∆ of B and for some seepage C;
(5) there exists a seepage C such that B&C−σ for every facet σ of ∂B;
(6) B&C−σ for some facet σ of ∂B and for some seepage C.

Proof. The equivalences (1)⇔ (2)⇔ (3)⇔ (4) are established analogously to the
proof of Theorem 2.10. Finally, Lemma 3.9 implies that (3)⇒ (5)⇒ (6)⇒ (4).

Corollary 3.11. Every LC d-ball collapses onto a (d−2)-complex.

Proof. By Theorem 3.10, the ball B collapses onto the union of the boundary of B

minus a facet with some (d−2)-complex. The boundary of B minus a facet is a (d−1)-
ball; thus it can be collapsed down to dimension d−2, and the additional (d−2)-complex
will not interfere.
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Figure 5. A seepage of a 3-ball.

Corollary 3.12. Let B be a 3-ball. Then the following are equivalent :
(1) B is LC;
(2) KT&∂B for some spanning tree T of the dual graph of B;
(3) B−∆&∂B for every facet ∆ of B;
(4) B−∆&∂B for some facet ∆ of B;
(5) B&∂B−σ for every facet σ of ∂B;
(6) B&∂B−σ for some facet σ of ∂B.

Proof. When B has dimension 3, any seepage C of ∂B is a 2-complex containing
∂B, plus some edges and vertices. If a complex homotopy equivalent to S2 collapses onto
C, then C is also homotopy equivalent to S2; thus C can only be ∂B with some trees
attached (see Figure 5), which implies that C&∂B.

Corollary 3.13. All LC 3-balls are collapsible.

Proof. If B is LC, it collapses to some 2-ball ∂B−σ, but all 2-balls are collapsible.

Corollary 3.14. All constructible 3-balls are collapsible.

For example, Ziegler’s ball, Grünbaum’s ball and Rudin’s ball are collapsible (see
[50]).

Remark 3.15. The locally constructible 3-balls with N facets are precisely the 3-balls
which admit a “special collapse”, namely such that after the first elementary collapse, in
the next N−1 collapses, no triangle of ∂B is collapsed away. Such a collapse acts along
a dual (directed) tree of the ball, whereas a generic collapse acts along an acyclic graph
that might be disconnected.

One could argue that maybe “special collapses” are not that special: Perhaps every
collapsible 3-ball has a collapse that removes only one boundary triangle in its top-
dimensional phase? This is not so: We will produce a counterexample in the next
subsection (Theorem 3.23).
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Theorem 3.16. For every d>3, not all LC d-balls are constructible.

Proof. If B is a non-constructible d-ball and v is a new vertex, then v∗B is a non-
constructible (d+1)-ball. Also, it is easy to see that if B is LC then v∗B is also LC
(cf. Proposition 3.25). Therefore, it suffices to prove the claim for d=3.

In Example 2.28 we described the 3-ball B13,55 which collapses onto its boundary
minus a facet. By Corollary 3.12, B13,55 is LC. At the same time, B13,55 contains a
3-edge trefoil knot, which prevents B13,55 from being constructible [26, Theorem 1].

3.2. 3-balls without interior vertices.

Here we show that a simplicial 3-ball with all vertices on the boundary cannot contain
any knotted spanning edge if it is LC, but might contain some if it is collapsible. We use
this fact to establish our hierarchy for d-balls (Theorem 3.1).

Let us fix some notation first. Recall that by Theorem 1.2, each connected compo-
nent of the boundary of a simplicial LC 3-pseudomanifold is homeomorphic to a simply-
connected union of 2-spheres, any two of which share at most one point. Let us call the
points shared by two or more spheres in the boundary of an LC 3-pseudomanifold pinch
points.

Definition 3.17. (Steps of types (i)–(ix) in LC constructions) Any admissible step
in a local construction of a 3-pseudomanifold falls into one of the following nine types:

(i) attaching a tetrahedron along a triangle;
(ii) identifying two boundary triangles which share exactly 1 edge;
(iii) identifying two boundary triangles which share 1 edge and the opposite vertex;
(iv) identifying two b. t. which share 2 edges that meet in a pinch point;
(v) identifying two b. t. which share 2 edges that do not meet in a pinch point;
(vi) identifying two b. t. which share 3 edges, all of whose vertices are pinch points;
(vii) identifying two b. t. which share 3 edges, two of whose vertices are pinch points;
(viii) identifying two b. t. which share 3 edges, one of whose vertices is a pinch point;
(ix) identifying two b. t. which share 3 edges, none of whose vertices is a pinch point.

For example, the first N−1 steps of any local construction of a 3-pseudomanifold
with N tetrahedra are all of type (i); the last step in the local construction of a 3-sphere
is necessarily of type (ix).

Table 1 summarizes the distinguished effects of the steps. The asterisk recalls that
a type (iii) step almost disconnects the boundary, by pinching it in a point.

Now, let B be an LC 3-ball without interior vertices. Steps of type (v), (vii), (viii)
and (ix) sink one, one, two and three vertices into the interior, respectively, so they
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step

type

number of

interior vertices

number of connected

components of the boundary

(i) +0 +0

(ii) +0 +0

(iii) +0 +0 (∗)
(iv) +0 +1

(v) +1 +0

(vi) +0 +3

(vii) +1 +2

(viii) +2 +0

(ix) +3 −1

Table 1.

cannot occur in the local construction of B. Furthermore, any identification of type (iv)
or (vi) increases the number of connected components in the boundary; hence it must
be followed by at least one step of type (ix), which destroys a connected component of
the boundary. Yet (ix) is forbidden, so no identification of type (iv) or (vi) can occur.
Finally, the “pinching step” (iii) needs to be followed by one of the steps (vi), (vii), (viii)
and (ix) in order to restore the ball topology—but such steps are forbidden. This leads
us to the following lemma.

Lemma 3.18. Let B be an LC 3-pseudomanifold. The following are equivalent :
(1) in some local construction for B all steps are of type (i) or (ii);
(2) in every local construction for B all steps are of type (i) or (ii);
(3) B is a 3-ball without interior vertices.

We will use Lemma 3.18 to obtain examples of non-LC 3-balls. We already know
that non-collapsible balls are not LC, by Corollary 3.13: so a 3-ball with a knotted
spanning edge cannot be LC if the knot is the sum of two or more trefoil knots. (See also
Bing [9] and Goodrick [18].) What about balls with a spanning edge realizing a single
trefoil knot?

Proposition 3.19. An LC 3-ball without interior vertices does not contain any
knotted spanning edge.

Proof. An LC 3-ball B without interior vertices is obtained from a tree of tetrahedra
via local gluings of type (ii), by Lemma 3.18. A tree of tetrahedra has no interior edge.
Each type-(ii) step preserves the existing spanning edges (because it does not sink vertices
into the interior), and creates one more spanning edge e, clearly unknotted (because the
other two edges of the sunk triangle form a boundary path which “closes up” the edge e

onto an S1 bounding a disk inside B). It is easy to verify that the subsequent type-(ii)
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steps leave such an edge e spanning and unknotted.

Remark 3.20. The presence of knots/knotted spanning edges is not the only ob-
struction to local constructibility. Bing’s thickened house with two rooms [9], [24] is a
3-ball B with all vertices on the boundary, so that every interior triangle of B has at
most one edge on the boundary ∂B. Were B LC, every step in its local construction
would be of type (ii) (by Lemma 3.18); in particular, the last triangle to be sunk into the
interior of B would have exactly two edges on the boundary of B. Thus Bing’s thickened
house with two rooms cannot be LC, even if it does not contain a knotted spanning edge.

Example 3.21. Furch’s 3-ball [16, p. 73], [9, p. 110] can be triangulated without inte-
rior vertices (see e.g. [24]). Since it contains a knotted spanning edge, by Proposition 3.19
Furch’s ball is not LC.

Remark 3.22. In [21, Lemma 2], Hachimori claimed that any 3-ball C obtained
from a constructible 3-ball C ′ via a type-(ii) step is constructible. This would imply
by Lemma 3.18 that all LC 3-balls without interior vertices are constructible, which
is stronger than Proposition 3.19, since constructible 3-balls do not contain knotted
spanning edges [26, Lemma 1]. Unfortunately, Hachimori’s proof [21, p. 227] is not satis-
factory: If C ′=C ′

1∪C ′
2 is a constructible decomposition of C ′, and Ci is the subcomplex

of C with the same facets as C ′
i, C=C1∪C2 need not be a constructible decomposition

for C. (For example, if the two glued triangles both lie on ∂C ′
1, and if the two vertices

which the triangles do not have in common lie in C ′
1∩C ′

2, then C1∩C2 is not a 2-ball,
and one of C1 and C2 is not a 3-ball.)

At present we do not know whether Hachimori’s claim is true: Does C ′ admit a
different constructible decomposition which survives the type-(ii) step? On this depends
the correctness of the algorithm [21, p. 227], [22, p. 101] to test constructibility of 3-balls
without interior vertices by cutting them open along triangles with exactly two boundary
edges. However, we point out that Hachimori’s algorithm can be validly used to decide
the local constructibility of 3-balls without interior vertices: In fact, by Lemma 3.18, the
algorithm proceeds by reversing the LC-construction of the ball.

We can now move on to complete the proof of our Theorem 3.1. Inspired by Propo-
sition 3.19, we show that a collapsible 3-ball without interior vertices may contain a
knotted spanning edge. Our construction is a tricky version of Lickorish–Martin’s (see
Example 2.26).

Theorem 3.23. Not all collapsible 3-balls are LC.

Proof. Start with a large m×m×1 pile of cubes, triangulated in the standard way,
and take away two distant cubes, leaving only their bottom squares X and Y . The 3-
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Figure 6. C and C′ are obtained from a 3-ball drilling away two tubular holes, and then
“corking” the holes on the bottom with 2-dimensional membranes.

complex C obtained can be collapsed vertically onto its square basis; in particular, it is
collapsible, and has no interior vertices.

Let C ′ be a 3-ball with two tubular holes drilled away, but where (1) each hole has
been corked at a bottom with a 2-disk, and (2) the tubes are disjoint but intertwined, so
that a closed path that passes through both holes and between these traverses the top
(resp. bottom) face of C ′ yields a trefoil knot (see Figure 6).

C and C ′ are homeomorphic. Any homeomorphism induces a collapsible triangula-
tion on C ′ with no interior vertices. X and Y correspond via the homeomorphism to the
corking membranes of C ′, which we will call correspondingly X ′ and Y ′. To get from C ′

to a ball with a knotted spanning edge we will carry out two more steps:
(i) create a single edge [x′, y′] which goes from X ′ to Y ′;
(ii) thicken the “bottom” of C ′ a bit, so that C ′ becomes a 3-ball and [x′, y′] becomes

an interior edge (even if its extremes are still on the boundary).
We perform both steps by adding cones over 2-disks to the complex. Such steps pre-

serve collapsibility, but in general they produce interior vertices; thus we choose “specific”
disks with few interior vertices.

(i) Provided m is large enough, one finds a “nice” strip F1, ..., Fk of triangles on the
bottom of C ′, such that F1∪...∪Fk is a disk without interior vertices, F1 has a single
vertex x′ in the boundary of X ′, while Fk has a single vertex y′ in the boundary of Y ′,
and the whole strip intersects X ′∪Y ′ only in x′ and y′. Then we add a cone to C ′,
setting

C1 := C ′∪(y′∗(F1∪...∪Fk−1)) .

(An explicit construction of this type is carried out in [26, pp. 164-165].) Thus one obtains
a collapsible 3-complex C1 with no interior vertex, and with a direct edge from X ′ to Y ′.

(ii) Let R be a 2-ball inside the boundary of C1 which contains in its interior the
2-complex X ′∪Y ′∪[x′, y′], and such that every interior vertex of R lies either in X ′ or
in Y ′. Take a new point z′ and define C2 := C1∪(z′∗R).



236 b. benedetti and g. m. ziegler

As z′∗R collapses onto R, it is easy to verify that C2 is a collapsible 3-ball with a
knotted spanning edge [x′, y′]. By Proposition 3.19, C2 is not LC.

Corollary 3.24. There exists a collapsible 3-ball B such that for any boundary
facet σ, the ball B does not collapse onto ∂B−σ.

Theorem 3.23 can be extended to higher dimensions by taking cones. In fact, even
though the link of an LC complex need not be LC, the link of an LC closed star is indeed
LC.

Proposition 3.25. Let C be a d-pseudomanifold and v be a new point. Then C is
LC if and only if v∗C is LC.

Proof. The implication “if C is LC, then v∗C is LC” is straightforward. For the
converse, assume Ti and Ti+1 are intermediate steps in the local construction of v∗C, so
that passing from Ti to Ti+1 we glue together two adjacent d-faces σ′ and σ′′ of ∂Ti. Let
F be any (d−1)-face of Ti. If F does not contain v, then F is in the boundary of v∗C,
so F∈∂Ti+1. Therefore, F cannot belong to the intersection of σ′ and σ′′, which is sunk
into the interior of Ti+1.

So, every (d−1)-face in the intersection σ′∩σ′′ must contain the vertex v. This
implies that σ′=v∗S′ and σ′′=v∗S′′, with S′ and S′′ being distinct (d−1)-faces. S′ and
S′′ must share some (d−2)-face, otherwise σ′ and σ′′ would not be adjacent. So from a
local construction of v∗C we can read off a local construction of C.

Corollary 3.26. For every d>3, not all collapsible d-balls are LC.

Proof. All cones are collapsible. If B is a non-LC d-ball, then v∗B is a non-LC
(d+1)-ball by Proposition 3.25.

We conclude this chapter observing that Chillingworth’s theorem, “every geometric
triangulation of a convex 3-dimensional polytope is collapsible”, can be strengthened as
follows.

Theorem 3.27. (Chillingworth [13]) Every 3-ball embeddable as a convex subset of
the Euclidean 3-space R3 is LC.

Proof. The argument of Chillingworth for collapsibility runs showing that

B& ∂B−σ,

where σ is any triangle in the boundary of B. Now Theorem 3.12 ends the proof.

Thus any subdivided 3-simplex is LC. If Hachimori’s claim is true (see Remark 3.22),
then any subdivided 3-simplex with all vertices on the boundary is also constructible. (So



on locally constructible spheres and balls 237

far we can only exclude the presence of knotted spanning edges in it, see Lemma 3.18.)
However, a subdivided 3-simplex might be non-shellable even if it has all vertices on the
boundary (Rudin’s ball is an example).

4. Upper bounds on the number of LC d-spheres.

For fixed d>2 and a suitable constant C which depends on d, there are less than CN

combinatorial types of LC d-spheres with N facets. Our proof for this fact is a d-
dimensional version of the main theorem of Durhuus and Jonsson [14], and allows us to
determine an explicit constant C, for any d. It consists of two different phases:

(1) we observe that there are less trees of d-simplices than planted plane d-ary trees,
which are counted by order-d Fuss–Catalan numbers;

(2) we count the number of “LC matchings” according to ridges in the tree of
simplices.

4.1. Counting the trees of d-simplices.

We will here establish that there are less than

Cd(N) :=
1

(d−1)N+1

(
dN

N

)
trees of N d-simplices.

Lemma 4.1. Every tree of N d-simplices has (d−1)N+2 boundary facets of dimen-
sion d−1 and N−1 interior faces of dimension d−1.

It has 1
2d((d−1)N+2) faces of dimension d−2, all of which lie in the boundary.

By rooted tree of simplices we mean a tree of simplices B together with a dis-
tinguished facet δ of ∂B, whose vertices have been labeled 1, ..., d. Rooted trees of
d-simplices are in bijection with “planted plane d-ary trees”, that is, plane rooted trees
such that every non-leaf vertex has exactly d (left-to-right ordered) sons; cf. [39].

Proposition 4.2. There is a bijection between rooted trees of N d-simplices and
planted plane d-ary trees with N non-leaf vertices, which in turn are counted by the
Fuss–Catalan numbers Cd(N). Thus, the number of combinatorially-distinct trees of N

d-simplices satisfies

1
(d−1)N+2

1
d!

Cd(N) 6#{trees of N d-simplices}6Cd(N).
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Proof. Given a rooted tree of d-simplices with a distinguished facet δ in its boundary,
there is a unique extension of the labeling of the vertices of δ to a labeling of all the vertices
by labels 1, ..., d+1, such that no two adjacent vertices get the same label. Thus each
d-simplex receives all d+1 labels exactly once.

Now, label each (d−1)-face by the unique label that none of its vertices has. With
this we get an edge-labeled rooted d-ary tree whose non-leaf vertices correspond to the
N d-simplices; the root corresponds to the d-simplex which contains δ, and the labeled
edges correspond to all the (d−1)-faces other than δ. We get a plane tree by ordering the
down-edges at each non-leaf vertex left to right according to the label of the corresponding
(d−1)-face.

The whole process is easily reversed, so that we can get a rooted tree of d-simplices
from an arbitrary planted plane d-ary tree.

There are exactly Cd(N) planted plane d-ary trees with N interior vertices (see e.g.
Aval [5]; the integers C2(N) are the “Catalan numbers”, which appear in many combi-
natorial problems, see e.g. Stanley [44, Exercise 6.19]). Any tree of N d-simplices has
exactly (d−1)N+2 boundary facets, so it can be rooted in exactly ((d−1)N+2)d! ways,
which however need not be inequivalent. This explains the first inequality claimed in the
lemma. Finally, combinatorially-inequivalent trees of d-simplices also yield inequivalent
rooted trees, whence the second inequality follows.

Corollary 4.3. The number of trees of N d-simplices, for N large, is bounded by(
dN

N

)
∼

(
d

(
d

d−1

)d−1)N

< (de)N .

4.2. Counting the matchings in the boundary.

We know from the previous section that there are exponentially many trees of N d-
simplices. Our goal is to find an exponential upper bound for the LC spheres obtainable
by a matching of adjacent facets in the boundary of one fixed tree of simplices.

Theorem 4.4. Fix d>2. The number of combinatorially distinct LC d-spheres (or
LC d-balls) with N facets, for N large, is not larger than(

d

(
d

d−1

)d−1

2(2d2−d)/3

)N

.

Proof. Let us fix a tree of N d-simplices B. We adopt the word “couple” to denote
a pair of facets in the boundary of B which are glued to one another during the local
construction of S.
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Let us set D:= 1
2 (2+N(d−1)), which is an integer. By Lemma 4.1, the boundary

of the tree of N d-simplices contains 2D facets, so each perfect matching is just a set
of D pairwise disjoint couples. We are going to partition every perfect matching into
“rounds”. The first round will contain couples which are adjacent in the boundary of the
tree of simplices. Recursively, the (i+1)-th round will consist of all pairs of facets that
become adjacent only after a pair of facets are glued together in the ith round.

Selecting a pair of adjacent facets is the same as choosing the ridge between them;
and by Lemma 4.1, the boundary contains dD ridges. Thus the first round of identi-
fications consists in choosing n1 ridges out of dD, where n1 is some positive integer.
After each identification, at most d−1 new ridges are created; so, after this first round
of identifications, there are at most (d−1)n1 new pairs of adjacent facets.

In the second round, we identify 2n2 of these newly adjacent facets: as before, it is
a matter of choosing n2 ridges, out of the at most (d−1)n1 just created ones. Once this
is done, at most (d−1)n2 ridges are created. And so on.

We proceed this way until all the 2D facets in the boundary of B have been matched
(after f steps, say). Clearly n1+...+nf =D, and since the ni’s are positive integers, f6D

must hold. This means there are at most

D∑
f=1

∑
n1+...+nf =D

n1,...,nf >1

ni+16(d−1)ni

(
dD

n1

)(
(d−1)n1

n2

)(
(d−1)n2

n3

)
...

(
(d−1)nf−1

nf

)

possible perfect matchings of (d−1)-simplices in the boundary of a tree of N d-simplices.
We sharpen this bound by observing that not all ridges may be chosen in the first

round of identifications. For example, we should exclude those ridges which belong to
just two d-simplices of B. An easy double-counting argument reveals that in a tree of
d-simplices, the number of ridges belonging to at least three d-simplices is less than or
equal to 1

3N
(
d+1
2

)
. So in the upper bound above we may replace the first factor

(
dD
n1

)
with the smaller factor ( 1

3N
(
d+1
2

)
n1

)
.

To bound the sum from above, we use
(
n
k

)
62n and n1+...+nf−1<n1+...+nf =D,

while ignoring the conditions ni+16(d−1)ni. Thus we obtain the upper bound

2(N/3)(d+1
2 )+(N/2)(d−1)2+(d−1)

D∑
f=1

(
D−1
f−1

)
=2(N/3)(2d2−d)+(d−1).

The factor 2d−1 is asymptotically negligible. Thus the number of ways to fold a tree of
N d-simplices into a sphere via a local construction sequence is smaller than 2(2d2−d)N/3.
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Combining this with Proposition 4.2, we conclude the proof for the case of d-spheres.
We leave the adaptation of the proof for d-balls (or general LC d-pseudomanifolds) to
the reader.

The upper bound of Theorem 4.4 can be simplified in many ways. For example, for
d>16, it is smaller than 4d2N/3. From Theorem 4.4 we obtain explicit upper bounds:

(i) there are less than 216N LC 3-spheres with N facets;
(ii) there are less than 6117N LC 4-spheres with N facets;

and so on.
We point out that these upper bounds are not sharp, as we overcounted both on

the combinatorial side and on the algebraic side. When d=2, Tutte’s upper bound is
asymptotically 3.08N , whereas the one given by our formula is 16N . When d=3, however,
our constant is smaller than what follows from Durhuus–Jonsson’s original argument:

(i) we improved the matchings-bound from 384N to 32N ;
(ii) for the count of trees of tetrahedra we obtain an essentially sharp bound of

6.75N . (The value implicit in the Durhuus–Jonsson argument [14, p. 184] is larger, since
one has to take into account that different trees of tetrahedra can have the same unlabeled
dual graph.)

Corollary 4.5. For any fixed d>2, there are exponential lower and upper bounds
for the number of LC d-spheres on N facets.

Proof. We have just obtained an upper bound; we also get a lower bound from
Proposition 4.2 and Corollary 4.3, since the boundary of a tree of (d+1)-simplices is a
stacked d-sphere, and for d>2 the stacked d-sphere determines the tree of (d+1)-simplices
uniquely.

We know very little about the number of LC d-spheres with N facets when d is not
constant and N is relatively small (say, bounded by a polynomial) in terms of d, and
whether the LC condition is crucial for that. Compare Kalai [30].
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