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1. Introduction

In [1], Bennett, Carbery and Tao formulated a multilinear Kakeya conjecture, and they
proved the conjecture except for the endpoint case. In this paper, we slightly sharpen
their result by proving the endpoint case of the conjecture.

Our method of proof is very different from the proof of Bennett, Carbery and Tao.
The original proof was based on monotonicity estimates for heat flows. In 2007, Dvir [2]
made a breakthrough on the Kakeya problem, proving the Kakeya conjecture over finite
fields. His proof used polynomials in a crucial way. It was not clear whether Dvir’s
approach could be adapted to prove estimates in Euclidean space. Our proof of the
multilinear Kakeya conjecture is based on Dvir’s polynomial method. In my opinion, the
method of proof is as interesting as the result.

The multilinear Kakeya conjecture concerns the overlap properties of cylindrical
tubes in Rn. Roughly, the (multilinear) Kakeya conjecture says that cylinders pointing
in different directions cannot overlap too much.

Before coming to the Bennett–Carbery–Tao multilinear estimate, we want to state
a weaker result, because it is easier to understand and easier to prove. To be clear about
the notation, a cylinder of radius R around a line L⊂Rn is the set of all points x∈Rn

within a distance R of the line L. We call the line L the core of the cylinder.

Theorem 1.1. Suppose that we have a finite collection of cylinders Tj,a⊂Rn, where
16j6n, and 16a6A for some integer A. Each cylinder has radius 1. Moreover , each
cylinder Tj,a runs nearly parallel to the xj-axis. More precisely , we assume that the
angle between the core of Tj,a and the xj-axis is at most (100n)−1.
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Let I be the set of points that belong to at least one cylinder in each direction:

I :=
n⋂

j=1

( A⋃
a=1

Tj,a

)
.

Then Vol(I)6C(n)An/(n−1).

As Bennett, Carbery and Tao point out in [1], this estimate can be viewed as a
generalization of the Loomis–Whitney inequality.

Theorem 1.2. (Special case of Loomis and Whitney [11]) Let U be an open set
in Rn. Let πj denote the projection from Rn onto the hyperplane perpendicular to the
xj-axis. Suppose that for each j, πj(U) has (n−1)-dimensional volume at most B.

Then Vol(U)6Bn/(n−1).

Suppose that each tube Tj,a runs exactly parallel to the xj-axis. It follows that
πj(I) is contained in A unit balls and has volume at most ωn−1A. Applying the Loomis–
Whitney inequality, we see that the volume of I is bounded by .An/(n−1). Theorem 1.1
says that—up to a constant factor—this volume estimate continues to hold if we allow
the tubes to tilt slightly.

The Loomis–Whitney inequality is sharp whenever the open set U is a cube. Sim-
ilarly, Theorem 1.1 is essentially sharp whenever the tubes are arranged in a cubical
lattice.

The proof of Theorem 1.1 uses the polynomial method of Dvir. The main new idea
in the paper is a new approach for adapting Dvir’s method to Rn. The new approach
uses algebraic topology. In particular, we will use a polynomial generalization of the
ham-sandwich theorem, proven by Stone and Tukey [13] in the early 1940s.

Now we turn to the multilinear version of the Kakeya maximal conjecture, formulated
by Bennett, Carbery and Tao.

Theorem 1.3. (Multilinear Kakeya estimate) For each 16j6n, let Tj,a be a collec-
tion of unit cylinders, where a runs from 1 to A(j). We let vj,a be a unit vector parallel
to the core of Tj,a. We assume that the cylinders from different classes are quantitatively
transverse in the sense that any determinant of a matrix (v1,a1 , v2,a2 , ..., vn,an) has norm
at least θ>0.

Under these hypotheses, the following inequality holds:

∫ ( n∏
j=1

( A(j)∑
a=1

χTj,a

))1/(n−1)

dvol6C(n)θ−1/(n−1)
n∏

j=1

A(j)1/(n−1).
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Theorem 1.3 generalizes Theorem 1.1. If each vector vj,a lies within a small angle of
the xj-axis, then the determinant condition is easy to check, and so Theorem 1.3 applies.
Recall that I is the set of points lying in at least one cylinder with each value of j. At
every point x∈I, the integrand in Theorem 1.3 is at least 1. Hence Theorem 1.3 gives
an upper bound for the volume of I, recovering Theorem 1.1.

Theorem 1.3 improves on Theorem 1.1 in the following ways. First, we allow a more
general condition on the angles of the tubes. Second, we allow the different classes to
have different numbers of tubes: A(j) depends on j. Third, and most importantly, we
get an integral bound where the integrand is very large at points which lie in many tubes
from each direction.

The paper [1] has a very nice introductory discussion of the multilinear Kakeya
estimate. Some of the topics it describes are the original Kakeya conjecture, and linear
and multilinear restriction estimates. Using their multilinear Kakeya estimates, Bennett,
Carbery and Tao are able to prove nearly optimal multilinear restriction estimates. We
refer to that paper for more context.

The proof of Theorem 1.3 is harder than the proof of Theorem 1.1. It uses more
sophisticated tools from algebraic topology: cohomology classes, cup products, and the
Lyusternik–Shnirel’man vanishing theorem. Theorem 1.3 is more important than Theo-
rem 1.1 because Bennett, Carbery and Tao use Theorem 1.3 to prove Lp estimates for
multilinear restriction operators. On the other hand, Theorem 1.1 contains the main
ideas of this paper, and its proof is only three pages long.

This paper uses algebraic topology. We want it to be understandable to mathemati-
cians who work in analysis and combinatorics, so we will try to introduce the algebraic
topology in a friendly way. In particular, there is a short section introducing Lyusternik–
Shnirel’man theory, and an appendix giving the proof of the Lyusternik–Shnirel’man
vanishing lemma.

As a corollary of our method, we give a “planiness” estimate for unions of tubes in
Rn. An estimate of this kind can also be proven using the methods of [1], but the one
below is slightly sharper. The phenomenon of “planiness” was discovered by Katz, Laba
and Tao in [10], and the estimate below is similar to some estimates from that paper.

Corollary 1.4. (Box estimate) There is a constant C(n)>0 such that the following
holds. Suppose that X⊂Rn is a union of cylinders with radius 1 and length L�1. For
each x∈X we can choose a rectangular box B(x) with the following properties:

(1) The box B(x) is centered at x. It may be oriented in any direction. It has
volume at most C(n) Vol(X);

(2) For every cylinder T⊂X of radius 1 and length L, if we pick a random point
x∈T , then with probability at least 9

10 , the tube T lies in the box B(x).
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2. The polynomial ham-sandwich theorem

The main tool in our proof is a generalization of the ham-sandwich theorem to algebraic
hypersurfaces. I learned about this result from Gromov’s paper [3]. However, I recently
learned that it was proven by Stone and Tukey [13] in 1941. In this section, we explain
and prove this generalization of the ham-sandwich theorem, following Stone and Tukey.

First we recall the original ham-sandwich theorem.

Theorem 2.1. (Ham-sandwich theorem) Let U1, ..., Un be finite-volume open sets
in Rn. Then there is a hyperplane H that bisects each set Ui.

The 3-dimensional case of the ham-sandwich theorem was first proven in the 1930s
by Stefan Banach, using the Borsuk–Ulam theorem. Stone and Tukey extended the
method to the n-dimensional case. (There is a nice historical discussion on Wikipedia.)
Stone and Tukey noticed that the same method can be used to prove many other bisection
results. For example, they proved the following result.

Theorem 2.2. (Polynomial ham-sandwich theorem; Stone–Tukey [13]) Let N=(
n+d

d

)
−1 and let U1, ..., UN be finite-volume open sets in Rn. Then there is a degree-d

algebraic hypersurface Z which bisects each set Ui.

We will prove the polynomial ham-sandwich theorem using the Borsuk–Ulam theo-
rem, which we recall here.

Theorem 2.3. (Borsuk–Ulam) Let F be a continuous map from SN to RN obeying
the antipodal condition

F (−x) =−F (x) for every x∈SN .

Then the image of F contains 0.

For a proof of the Borsuk–Ulam theorem, the reader may look at Hatcher’s book on
algebraic topology [8, pp. 174–176]. Another reference is [12] by Matoušek. This book
gives a proof of the theorem, and it also discusses interesting applications of the Borsuk–
Ulam theorem, for example to Kneser’s conjecture in combinatorics. We now turn to the
proof of the polynomial ham-sandwich theorem.
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Proof of Theorem 2.2. Let V (d) denote the vector space of all real polynomials of
degree at most d in n variables. The dimension of V (d) is

(
n+d

d

)
. Let SN denote the unit

sphere in V (d), where N=
(
n+d

d

)
−1. For each set Ui, we define a function Fi from SN

to R, by setting

Fi(P ) =Vol({x∈Ui :P (x) > 0})−Vol({x∈Ui :P (x) < 0}).

If we replace P by −P , then the two volumes trade places, so Fi(−P )=−Fi(P ).
It is not hard to check that Fi is continuous (see below for the details). Combining
all Fi into a vector-valued function, we get a continuous map F :SN!RN obeying the
antipodal condition. By the Borsuk–Ulam theorem, F (P )=0 for some P∈SN⊂V (d).
By the definition of Fi, we see that for each i,

Vol({x∈Ui :P (x) > 0}) =Vol({x∈Ui :P (x) < 0}).

Hence the hypersurface defined by P (x)=0 bisects each set Ui.

For the sake of completeness, we include the proof that Fi is a continuous function.

Lemma 2.4. (Continuity lemma) If U is an open set of finite measure, then the
measure of the set {x∈U :P (x)>0} depends continuously on P∈V (d)\{0}.

Proof. Suppose that P is a non-zero polynomial in V (d) and Pn∈V (d) with Pn!P .
Pick any ε>0. We can find a subset E⊂U so that Pn!P uniformly pointwise on U \E,
and m(E)<ε.

The set {x∈U :P (x)=0} has measure zero. Therefore, we can choose δ so that the
set {x∈U :|P (x)|<δ} has measure less than ε.

Next we choose n large enough so that |Pn(x)−P (x)|<δ on U \E. Then the measures
of {x∈U :Pn(x)>0} and {x∈U :P (x)>0} differ by at most 2ε. But ε was arbitrary.

To make use of Theorem 2.2, we will use a standard volume estimate for hypersur-
faces that bisect simple sets.

Lemma 2.5. (Basic area estimate) If a hypersurface S bisects a unit ball or a unit
cube, then S has (n−1)-dimensional volume at least c(n).

3. Directed volume

The second tool in our paper is directed volume, which is a way of measuring the amount
of volume of a hypersurface facing in different directions.
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For a hypersurface S⊂Rn, we define a directed volume function VS by

VS(v) :=
∫

S

|v ·N | dvolS . (3.1)

In this formula, N denotes the normal vector to S, and v∈Rn is a fixed vector.
Hence the directed volume is a non-negative function of v∈Rn.

For a unit vector v, the directed volume VS(v) can be given a different, more geo-
metric interpretation. Let πv: Rn!v⊥ be the orthogonal projection onto v⊥. Then we
can also think of VS(v) as the volume of πv(S), counted with geometric multiplicity.
For each y∈v⊥, we consider the intersection S∩π−1

v (y). We let |S∩π−1
v (y)| denote the

number of points in S∩π−1
v (y). For a compact smooth hypersurface S (possibly with

boundary), this number of points is finite for almost every y. If v is a unit vector, then
VS(v) is given by

VS(v) =
∫

v⊥
|S∩π−1

v (y)| dy. (3.2)

Equations (3.1) and (3.2) will both be useful to us. Using equation (3.2), we can
prove a key estimate about the directed volumes of algebraic hypersurfaces in cylinders.

Lemma 3.1. (Cylinder estimate) If T is a cylinder of radius r, v is a unit vector
parallel to the core of T and Z is an algebraic hypersurface of degree d, then the directed
volume VZ∩T (v) is bounded as follows:

VZ∩T (v) 6ωn−1r
n−1d.

Proof. The projection πv(T ) is an (n−1)-dimensional disk of radius r. The function
y 7!|Z∩T∩π−1

v (y)| is supported in this disk. But since Z is a degree-d algebraic hyper-
surface, Z intersects a line in at most d points, unless Z contains the entire line. Hence
|Z∩π−1

v (y)|6d for almost every y.

Equation (3.1) is also useful. For example, it allows us to see that a surface of volume
1 must have a fairly large directed volume in some direction.

Lemma 3.2. Suppose that v1, ..., vn are unit vectors. Let ej denote the coordinate
unit vectors, and suppose that |ej−vj |<(100n)−1. Let S be any hypersurface in Rn.
Then

Vol(S) 6 2
n∑

j=1

VS(vj).

Proof. For each x in S, let N(x) denote the unit normal vector to S at x. Because
of the angle condition on vj , we know that |vj ·N(x)|>|ej ·N(x)|−(100n)−1. Hence

n∑
j=1

|vj ·N(x)|>
( n∑

j=1

|ej ·N(x)|
)
− 1

100
>

99
100

.
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Integrating this inequality over S, we see that

n∑
j=1

VS(vj) =
∫

S

n∑
j=1

|vj ·N(x)| dvolS(x) >
∫

S

99
100

dvolS(x) =
99
100

Vol(S).

Estimates for directional volumes appeared in [6] and [7], where quantitative es-
timates for certain homotopy invariants of a map are given, in terms of its Lipschitz
constant.

4. The proof of Theorem 1.1

Proof of Theorem 1.1. Look at the standard unit lattice in Rn. Let Q1, ..., QV be
the set of n-cubes in the lattice which intersect I. Here V is the number of cubes that
intersect I. It suffices to prove the estimate V .An/(n−1).

According to the polynomial ham-sandwich theorem, we may find a degree-d alge-
braic hypersurface Z which bisects Qk for every k, with degree d.V 1/n. Because of the
bisection property, the volume of Qk∩Z is &1 for each Qk.

For each Qk, we pick a tube in each direction that goes through Qk. So we have
labels a1(k), ..., an(k) such that Tj,aj(k) intersects Qk. By assumption, the unit vector
vj,aj(k) parallel to the core of Tj,aj(k) is within (100n)−1 of the coordinate vector ej .
Applying Lemma 3.2, we get the estimate

n∑
j=1

VZ∩Qk
(vj,aj(k)) &Vol(Z∩Qk) & 1.

So for each k, we can choose a tube Tj(k),a(k) which meets Qk and is such that

VZ∩Qk
(vj(k),a(k)) & 1.

We have just associated a tube with each cube. There are in total only nA tubes.
By the pigeonhole principle, there is a tube associated with &V/A different cubes. Let
Tj,a be such a tube. Then we have &V/A different cubes Qk which intersect Tj,a and
with VZ∩Qk

(vj,a)&1.
Let T̃j,a be the

√
n -neighborhood of Tj,a. The set T̃j,a is itself a cylinder of radius

1+
√

n, with core parallel to vj,a, and it contains all the cubes Qk which overlap Tj,a.
Therefore, the directed volume VZ∩T̃j,a

(vj,a)&V/A.
On the other hand, by Lemma 3.1, the same directed volume is .V 1/n.
Hence V/A.V 1/n. Rearranging, we get V .An/(n−1).



270 l. guth

5. The Lyusternik–Shnirel’man vanishing lemma

In order to prove Theorem 1.3, we use some more sophisticated algebraic topology: the
Lyusternik–Shnirel’man vanishing lemma. In this section, we will introduce it and try
to explain what it is good for. The basic message is that the vanishing lemma is similar
to the ham-sandwich theorem, but it is more flexible.

The vanishing lemma is about cup-products of cohomology classes.

Lemma 5.1. (Vanishing lemma) Let X be a CW complex (for example a manifold).
Let a1 and a2 be cohomology classes in H∗(X, R), where R may be any ring of coef-
ficients, such as R, Z or Z2. Suppose that a1 vanishes on some open set S1⊂X and
that a2 vanishes on some open set S2⊂X. Then the cup product a1∪a2 vanishes on the
union S1∪S2.

The vanishing lemma is one of the fundamental topological facts about cup products.
I believe that it was first proven by Lyusternik and Shnirel’man in the 1930s, as part of
their project for proving the existence of closed geodesics. The proofs I have seen in the
literature are a little more abstract than I would like, so I wrote an appendix giving the
proof.

Here is the basic intuition behind the vanishing lemma. Suppose that f1 and f2 are
functions on X. If f1 vanishes on S1 and f2 vanishes on S2, then clearly the product f1f2

vanishes on the union S1∪S2. The vanishing lemma holds because cohomology classes
are not so different from functions. A cohomology class can be represented by either a
differential form or a singular cocycle, and these objects have enough in common with
functions to make the vanishing lemma hold. For details, see the appendix.

To apply the vanishing lemma, we need to know something about the cup products
of cohomology classes. For this paper, the key example is the cohomology ring of real
projective space.

Theorem 5.2. (Cohomology ring of RPN ) The cohomology group Hi(RPN , Z2) is
isomorphic to Z2 for 06i6N , and is trivial otherwise. Let a denote the non-zero element
in H1(RPN , Z2). Then, for 16i6N , ai is the non-zero element of Hi(RPN , Z2).

This theorem may be found in Hatcher’s topology book [8, p. 212].
Using the vanishing lemma, we can give a different proof of the polynomial ham-

sandwich theorem.
As before, we let V (d) denote the vector space of all real polynomials of degree at

most d in n variables. The dimension of V (d) is
(
n+d

d

)
. For each non-zero polynomial P

in V (d), there is an associated variety, the zero-set of P . If we replace P by some multiple
λP , the zero-set remains unchanged, and so the real algebraic hypersurfaces of degree at
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most d are parametrized by the projectivization of V (d), which is a real projective space
RPN , where N=

(
n+d

d

)
−1.

We are interested in hypersurfaces that bisect open sets. Given a finite-volume open
set U⊂Rn, we let Bi(U)⊂RPN consist of the algebraic hypersurfaces that bisect the set
U . If Z is a real algebraic hypersurface given by the equation P =0, then we say that Z

bisects U if
Vol({x∈U :P (x) > 0}) =Vol({x∈U :P (x) < 0}).

By the continuity lemma (Lemma 2.4), these volumes change continuously with P ,
and so Bi(U) is a closed subset of RPN . The key topological result about Bi(U) is the
following lemma.

Lemma 5.3. (Bisection lemma) Let a denote the non-trivial cohomology class in
H1(RPN , Z2). Let U be a finite-volume subset of Rn. Then the cohomology class a

vanishes on the complement RPN \Bi(U).

Proof. Suppose that a does not vanish on RPN \Bi(U). Then the class a is detected
by a 1-cycle c in RPN \Bi(U). Without loss of generality, we may assume that c has
only one component, and so c is topologically a circle. Pick a point in c and look
at the corresponding hypersurface Z. We can assume that Z does not bisect U , so
the complement of Z has a big half and a little half. Now we pick a polynomial PZ

representing Z, and we choose it so that the big half is where the polynomial PZ is
positive. We can lift our 1-parameter family of hypersurfaces to a 1-parameter family of
polynomials that goes from PZ to −PZ . The part of U where PZ is positive has more
than half measure. The part of U where −PZ is positive has less than half measure.
According to Lemma 2.4, the measure changes continuously as the polynomial changes.
By continuity, there is a polynomial in the family that bisects U .

Combining the bisection lemma and the vanishing lemma, we can say something
about hypersurfaces that bisect multiple sets. Suppose that U1, ..., Ur⊂Rn are finite-
volume open sets, where r is any positive integer. Let Bi(U1, ..., Ur)⊂RPN denote the set
of algebraic hypersurfaces which bisect all the open sets U1, ..., Ur. The set Bi(U1, ..., Ur)
is just the intersection of Bi(Ui), 16i6r. In particular, Bi(U1, ..., Ur)⊂RPN is a closed
set.

Lemma 5.4. (Multiple bisection lemma) Let Bi(U1, ..., Ur) be as above. Then the
cohomology class ar vanishes on RPN \Bi(U1, ..., Ur).

Proof. By the bisection lemma, the cohomology class a vanishes on RPN \Bi(Ui) for
each i. Each of these sets is open. Therefore, the vanishing lemma tells us that ar vanishes
on their union. But the union

⋃r
i=1(RPN \Bi(Ui)) is exactly RPN \Bi(U1, ..., Ur).
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Combining the multiple bisection lemma and the cohomology ring of RPN , we can
reprove the polynomial ham-sandwich theorem. This proof was given by Gromov in [3].

Proof of Theorem 2.2. Recall that a is the non-zero element in H1(RPN , Z2). By the
multiple bisection lemma, aN vanishes on RPN \Bi(U1, ..., UN ). But in the cohomology
ring of RPN , aN does not vanish on RPN . Hence Bi(U1, ..., UN ) must be non-empty. In
other words, there is a degree-d hypersurface Z that bisects each open set Ui.

The vanishing lemma has other applications besides the ham-sandwich theorem.
One classical application is to give covering estimates.

Proposition 5.5. (Covering estimate; Lyusternik–Shnirel’man) Suppose that RPN

is covered by some contractible open sets S1, ..., Sr. Then r>N+1.

Proof. Since each Si is contractible, the cohomology class a vanishes on each Si.
Applying the vanishing lemma once, we see that a2 vanishes on S1∪S2. Proceeding
inductively, we see that ar vanishes on the union of all Sr, which is RPN . But in the
cohomology ring of RPN , ai is non-zero for all i6N . Hence r>N+1.

Our proof of the multilinear Kakeya estimate combines the polynomial ham-sand-
wich theorem with some covering estimates similar to the one above. The Lyusternik–
Shnirel’man vanishing lemma allows us to combine these two techniques, making it a
little more flexible than the Borsuk–Ulam theorem.

6. The visibility lemma

In the proof of Theorem 1.1, we found an algebraic hypersurface whose intersection with
many unit cubes has volume &1. The total volume is not as important as the directional
volumes VZ∩Q(v) in various directions. (Here Z is the hypersurface, Q is a cube and v is
a direction.) In this section, we build a hypersurface which has large directional volumes
in many directions.

We now define the visibility of a hypersurface, which measures whether the surface
has a large directional volume in many directions. Roughly, a hypersurface has large
visibility if either VS(v) is large for every unit vector v, or else VS(v) is extremely large
for some vectors v.

We define the visibility of a surface S to be

Vis[S] :=
1

Vol({v : |v|6 1 and VS(v) 6 1})
.

This definition is a little long, so we make some comments about it. The reader
may wonder, why not just look at the average directional volume in all unit directions v:



the endpoint case of the bennett–carbery–tao conjecture 273

∫
Sn−1 VS(v) dvol(v)/ Vol(Sn−1)? For our arguments, it is crucial to know whether VS(v)

is small in some directions even if the set of such directions has a small measure. The
average directional volume above will not detect small values of VS(v), but the definition
of visibility is quite sensitive to small values of VS(v).

We now compute the visibility in two examples. First, suppose that S is a unit
(n−1)-disk in the hyperplane xn=0. Then the function VS(v)=ωn−1|vn|, where vn is
the nth component of v. Therefore, the set {v :Vs(v)61} is an infinite slab of the form
|vn|6C. The set of v with VS(v)61 and |v|61 is roughly the unit ball, and so the visibility
of S is on the order of 1. We had to include the condition |v|61 in the definition, or else
the visibility of a disk would be zero. Including |v|61 in the definition has the unpleasant
effect that the visibility of the empty set is also around 1. In practice, we will speak of
the visibility of S for surfaces S contained in a unit cube and with volume at least 1, and
in this range, the visibility behaves reasonably.

A second important example is a union of unit disks with Nj disks perpendicular to
the xj-axis. In this case, VS(v) is roughly

∑n
j=1 Nj |vj |. Hence the region where VS(v)61

is roughly {v∈Rn :|vj |6N−1
j }. The volume of this region is roughly N−1

1 ... N−1
n , and

so the visibility of this surface is roughly N1 ... Nn. This is the best example to keep in
mind to understand what visibility means.

Our next goal is to find algebraic hypersurfaces which have large visibility in many
cubes. We recall from §5 that the space of degree-d hypersurfaces in Rn is parametrized
by RPN for N=

(
n+d

d

)
−1. We will slightly abuse notation by identifying a degree-d

hypersurface Z and the corresponding point in RPN—we will speak of Z∈RPN .
If we fix some cube Q⊂Rn, we want to study Vis[Z∩Q] as a function of Z∈RPN .

Unfortunately, this function is not continuous in Z. Even the (n−1)-dimensional vol-
ume of Z∩Q is not continuous in Z. Because we make topological arguments using
the Lyusternik–Shnirel’man vanishing lemma, this discontinuity leads to some technical
problems. To deal with these, we define mollified continuous versions of the directed vol-
ume and the visibility. We mollify these functions by averaging over small balls in RPN .
We use the standard metric on RPN , and let B(Z, ε) denote the ball around Z∈RPN of
radius ε.

For any open set U , we define a mollified version of VZ∩U (v) as follows:


VZ∩U (v) :=
1

|B(Z, ε)|

∫
B(Z,ε)

VZ′∩U (v) dZ ′.

We define a mollified visibility function using the mollified directional volumes:

Vis[Z∩U ] :=
1

Vol({v : |v|6 1 and 
VZ∩U (v) 6 1})
.
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We will choose ε extremely small compared to all other constants in the paper. In
practice, the mollified directional volumes and visibilities maintain all the useful prop-
erties of the unmollified versions, and they are also continuous. Therefore, on an early
reading of the paper, it makes sense to ignore the mollification and just pretend that the
visibility is continuous in Z.

In the following lemma, we collect the properties of the mollified volumes and visi-
bilities which we will use.

Lemma 6.1. Let U be a bounded open set in Rn. The mollified directed volume

VZ∩U (v) and the mollified visibility Vis[Z∩U ] obey the following properties:

(i) (Scaling) For any constant λ, 
VZ∩U (λv)=|λ|
VZ∩U (v);
(ii) (Convexity) The function 
VZ∩U (v) is convex in v;
(iii) (Disjoint unions) If U is a disjoint union of U1 and U2, then


VZ∩U (v) =
VZ∩U1(v)+
VZ∩U2(v);

(iv) (Cylinder estimate) If T is a cylinder of radius r with core vector v, and if Z

is a degree-d hypersurface, then 
VZ∩T (v)6ωn−1r
n−1d;

(v) (Bisection) If Z bisects a unit ball B, and if ε is small enough, then 
VZ∩B(v)&1
for some unit vector v;

(vi) (Continuity) The functions 
VZ∩U (v) and Vis[Z∩U ] depend continuously on
Z∈RPN .

Proof. (i) This follows by plugging in the formulas.
(ii) For each vector N , the function |N ·v| is a convex function of v. Since a positive

combination of convex functions is convex, VZ∩U (v) is convex in v. As an average of
convex functions is convex, 
VZ∩U is also convex.

(iii) This also follows by plugging in the formulas.
(iv) Lemma 3.1 tells us that VZ′∩T (v)6ωn−1r

n−1d for every degree-d hypersurface
Z ′. Taking an appropriate average, we see that 
VZ∩T (v)6ωn−1r

n−1d.
(v) Suppose that Z bisects B. By Lemma 2.4, we can choose ε small enough so that

each Z ′ in B(Z, ε) nearly bisects B. Hence the volume of Z ′∩B is &1. We let e1, ..., en

be the standard orthonormal basis of Rn. By Lemma 3.2,

n∑
j=1

VZ′∩B(ei) >
Vol(Z ′∩B)

2
& 1.

Taking an average over Z ′ in B(Z, ε), we see that
∑n

j=1

VZ∩B(ei)&1.

(vi) The function VZ∩U (v) is a bounded measurable function on RPN . Hence its
averages over ε -balls form a continuous function. So 
VZ∩U (v) depends continuously on Z.
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Next we address continuity in v. The function VZ∩U (v) is Lipschitz in v with a
Lipschitz constant C(d, U, n) independent of Z. To see this, we expand

|VZ∩U (v1)−VZ∩U (v2)|

as an integral: ∣∣∣∣∫
Z∩U

|N ·(v1−v2)| dvol
∣∣∣∣ 6 |v1−v2|Vol(Z∩U).

Now U is a bounded domain, so it fits in a ball of some radius R(U), and standard
algebraic geometry shows that Vol(Z∩U)6CnRn−1d. (For more details on this Crofton
estimate, see [5, p. 58].)

Hence 
VZ∩U (v) is also Lipschitz in v with a Lipschitz constant C(d, U, n). Therefore,

VZ∩U (v) is jointly continuous as a function of (Z, v)∈RPN×Rn. Hence Vis[Z∩U ] is
continuous in Z.

The next lemma allows us to find algebraic hypersurfaces with large visibility. It is
analogous to the bisection lemma, but instead of producing surfaces that bisect a ball, it
produces surfaces with large visibility in a ball.

Lemma 6.2. (Visibility lemma) There is an integer constant Cn>1 such that the
following holds. Fix any degree d and any unit ball B(p, 1)⊂Rn. Consider the space
of degree-d algebraic hypersurfaces in Rn, parametrized by RPN . Let LM denote the
subset of algebraic surfaces Z with Vis[Z∩B(p, 1)]6M , where M>1 is an integer. Let
a denote the non-zero cohomology class in H1(RPN , Z2). Then the cohomology class
aCnM vanishes on a neighborhood of LM .

Proof. Let E be an ellipsoid contained in the unit ball in Rn, with the volume of E

at least 1/M . Let L(E) denote the set of degree-d hypersurfaces Z such that


VZ∩B(p,1)(v) 6 1 for all v ∈E.

Notice that if Vis[Z∩B(p, 1)]6M , then Z is in L(E) for some ellipsoid E of volume
&1/M . We will first deal with the different ellipsoids individually and then see how to
deal with all of them simultaneously.

Lemma 6.3. (Weak visibility lemma) If E is an ellipsoid contained in the unit ball
with volume at least 1/M , then the cohomology class aCnM vanishes on a neighborhood
of L(E).

Proof. Let A(n) be a large number we will choose later.
We let E′ be a rescaling of E by a factor 1/A(n) (so that E′ is smaller than E).

We let U1, ..., Uk denote disjoint parallel copies of E′ contained in B(p, 1). We take a
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maximal family of parallel copies of E′ in B(p, 1)—meaning that there is no room to add
an additional parallel copy of E′. From the maximality, we see that Vol(E′)k∼1, where
k is the number of parallel copies. Since the volume of E′ is at least 1/A(n)nM , we also
know that k.A(n)nM .

Now suppose that ak does not vanish on L(E). Using Lemma 5.4, we can pick a
cycle Z in L(E) such that Z bisects each set Ui. Next we investigate the directional
volumes of a surface bisecting a copy of E′.

Suppose that Z bisects E′. Let E′
1, ..., E

′
n be the lengths of the principal axes of E′.

Let e1, ..., en be unit length vectors with ej lying on the jth principal axis of E′. (To
check the notation, each point ±E′

jej lies on the boundary of E′.) The vectors e1, ..., en

form an orthonormal basis of Rn.

Lemma 6.4. Under the hypotheses in the last paragraph, the following estimate holds
for some 16j6n:


VZ∩E′(ej) &
Vol(E′)

E′
j

.

Proof. Let L be a linear map taking E′ diffeomorphically to the unit ball. The map
L is diagonal with respect to the basis {ej}: in this basis, it scales the jth coordinate by
1/E′

j . Then L(Z) bisects the unit ball. According to the bisection clause in Lemma 6.1,

VL(Z)∩B(ej)&1 for some j. When we change coordinates back and interpret this inequal-
ity in E′, it gives the lemma. We now explain the coordinate change in detail. We let
πj denote the orthogonal projection from Rn to e⊥j . Next we use equation (3.2) to write
directional volumes in terms of πj :

VL(Z′)∩B(ej) =
∫

e⊥j

|L(Z ′)∩B∩π−1
j (y)| dy,

VZ′∩E(ej) =
∫

e⊥j

|Z ′∩E∩π−1
j (y)| dy.

Comparing the right-hand sides, we get

VZ′∩E(ej) =
( n∏

i=1

E′
i

)
1
E′

j

VL(Z′)∩B(ej).

Averaging over Z ′, we get the inequality for the mollified directional volumes


VZ∩E(ej) =
( n∏

i=1

E′
i

)
1
E′

j


VL(Z)∩B(ej) &
Vol(E′)

E′
j

.
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Since Ui is a translation of E′, we get the estimate

for each i there is some coordinate j such that 
VZ∩Ui(ej) &
Vol(E′)

[E′
j ]

.

The number of translated ellipsoids Ui is k, where Vol(E′)k∼1. Combining our last
estimate over all these ellipsoids, we see that for a popular coordinate j,


VZ∩B(p,1)(ej) &
1
E′

j

=
A(n)
Ej

.

Now we choose A(n) sufficiently large compared to our dimensional constants, and
we conclude that 
VZ∩B(p,1)(ej)>1/Ej , and so 
VZ∩B(p,1)(Ejej)>1. But the vector Ejej

is contained in E. By the definition of L(E), we should have 
VZ∩B(p,1)(v)61 for every
v∈E. This contradiction shows that our assumption was wrong, and ak vanishes on
L(E). But k.A(n)nM , and so aC(n)M vanishes on L(E) for an appropriate dimensional
constant C(n).

Reinspecting the argument we see that aCnM vanishes on the union of RPn\Bi(Ui).
This latter set is open and we have shown that it contains L(E), and so aCnM vanishes
on a neighborhood of L(E).

Next we explain how to upgrade this weak visibility lemma to get the visibility
lemma we originally stated. For each sufficiently large ellipsoid E, we have seen that
aCnM vanishes on L(E). Remarkably, aCnM vanishes on the union

⋃
E L(E) as E varies

over all ellipsoids with volume at least 1/M . We can use the vanishing lemma to show
that apCnM vanishes on the union of any p sets L(Ek), but we do not have any good
control of the size of p. The situation is analogous to the following proposition, which is
used in Gromov’s paper [4].

Proposition 6.5. (Gromov) Let X be a manifold and let f :X!Rm be a map.
Suppose that for each unit ball B(y, 1) in Rm, the cohomology class α∈H∗(X) vanishes
on f−1(B(y, 1)). Then αm+1 vanishes on all of X.

Proof. Triangulate Rm so that each simplex has diameter at most 1
4 . Let Ui be an

open cover on Rm, indexed by the simplices of the triangulation (including simplices of
all dimensions). It is possible to choose Ui in such a way that Ui intersects Uj only if
one of the corresponding simplices contains the other one. In particular, the open sets
corresponding to two simplices of the same dimension never intersect. Also, each Ui is
contained in a 1

10 -neighborhood of the corresponding simplex. Since each Ui has diameter
at most 1

2 , each Ui is contained in some unit ball, and so α vanishes on f−1(Ui). Now, for
06l6m, let Vl denote the union of Ui as i varies among all the l-dimensional simplices of



278 l. guth

our triangulation. For any two l-dimensional simplices, i1 and i2, the corresponding sets
Ui1 and Ui2 are disjoint, and hence their preimages f−1(Ui1) and f−1(Ui2) are disjoint
open subsets of X. Therefore, α vanishes on f−1(Vl). Finally, by the Lyusternik–
Shnirel’man vanishing lemma, αm+1 vanishes on all of X.

(The clever covering for Rm that appears here originated in dimension theory. See
the book [9] for more information.)

Our argument is a variation on the proof of this proposition. The role of the space
Rm is played by the space of all ellipsoids in Rn.

Let Ell denote the set of all closed ellipsoids in Rn centered at the origin. We put a
distance function on Ell by saying that distEll(E1, E2)6log D if and only if

1
D

E1⊂E2⊂DE1.

We let Ell[M ] denote the set of all ellipsoids contained in the unit ball with volume at
least 1/M . Then we choose a maximal 1-separated subset of Ell[M ], given by finitely
many ellipsoids Ell1, ...,Ells. The number of ellipsoids is finite, but it grows exponentially
with M .

Recall that LM is the set of hypersurfaces Z∈RPN so that Vis[Z∩B(p, 1)]6M .
Next we divide the set LM into classes. For any hypersurface Z, we let K[Z] be the
convex set {v :|v|61 and 
VZ∩B(p,1)(v)61}. We say that a hypersurface Z lies in Ak if
and only if K[Z] resembles Ellk in the sense that (10n)−1/2 Ellk⊂K[Z]⊂(10n)1/2 Ellk.
Because our mollified function 
VZ∩B(p,1) is continuous, the sets Ak⊂RPN are closed.

According to a lemma of Fritz John, any symmetric convex set K can be approx-
imated by an ellipsoid E in the sense that n−1/2E⊂K⊂n1/2E. From this estimate, it
follows that the sets Ak cover LM .

On the other hand, Ak⊂L[(10n)−1/2 Ellk]. By the weak visibility lemma, we see
that aCnM vanishes on a neighborhood of each Ak.

Two sets Ak and Al overlap only if the corresponding ellipsoids Ellk and Elll lie
within a distance C(n) of each other, using our metric on Ell. We want to bound the
multiplicity of the cover of LM by the sets Ak. It suffices to bound the number of
ellipsoids Ellk inside a ball of radius C(n) in the space Ell. Let Ell0 denote the unit ball.
The closed ball of radius C(n) around Ell0 is a compact subset of Ell. (The space Ell is a
finite-dimensional manifold, and our metric defines the usual topology on the manifold.)
By compactness, any set of 1-separated ellipsoids Elli inside this ball has cardinality
bounded by some C ′(n). But there is nothing special about the unit ball Ell0. In fact,
the space Ell is extremely symmetrical. The group GL(n, R) acts on Ell in the following
way. Given a linear map M∈GL(n, R) and an ellipsoid E∈Ell, we define M(E) to be the
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image of E under the map M . This group action is an isometry using our metric on Ell.
It is also transitive because of the spectral theorem. Therefore, any ball of radius C(n)
contains at most C ′(n) 1-separated points. Hence the multiplicity of the cover {Ak}k is
bounded by C ′(n).

Let Bk be tiny open neighborhoods of Ak such that aCnM vanishes on Bk. Since the
sets Ak are closed, we can arrange that Bk and Bl intersect only if Ak and Al intersect.
The Bk form an open cover of a neighborhood of LM with multiplicity at most C ′(n).
We color the sets Bk using C ′(n) colors so that overlapping sets have distinct colors.
For each color α from 1 to C ′(n), we let Cα denote the union of all sets Bk with the
color α. Because these sets are disjoint, aCnM vanishes on Cα for each α. Now by
the Lyusternik–Shnirel’man vanishing lemma, aC′′

nM vanishes on the union of Cα, which
includes a neighborhood of LM .

Combining the visibility lemma and the Lyusternik–Shnirel’man vanishing lemma,
we can find a degree-d algebraic hypersurface with large visibility on various cubes. The
following lemma is the main result of this section.

Lemma 6.6. (Large visibility on many cubes) Consider the standard unit lattice in
Rn. Let M be a function from the set of n-cubes in the unit lattice to the non-negative
integers. Then we can find an algebraic hypersurface of degree d such that

Vis[Z∩Qk]>M(Qk)

for every cube Qk, where the degree d is bounded by C(n)
(∑

k M(Qk)
)1/n.

Proof. The space of degree-d hypersurfaces is parametrized by RPN , where

N =
(

n+d

d

)
−1 > c(n)dn.

Let a denote the fundamental cohomology class of RPN . Let S[Qk] denote the set of sur-
faces Z where Vis[Z∩Qk]<M(Qk). According to the visibility lemma, the cohomology
class aC(n)M(Qk) vanishes on a neighborhood of S[Qk]. By the Lyusternik–Shnirel’man
vanishing lemma, the cohomology class aC(n)

∑
k M(Qk) vanishes on a neighborhood of⋃

k S[Qk]. But aN does not vanish on RPN . As long as

C(n)
∑

k

M(Qk) <c(n)dn 6N,

there is a variety Z which does not lie in any S(Qk). Unwinding the definition, we see
that Vis[Z∩Qk]>M(Qk) for every k. Our condition on d is C(n)

∑
k M(Qk)<c(n)dn,

which holds for any d>C ′(n)
(∑

k M(Qk)
)1/n.



280 l. guth

7. Multilinear Kakeya estimates

We now give a proof of the multilinear Kakeya estimate.

Proof of Theorem 1.3. We consider the standard unit cube lattice in Rn. For each
cube Qk in this lattice, we define the following functions, measuring how many tubes of
different types go through Qk. We let Mj(Qk) denote the number of tubes Tj,a which go
through Qk. Then we let F (Qk) be the product of these:

F (Qk) :=
n∏

j=1

Mj(Qk).

It suffices to prove the following estimate for F (Qk):∑
k

F (Qk)1/(n−1) <C(n)θ−1/(n−1)
n∏

j=1

A(j)1/(n−1). (7.1)

Since we have only finitely many tubes, the function F (Qk) vanishes outside of
finitely many cubes. We fix a large cube of side length S containing all of the relevant
cubes Qk. Next we apply Lemma 6.6, which guarantees that we can find a hypersurface
Z0 of degree d.S obeying the following visibility estimates: for every cube Qk,

Vis[Z0∩Qk]>SnF (Qk)1/(n−1)

(∑
k

F (Qk)1/(n−1)

)−1

. (7.2)

Adding C(n)S hyperplanes to Z0, we produce a variety Z of degree d.S that still
obeys the visibility estimate above, and also 
VZ∩Qk

(v)>|v| for each cube Qk where
F (Qk)>0. Equation (7.2) gives a strong lower bound for VZ∩Qk

(v) in some directions,
and this last estimate gives a weak lower bound in all directions.

Next we apply the cylinder estimate to control the directed volumes of Z in cubes
along a given tube Tj,a. (The estimate we need is the cylinder clause of Lemma 6.1.) For
each tube Tj,a, we have the estimate∑

Qk that intersect Tj,a


VZ∩Qk
(vj,a) .S.

We would like to sum this inequality over all a from 1 to A(j), but the vectors vj,a

are changing.
For each cube Qk and each j, we pick a vector vj,k from among vj,a such that


VZ∩Qk
(vj,k) =min{
VZ∩Qk

(vj,a) : a=1, ..., A(j)}.

Substituting vj,k for vj,a in the last inequality and summing over a yields∑
Qk

Mj(Qk)
VZ∩Qk
(vj,k) .SA(j). (7.3)

Next we need a lemma relating Vis and 
V .
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Lemma 7.1. For each cube Qk, the following inequality holds:

Vis[Z∩Qk]<
C(n)

θ

n∏
j=1


VZ∩Qk
(vj,k).

Proof. Let
v′j,k =

vj,k


VZ∩Qk
(vj,k)

.

Because we added the hyperplanes to Z0, we know that 
VZ∩Qk
(v)>1 for all unit vectors

v. Hence |v′j,k|61. We know that 
VZ∩Qk
(±v′j,k)=1 for each j. Since the directed volume

is a convex function of v, 
VZ∩Qk
(v)61 for every v in the convex hull of the 2n points

±v′j,k. This convex hull is contained in the unit ball, and its volume is

c(n) det(v′1,k, ..., v′n,k) = c(n)
( n∏

j=1


VZ∩Qk
(vj,k)

)−1

det(v1,k, ..., vn,k).

Because of our transverality assumption, the volume is

> c(n)θ
( n∏

j=1


VZ∩Qk
(vj,k)

)−1

.

Hence the set of all v with |v|61 and 
VZ∩Qk
(v)61 has volume at least

&

( n∏
j=1


VZ∩Qk
(vj,k)

)−1

θ.

The visibility Vis[Z∩Qk] is the inverse of this volume, which is at most

C(n)
θ

n∏
j=1


VZ∩Qk
(vj,k).

Now we follow a string of inequalities powered by the visibility estimate in equa-
tion (7.2) and the cylinder estimate in equation (7.3):

S

(∑
k

F (Qk)1/(n−1)

)(n−1)/n

=
∑

k

(
SF (Qk)1/(n−1)

/ (∑
l

F (Ql)1/(n−1)

)1/n)
.

Using the visibility estimate in equation (7.2), we get

S

(∑
k

F (Qk)1/(n−1)

)(n−1)/n

6
∑

k

F (Qk)1/nVis[Z∩Qk]1/n.
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We now apply Hölder’s inequality to the products

F (Qk) =
n∏

j=1

Mj(Qk) and Vis[Z∩Qk].
1
θ

n∏
j=1


VZ∩Qk
(vj,k),

obtaining

S

(∑
k

F (Qk)1/(n−1)

)(n−1)/n

. θ−1/n
n∏

j=1

(∑
k

Mj(Qk)
VZ∩Qk
(vj,k)

)1/n

.

Using the cylinder estimate in equation (7.3),

S

(∑
k

F (Qk)1/(n−1)

)(n−1)/n

. θ−1/n
n∏

j=1

(SA(j))1/n =Sθ−1/n
n∏

j=1

A(j)1/n.

Finally, we cancel the S on each side and raise the equation to the power n/(n−1):

∑
k

F (Qk)1/(n−1) . θ−1/(n−1)
n∏

j=1

A(j)1/(n−1).

This establishes the inequality (7.1) and hence the theorem.

8. Box estimates for unions of tubes

The multilinear Kakeya estimate of Bennett, Carbery and Tao implies that Kakeya sets
must be rather “plany”. Here we give a quantitative estimate of planiness.

Lemma 8.1. (Box estimate) There is a constant C(n)>0 such that the following
holds. Suppose that X⊂Rn is a union of cylinders with radius 1 and length L�1. For
each x∈X we can choose a convex set B(x) with the following properties:

(1) The set B(x) contains x. In fact , B(x) is a symmetric convex body translated
so that the center is x;

(2) The set B(x) has volume at most Vol(X);
(3) For every cylinder T⊂X of radius 1 and length L, if we pick a random point

x∈T , then the tube T lies in the rescaled set σB(x) with probability at least 1−C(n)/σ.
(This probability estimate holds for every σ>1/C(n).)

Proof. We pick a collection of disjoint balls Bi of radius 1
10 so that the union of 3Bi

covers X. The number of balls is .Vol(X).
We can assume that Vol(X) is significantly less than Ln, because otherwise we just

take each B(x) to be a cube with side length L. By Lemma 6.6, we can choose an
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algebraic hypersurface Z such that Vis[Z∩Bi]>Ln/ Vol(X) for each ball in our cover,
with degree .L.

We use the hypersurface Z to define our box function B(x). First take the set

{v : |v|6 1 and 
VZ∩B(x,1)(v) 6 1}.

Let B0(x) be the translate of this set so that it is centered at x instead of at the origin.
Then let B(x) be the rescaling of B0(x) by a factor L, keeping it centered at x. For
each x∈X, the unit ball B(x, 1) contains at least one ball Bi from our set of balls, and
so Vis[Z∩B(x, 1)]>Ln/ Vol(X). Therefore, the convex set B0(x) has volume at most
Vol(X)/Ln, and so the box B(x) has volume at most Vol(X).

Now fix a number σ>1 and a tube T⊂X with radius 1 and length L. Let v be
a unit vector pointing parallel to the core of T . If x∈T , then T lies in σB(x) unless

VZ∩B(x,1)(v)> 1

2σ.

On the other hand, we will estimate the average value of 
VZ∩B(x,1)(v) as x varies
in T .

Lemma 8.2. Let Z ′ denote any algebraic hypersurface of degree .L. Then the
average value of VZ′∩B(x,1)(v) over x in T is bounded as follows:

1
|T |

∫
T

VZ′∩B(x,1)(v) dx . 1.

This lemma is essentially the cylinder estimate (Lemma 3.1), as we will see below.
Given the lemma, we can finish the proof of the box estimate. Applying the lemma to
averages over appropriate Z ′, we get the following estimate for the mollified volume 
V :

1
|T |

∫
T


VZ∩B(x,1)(v) dx . 1.

Let B⊂T be the set of bad points where T is not contained in σB(x). At each
bad point, 
VZ∩B(x,1)(v)> 1

2σ. Since the average value of 
VZ∩B(x,1)(v) is at most C(n), it
follows that the volume of B is at most 2C(n)|T |/σ.

Now we turn to the proof of Lemma 8.2.

Proof of Lemma 8.2. We want to understand the average

1
|T |

∫
T

VZ′∩B(x,1)(v) dx.
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The directional volume is itself an integral. We expand that integral and apply Fubini’s
theorem:

1
|T |

∫
T

VZ′∩B(x,1)(v) dx =
1
|T |

∫
T

(∫
Z′∩B(x,1)

|N(y)·v| dy

)
dx

6
1
|T |

∫
Z′∩3T

|N(y)·v|
(∫

B(y,1)

dx

)
dy

=
C(n)

L
VZ′∩3T (v).

(8.1)

But according to the cylinder estimate (Lemma 3.1), VZ′∩3T (v).L. Plugging this
into (8.1), we see that our average is .1.

Appendix A. The Lyusternik–Shnirel’man vanishing lemma

In this section, we give a proof of the vanishing lemma. There are proofs in the literature,
but we will try to write the proof here in a way that is accessible with a minimum of
background in algebraic topology.

First, we will prove the lemma in the special case of de Rham cohomology on a
manifold. This setting is probably familiar to more readers, and the proof in this setting
is clearest. In the paper, we have to apply the vanishing lemma to mod-2 cohomology,
so we do the general case afterwards.

Lemma A.1. (Vanishing lemma for de Rham cohomology; non-optimal version) Let
M be a smooth manifold. Let a1 and a2 be cohomology classes in H∗(M, R). Suppose
that a1 vanishes on some open set S1⊂X and that a2 vanishes on some open set S2⊂X.
Let K⊂S1∪S2 be a compact set. Then the cup product a1∪a2 vanishes on K.

In fact, a1∪a2 vanishes on all of S1∪S2, not just on the compact subsets. But we
have chosen to prove the weaker statement above because it makes the proof shorter and
clearer.

Proof. Because we are using cohomology with real coefficients and working on a
manifold, we may use de Rham cohomology. Let α1 be a differential form that represents
the cohomology class a1. The first point of the proof is that we can choose α1 to vanish
on almost all of S1. Let us see how to do this. We know that the restriction of a1 to
S1⊂M is zero. In other words, the restriction of α1 to S1 is exact, that is there is a form
β on S1 such that dβ=α1 on S1. The form β is only defined on S1. Now let K1⊂S1 be
any compact subset—the reader should imagine that K1 is almost all of S1. We can find
a form β′ on all of M so that β′ restricted to K1 agrees with β. Hence dβ′ is an exact
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form on all of M . Also dβ′=α1 on K1. Since dβ′ is exact, α1−dβ′ still represents the
cohomology class a1. But α1−dβ′ vanishes pointwise on K1.

By the previous paragraph, we may pick a differential form α1 on M which represents
a1 and vanishes pointwise on K1. By the same argument, for any compact K2⊂S2, we
can pick a differential form α2 on M which represents a2 and vanishes pointwise on K2.
Now the wedge product of forms α1∧α2 represents the cup product a1∪a2. On the other
hand, the wedge product α1∧α2 vanishes pointwise on K1∪K2. Hence a1∪a2 vanishes
on K1∪K2. Therefore, a1∪a2 vanishes on any compact subset K⊂S1∪S2.

We now prove the vanishing lemma in general.

Proof of Lemma 5.1. This time we work with singular cohomology. Singular coho-
mology and cup products are well explained in Hatcher’s book on algebraic topology,
[8, §3.1 and §3.2]. Let α1 be a singular cocycle representing a1. We know that a1 re-
stricted to S1 is zero. Therefore, we can choose a singular cochain β on S1 such that
∂β is equal to the restriction of α1 to S1. We can automatically extend β to a singular
cochain β′ on all of X. Then we look at the cocycle α1−∂β′. Since ∂β′ is exact, this
cocycle still represents the cohomology class a1. The cocycle α1−∂β′ vanishes on any
chain supported in S1.

By the previous paragraph, we may pick a singular cocycle α1 representing a1 such
that α1 vanishes on S1. Similarly, we may pick a cocycle α2 representing a2 such that α2

vanishes on S2. We now look at the cup product α1∪α2, which represents a1∪a2. The
product α1∪α2 vanishes on any singular simplex supported in S1 or supported in S2.

Now let f denote a singular simplex supported in S1∪S2. We will subdivide S into
small pieces so that each piece lies in either S1 or S2. Recall that f is a continuous
map from the simplex ∆ to X. We subdivide the simplex into many small simplices.
Restricting f to each small simplex, we get various maps gi from ∆ to X. The sum

∑
i gi

is a singular chain that parametrizes the image of f . Now it is not true that f=
∑

i gi

as singular chains. But it is true that f−
∑

i gi is a boundary. Since α1∪α2 is a cocycle,
α1∪α2(f)=

∑
i α1∪α2(gi). If we subdivide finely enough, then each gi is contained in

either S1 or S2. (At this step, we use the fact that S1 and S2 are open.) So each term
α1∪α2(gi) vanishes. Hence α1∪α2(f)=0 for any singular simplex f in S1∪S2. In other
words, α1∪α2 vanishes on S1∪S2. Hence the cup product a1∪a2 vanishes on S1∪S2.



286 l. guth

References

[1] Bennett, J., Carbery, A. & Tao, T., On the multilinear restriction and Kakeya con-
jectures. Acta Math., 196 (2006), 261–302.

[2] Dvir, Z., On the size of Kakeya sets in finite fields. J. Amer. Math. Soc., 22 (2009),
1093–1097.

[3] Gromov, M., Isoperimetry of waists and concentration of maps. Geom. Funct. Anal., 13
(2003), 178–215.

[4] — Singularities, expanders and topology of maps. I. Homology versus volume in the spaces
of cycles. Geom. Funct. Anal., 19 (2009), 743–841.

[5] Guth, L., Minimax problems related to cup powers and Steenrod squares. Geom. Funct.
Anal., 18 (2009), 1917–1987.

[6] — Directional isoperimetric inequalities and rational homotopy invariants. Preprint, 2008.
arxiv:0802.3549v1 [math.DG].

[7] — Isoperimetric inequalities and rational homotopy invariants. Preprint, 2008.
arxiv:0802.3550v1 [math.DG].

[8] Hatcher, A., Algebraic Topology. Cambridge University Press, Cambridge, 2002.
[9] Hurewicz, W. & Wallman, H., Dimension Theory. Princeton Mathematical Series, 4.

Princeton University Press, Princeton, NJ, 1941.
[10] Katz, N. H.,  Laba, I. & Tao, T., An improved bound on the Minkowski dimension of

Besicovitch sets in R3. Ann. of Math., 152 (2000), 383–446.
[11] Loomis, L. H. & Whitney, H., An inequality related to the isoperimetric inequality. Bull.

Amer. Math. Soc, 55 (1949), 961–962.
[12] Matoušek, J., Using the Borsuk–Ulam Theorem. Universitext. Springer, Berlin–

Heidelberg, 2003.
[13] Stone, A. H. & Tukey, J. W., Generalized “sandwich” theorems. Duke Math. J., 9 (1942),

356–359.

Larry Guth
Department of Mathematics
University of Toronto
40 St. George St.
Toronto, ON M5S 2E4
Canada
lguth@math.toronto.edu

Received Decemb r 15, 2008e


	The endpoint case of the Bennett–Carbery–Taomultilinear Kakeya conjecture

	Introduction
	The polynomial ham-sandwich theorem
	Directed volume
	The proof of Theorem 1.1
	The Lyusternik–Shnirel’man vanishing lemma
	The visibility lemma
	Multilinear Kakeya estimates
	Box estimates for unions of tubes
	Appendix A. The Lyusternik–Shnirel’man vanishing lemma
	References




