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1. Introduction

In 1975, Szemerédi [30] proved that any subset A of integers of positive upper density,
that is lim supN!∞ |A∩[N ]|/|[N ]|>0, contains arbitrarily long arithmetic progressions.
Throughout this paper [N ] denotes the discrete interval [N ]:={1, ..., N}, and |X| de-
notes the cardinality of a finite set X. Shortly afterwards, Furstenberg [10] gave an

The second author was partially supported by NSF grant DMS-0111298. This work was initiated
at a workshop held at the CRM in Montreal. The authors would like to thank the CRM for their
hospitality.
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ergodic-theory proof of Szemerédi’s theorem. Furstenberg observed that questions about
configurations in subsets of positive density in the integers correspond to recurrence
questions for sets of positive measure in a probability measure preserving system. This
observation is now known as the Furstenberg correspondence principle.

In 1978, Sárközy [28](1) (using the Hardy–Littlewood circle method) and Fursten-
berg [11] (using the correspondence principle, and ergodic theoretic methods) proved in-
dependently that for any polynomial(2) P∈Z[m] with P (0)=0, any set A⊂Z of positive
density contains a pair of points x, y with difference y−x=P (m) for some positive integer
m>1. In 1996 Bergelson and Leibman [6] proved, by purely ergodic theoretic means,(3)
a vast generalization of the Fustenberg–Sárközy theorem, establishing the existence of
arbitrarily long polynomial progressions in sets of positive density in the integers.

Theorem 1.1. (Polynomial Szemerédi theorem [6]) Let A⊂Z be a set of positive
upper density , i.e. lim supN!∞ |A∩[N ]|/|[N ]|>0. Then, given any integer-valued polyno-
mials P1, ..., Pk∈Z[m] in one unknown m with P1(0)=...=Pk(0)=0, the set A contains
infinitely many progressions of the form x+P1(m), ..., x+Pk(m) with m>0.

Remark 1.2. By shifting x appropriately, one may assume without loss of generality
that one of the polynomials Pj vanishes, say P1=0. We shall rely on this ability to
normalize one polynomial of our choosing to be zero, at several points in the proof, most
notably in the “PET induction” step in §5.10. The arguments in [6] also establish a
generalization of this theorem to higher dimensions, which will be important to us to
obtain a certain uniformly quantitative version of this theorem later (see Theorem 3.2
and Appendix B).

The ergodic theoretic methods, to this day, have the limitation of only being able
to handle sets of positive density in the integers, although this density is allowed to be
arbitrarily small. However in 2004, Green and Tao [18] discovered a transference principle
which allowed one (at least in principle) to reduce questions about configurations in
special sets of zero density (such as the primes P :={2, 3, 5, 7, ... }) to questions about sets
of positive density in the integers. This opened the door to transferring the Szemerédi-
type results, which are known for sets of positive upper density in the integers, to the

(1) Sárközy actually proved a stronger theorem for the polynomial P =m2 providing an upper
bound for the density of a set A for which A−A does not contain a perfect square. His estimate was
later improved by Pintz, Steiger and Szemerédi in [24], and then generalized in [2] for P =mk and then
in [29] for arbitrary P with P (0)=0.

(2) We use Z[m] to denote the space of polynomials of one variable m with integer-valued coeffi-
cients; see §2 for further notation along these lines.

(3) Unlike Szemerédi’s theorem or Sárközy’s theorem, no non-ergodic proof of the Bergelson–
Leibman theorem in its full generality is currently known. However, in this direction Green [16] proved,
by Fourier-analytic methods, that any set of integers of positive density contains a triple {x, x+n, x+2n},
where n is a non-zero sum of two squares.
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prime numbers. Applying this transference principle to Szemerédi’s theorem, Green
and Tao showed that there are arbitrarily long arithmetic progressions in the prime
numbers.(4)

In this paper we prove a transference principle for polynomial configurations, which
then allows us to use (a uniformly quantitative version of) the Bergelson–Leibman the-
orem to prove the existence of arbitrarily long polynomial progressions in the primes,
or more generally in large subsets of the primes. More precisely, the main result of this
paper is the following.

Theorem 1.3. (Polynomial Szemerédi theorem for the primes) Let A⊂P be a set
of primes of positive relative upper density in the primes, i.e.

lim sup
N!∞

|A∩[N ]|
|P∩[N ]|

> 0.

Then, given any P1, ..., Pk∈Z[m] with P1(0)=...=Pk(0)=0, the set A contains infinitely
many progressions of the form x+P1(m), ..., x+Pk(m) with m>0.

Remarks 1.4. The main result of [18] corresponds to Theorem 1.3 in the linear case
Pj :=(j−1)m. The case k=2 of this theorem follows from the results of [24], [2] and [29],
which in fact address arbitrary sets of integers with logarithmic-type sparsity, and whose
proof is more direct, proceeding via the Hardy–Littlewood circle method and not via the
transference principle. As a by-product of our proof, we shall also be able to impose
the bound m6xε for any fixed ε>0, and thus (by diagonalization) that m=xo(1); see
Remark 2.4. Our results for the case A=P are consistent with what is predicted by the
Bateman–Horn conjecture [3], which remains totally open in general (though see [19] for
some partial progress in the linear case).

Remark 1.5. In view of the generalization of Theorem 1.1 to higher dimensions
in [6], it is reasonable to conjecture that an analogous result to Theorem 1.3 also holds
in higher dimensions, and thus any subset of Pd of positive relative upper density should
contain infinitely many polynomial constellations, for any choice of polynomials which
vanish at the origin. This is however still open even in the linear case, the key difficulty
being that the tensor product of pseudorandom measures is not pseudorandom. In view
of [31] however, it should be possible (though time-consuming) to obtain a counterpart
to Theorem 1.3 for the Gaussian primes.

(4) Shortly afterwards, the transference principle was also combined in [31] with the multidimen-
sional Szemerédi theorem [12] (or more precisely a hypergraph lemma related to this theorem, see [34]) to
establish arbitrarily shaped constellations in the Gaussian primes. A much simpler transference principle
is also available for dense subsets of genuinely random sparse sets; see [35].
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Remark 1.6. The arguments in this paper are mostly quantitative and finitary, and
in particular avoid the use of the axiom of choice. However, our proof relies crucially on
the Bergelson–Leibman theorem (Theorem 1.1) and more precisely on a certain multidi-
mensional generalization of that theorem [6, Theorem A0]. At present, the only known
proof of that theorem (in [6]) requires Zorn’s lemma and thus our results here are also
currently dependent on the axiom of choice. However, it is expected that the Bergelson–
Leibman theorem will eventually be proven by other means which do not require the ax-
iom of choice; for instance, the 1-dimensional version of this theorem (i.e. Theorem 1.1)
can be established via the machinery of characteristic factors and Gowers–Host–Kra semi-
norms, by modifying the arguments in [9] and [21], and this does not require the axiom of
choice; this already allows us to establish Theorem 1.3 without the axiom of choice in the
homogeneous case when Pj(m)=cjmd for all j=1, ..., k and some constants c1, ..., ck, d

(since in this case the W factor in Theorem 3.2 can be easily eliminated without in-
troducing additional dimensions). In a similar spirit, our arguments do not currently
provide any effective bound for the first appearance of a pattern x+P1(m), ..., x+Pk(m)
in the set A, but one expects that the Bergelson–Leibman theorem will eventually be
proven with an effective bound (e.g. by extending the arguments in [15]), in which case
Theorem 1.3 will automatically come with an effective bound also.

The philosophy of the proof is similar to the one in [18]. The first key idea is to think
of the primes (or any large subset thereof) as a set of positive relative density in the set of
almost primes, which (after some application of sieve theory, as in the work of Goldston
and Yıldırım [14]) can be shown to exhibit a somewhat pseudorandom behavior. Actu-
ally, for technical reasons, it is more convenient to work not with the sets of primes and
almost primes, but rather with certain normalized weight functions 06f6ν which are(5)
supported (or concentrated) on the primes and almost primes, respectively, with ν obey-
ing certain pseudorandom measure(6) properties. The functions f and ν are unbounded,
but have bounded expectation (mean). A major step in the argument is a Koopman–von
Neumann-type structure theorem which decomposes f (outside of a small exceptional
set) as a sum f=fU⊥+fU , where fU⊥ is a non-negative bounded function with large
expectation, and fU is an error which is unbounded but is so uniform (in a Gowers-type
sense) that it has a negligible impact on the (weighted) count of polynomial progressions.
The remaining component fU⊥ of f , being bounded, non-negative, and of large mean,
can then be handled by (a quantitative version of) the Bergelson–Leibman theorem.

(5) This is an oversimplification, ignoring the “W -trick” necessary to eliminate local obstructions
to uniformity; see §2 for full details.

(6) The term measure is a bit misleading. It is better to think of ν as the Radon–Nikodym
derivative of a measure. Still, we stick to this terminology so as not to confuse the reader who is familiar
with [18].
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Remark 1.7. As remarked in [18], the above transference arguments can be catego-
rized as a kind of “finitary” ergodic theory. In the language of traditional (infinitary)
ergodic theory, fU⊥ is analogous to a conditional expectation of f relative to a suitable
characteristic factor for the polynomial average being considered. Based on this anal-
ogy, and on the description of this characteristic factor in terms of nilsystems (see [21]
and [23]), one would hope that fU⊥ could be constructed out of nilsequences. In the case
of linear averages, this correspondence has already some roots in reality; see [17]. In the
special case A=P, one can then hope to use analytic number theory methods to show that
fU⊥ is essentially constant, which would lead to a more precise version of Theorem 1.3 in
which one obtains a precise asymptotic for the number of polynomial progressions in the
primes, with x and n confined to various ranges. In the case of progressions of length 4
(or for more general linear patterns, assuming certain unproven conjectures), such an
asymptotic was already established in [19]. While we expect similar asymptotics to hold
for polynomial progressions, we do not pursue this interesting question here.(7)

As we have already mentioned, the proof of Theorem 1.3 closely follows the ar-
guments in [18]. However, some significant new difficulties arise when adapting those
arguments(8) to the polynomial setting. The most fundamental such difficulty arises
in one of the very first steps of the argument in [18], in which one localizes the pattern
x+P1(m), ..., x+Pk(m) to a finite interval [N ]={1, ..., N}. In the linear case Pj =(j−1)m
this localization restricts both x and m to be of size O(N). However, in the polynomial
case, while the base point x is still restricted to size O(N), the shift parameter m is
now restricted to a much smaller range O(M), where M :=Nη0 and 0<η0<1 is a small
constant depending on P1, ..., Pk (one can take for instance η0 :=1/2d, where d is the
largest degree of the polynomials P1, ..., Pk; by taking a little more care, one can increase
this to η0=1/d). This eventually forces us to deal with localized averages of the form(9)

Em∈[M ]

∫
X

TP1(m)f ... TPk(m)f, (1)

(7) One fundamental new difficulty that arises in the polynomial case is that it seems that one
needs to control short correlation sums between primes and nilsequences, such as on intervals of the form
[x, x+xε], instead of the long correlation sums (such as on [x, 2x]) which appear in the linear theory.
Even assuming strong conjectures such as the generalized Riemann hypotesis, it is not clear how to
obtain such control.

(8) If the measure ν for the almost primes enjoyed infinitely many pseudorandomness conditions,
then one could adapt the arguments in [35] to obtain Theorem 1.3 rather quickly. Unfortunately, in order
for f to have non-zero mean, one needs to select a moderately large sieve level R=Nη2 for the measure ν,
which means that one can only impose finitely many (though arbitarily large) such pseudorandomness
conditions on ν. This necessitates the use of the (lengthier) arguments in [18] rather than [35].

(9) This is an oversimplification, as we are ignoring the need to first invoke the “W -trick” to
eliminate local obstructions from small moduli, and thus ensure that the almost primes behave pseudo-
randomly. See Theorem 2.3 for the precise claim we need.
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where X :=ZN :=Z/NZ is the cyclic group with N elements, f :X!R+ is a weight
function associated with the set A, and Tg(x):=g(x−1) is the shift operator on X. Here
we use the ergodic theory-like(10) notation

En∈Y F (n) :=
1
|Y |

∑
n∈Y

F (n)

for any finite non-empty set Y , and∫
X

f :=Ex∈Xf(x) =
1
N

∑
x∈X

f(x). (2)

We shall normalize f to have mean
∫

X
f=η3, and will also have the pointwise bound

06f6ν for some “pseudorandom measure” ν associated with the almost primes at a sieve
level R:=Nη2 for some(11) 0<η3�η2�η0 (so M is asymptotically larger than any fixed
power of R). The functions f and ν will be defined formally in (11) and (72), respectively,
but for now let us simply remark that we will have the bound

∫
X

ν=1+o(1), together
with many higher-order correlation estimates on ν.

Let us defer the (sieve-theoretic) discussion of the pseudorandomness of ν for the
moment, and focus instead on the (finitary) ergodic theory components of the argument.
If we were in the linear regime M=N used in [18] (with N assumed prime for simplicity),
then repeated applications of the Cauchy–Schwarz inequality (using the PET induction
method) would eventually let us control the average (1) in terms of Gowers uniformity
norms such as

‖f‖Ud(ZN ) :=
(
E
"m(0),"m(1)∈[N ]d

∫
X

∏
ω∈{0,1}d

Tm
(ω1)
1 +...+m

(ωd)
d f

)1/2d

for some sufficiently large d (depending on P1, ..., Pk; eventually they will be of size
O(1/η1) for some η2�η1�η0), where ω=(ω1, ..., ωd) and "m(j)=(m(j)

1 , ...,m
(j)
d ), j=0, 1.

If instead we were in the pseudo-infinitary regime M=M(N) for some slowly growing
function M :Z+!Z+, repeated applications of the van der Corput lemma and PET in-
duction would allow one to control these averages by the Gowers–Host–Kra seminorms

(10) Traditional ergodic theory would deal with the case where the underlying measure space ZN

is infinite and the shift range M is going to infinity, and thus informally N=∞ and M!∞. Unraveling
the Furstenberg correspondence principle, this is equivalent to the setting where N is finite (but going
to infinity) and M=ω(N) is a very slowly growing function of N . In [18] one is instead working in the
regime where M=N are going to infinity at the same rate. The situation here is thus an intermediate
regime where M=Nη0 goes to infinity at a polynomially slower rate than N . In the linear setting, all
of these regimes can be equated using the random dilation trick of Varnavides [38], but this trick is only
available in the polynomial setting if one moves to higher dimensions, see Appendix B.

(11) The “missing” values of η, such as η1, will be described more fully in §2.
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‖f‖d from [21], which in our finitary setting would be something like

‖f‖d :=
(
E
"m(0),"m(1)∈[M1]×...×[Md]

∫
X

∏
ω∈{0,1}d

Tm
(ω1)
1 +...+m

(ωd)
d f

)1/2d

,

where M1, ...,Md are slowly growing functions of N which we shall deliberately keep
unspecified.(12) In our intermediate setting M=Nη0 , however, neither of these two
quantities seem to be exactly appropriate. Instead, after applying the van der Corput
lemma and PET induction one ends up considering an averaged localized Gowers norm
of the form(13)

‖f‖
U
!Q([H]t)√

M

:=
(
E
 h∈[H]tE"m(0),"m(1)∈[

√
M ]d

∫
X

∏
ω∈{0,1}d

TQ1( h)m
(ω1)
1 +...+Qd( h)m

(ωd)
d f

)1/2d

,

where H=Nη7 is a small power of N (much smaller than M or R), t is a natural num-
ber depending only on P1, ..., Pd (and of size O(1/η1)), and Q1, ..., Qd∈Z[h1, ...,ht] are
certain polynomials (of t variables h1, ...,ht) which depend on P1, ..., Pd. Indeed, we will
eventually be able (see Theorem 4.5) to establish a polynomial analogue of the gener-
alized von Neumann theorem in [18], which roughly speaking will assert that (if ν is
sufficiently pseudorandom) any component of f which is “locally Gowers-uniform” in the
sense that the above norm is small, and which is bounded pointwise by O(ν+1), will
have a negligible impact on the average (1). To exploit this fact, we shall essentially
repeat the arguments in [18] (with some notational changes to deal with the presence of
the polynomials Qj and the short shift ranges) to establish (assuming ν is sufficiently
pseudorandom) an analogue of the Koopman–von Neumann-type structure theorem in
that paper, namely a decomposition f=fU⊥+fU (outside of a small exceptional set),
where fU⊥ is bounded by O(1), is non-negative and has mean roughly δ, and fU is lo-
cally Gowers-uniform and thus has a negligible impact on (1). Combining this with a
suitable quantitative version (Theorem 3.2) of the Bergelson–Leibman theorem, one can
then conclude Theorem 1.3.

We have not yet discussed how one constructs the measure ν and establishes the
required pseudorandomness properties. We shall construct ν as a truncated divisor sum
at level R=Nη2 , although instead of using the Goldston–Yıldırım divisor sum as in [14]
and [18], we shall use a smoother truncation (as in [36], [20] and [19]), as it is slightly
easier to estimate.(14) The pseudorandomness conditions then reduce, after standard

(12) In the traditional ergodic setting N=∞, M!∞, one would take multiple limit superiors as
M1, ..., Md!∞, choosing the order in which these parameters go to infinity carefully; see [21].

(13) Again, this is a slight oversimplification as we are ignoring the effects of the “W -trick”.
(14) However, in contrast to the arguments in [20] and [19], we will not be able to completely localize

the estimations on the Riemann-zeta function ζ(s) to a neighborhood of the pole s=1, for rather minor
technical reasons, and so will continue to need the classical estimates (108) on ζ(s) near the line Res=1.
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sieve theory manipulations, to the entirely local problem of understanding the pseudo-
randomness of the functions Λp:Fp!R+ on finite fields Fp, defined for all primes p by
Λp(x):=p/(p−1) when x 6=0 mod p and Λp(x)=0 otherwise. Our pseudorandomness con-
ditions shall involve polynomials, and so one is soon faced with the standard arithmetic
problem of counting the number of points over Fp of an algebraic variety. Fortunately,
the polynomials that we shall encounter will be linear in one or more of the variables of
interest, which allows us to obtain a satisfactory count of these points without requiring
deeper tools from arithmetic such as class field theory or the Weil conjectures.

1.8. Acknowledgements

The authors thank Brian Conrad for valuable discussions concerning algebraic varieties,
Peter Sarnak for encouragement, Vitaly Bergelson and Ben Green for help with the
references, and Elon Lindenstrauss, Akshay Venkatesh and Lior Silberman for helpful
conversations. We also thank the anonymous referee for useful suggestions and correc-
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2. Notation and initial preparation

In this section we shall fix some important notation, conventions, and assumptions which
will then be used throughout the proof of Theorem 1.3. Indeed, all of the sub-theorems
and lemmas used to prove Theorem 1.3 will be understood to use the conventions and
assumptions in this section. We thus recommend that the reader go through this section
carefully before moving on to the other sections of the paper.

Throughout this paper we fix the set A⊂P and the polynomials P1, ..., Pk∈Z[m] ap-
pearing in Theorem 1.3. Henceforth we shall assume that the polynomials are all distinct,
since duplicate polynomials clearly have no impact on the conclusion of Theorem 1.3.
Since we are also assuming that Pj(0)=0 for all j, we conclude that

Pj−Pj′ is non-constant for all 1 6 j < j′ 6 k. (3)

By hypothesis, the upper density

δ0 := lim sup
N ′!∞

|A∩[N ′]|
|P∩[N ′]|

is strictly positive. We shall allow all implicit constants to depend on the quantities
δ0, P1, ..., Pk.
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By the prime number theorem

|P∩[N ′]|=(1+o(1))
N ′

log N ′ , (4)

we can find an infinite sequence of integers N ′ going to infinity such that

|A∩[N ′]|> 1
2
δ0

N ′

log N ′ . (5)

Henceforth the parameter N ′ is always understood to obey (5).
We shall need eight (!) small quantities

0 <η7� η6� η5� η4� η3� η2� η1� η0� 1

which depend on δ0 and on P1, ..., Pk. All of the assertions in this paper shall be made
under the implicit assumption that η0 is sufficiently small depending on δ0, P1, ..., Pk;
that η1 is sufficiently small depending on δ0, P1, ..., Pk, η0; and so forth down to η7,
which is assumed sufficiently small depending on δ0, P1, ..., Pk, η0, ..., η6 and should thus
be viewed as being extremely microscopic in size. For the convenience of the reader, we
briefly and informally describe the purpose of each of the ηj ’s, their approximate size,
and the importance of being that size, as follows.

• The parameter η0 controls the coarse-scale M :=Nη0 . It can be set equal to 1/2d,
where d is the largest degree of the polynomials P1, ..., Pk. If one desires the quantity
m in Theorem 1.3 to be smaller than xε, then one can achieve this by choosing η0 to
be less than ε. The smallness of η0 is necessary in order to deduce Theorem 1.3 from
Theorem 2.3 below.

• The parameter η1 (or more precisely its reciprocal 1/η1) controls the degree of
pseudorandomness needed on a certain measure ν to appear later. Due to the highly
recursive nature of the “PET induction” step (§5.10), it will need to be rather small;
it is essentially the reciprocal of an Ackermann function of the maximum degree d and
the number of polynomials k. The smallness of η1 is needed in order to estimate all the
correlations of ν which arise in the proofs of Theorems 4.5 and 4.7.

• The parameter η2 controls the sieve level R:=Nη2 . It can be taken to be cη1/d

for some small absolute constant c>0. It needs to be small relative to η1 in order that
the inradius bound of Proposition 10.1 is satisfied.

• The parameter η3 measures the density of the function f . It is basically of the
form cδ0η2 for some small absolute constant c>0. It needs to be small relative to η2 in
order to establish the mean bound (12).

• The parameter η4 measures the degree of accuracy required in the Koopman–von
Neumann-type structure theorem (Theorem 4.7). It needs to be substantially smaller
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than η3 to make the proof of Theorem 3.16 in §4.9 work. The exact dependence on
η3 involves the quantitative bounds arising from the Bergelson–Leibman theorem (see
Theorem 3.2). In particular, as the only known proof of this theorem is infinitary, no
explicit bounds for η4 in terms of η3 are currently available.

• The parameter η5 controls the permissible error allowed when approximating indi-
cator functions by a smoother object, such as a polynomial; it needs to be small relative
to η4 in order to make the proof of the abstract structure theorem (Theorem 7.1) work
correctly. It can probably be taken to be roughly of the form exp(−C/ηC

4 ) for some
absolute constant C>0, though we do not attempt to make η5 explicit here.

• The parameter η6 (or more precisely 1/η6) controls the maximum degree, dimen-
sion, and number of the polynomials that are encountered in the argument. It needs
to be small relative to η5 in order for the polynomials arising in the proof of Proposi-
tion 7.4 to obey the orthogonality hypothesis (49) of Theorem 7.1. It can in principle be
computed in terms of η5 by using a sufficiently quantitative version of the Weierstrass
approximation theorem, though we do not do so here.

• The parameter η7 controls the fine scale H :=Nη7 , which arises during the “van
der Corput” stage of the proof in §5.10. It needs to be small relative to η6 in order that
the “clearing denominators” step in the proof of Proposition 6.5 works correctly. It is
probably safe to take η7 to be η100

6 although we shall not explicitly do this. On the other
hand, η7 cannot vanish entirely, due to the need to average out the influence of “bad
primes” in Corollary 11.2 and Theorem 12.1.

It is crucial to the argument that the parameters are ordered in exactly the above
way. In particular, the fine scale H=Nη7 needs to be much smaller than the coarse-scale
M=Nη0 .

We use the following asymptotic notation:
• We use X=O(Y ), X�Y or Y �X to denote the estimate |X|6CY for some

quantity 0<C<∞ which can depend on δ0, P1, ..., Pk. If we need C to also depend
on additional parameters, we denote this by subscripts, e.g. X=OK(Y ) means that
|X|6CKY for some CK depending on δ0, P1, ..., Pk,K.

• We use X=o(Y ) to denote the estimate |X|6c(N ′)Y , where c is a quantity de-
pending on δ0, P1, ..., Pk, η0, ..., η7, N

′ which goes to zero as N ′!∞ for each fixed choice
of δ0, P1, ..., Pk, η0, ..., η7. If we need c(N ′) to depend on additional parameters, we denote
this by subscripts, e.g. X=oK(Y ) denotes the estimate |X|6cK(N ′)Y , where cK(N ′) is a
quantity which goes to zero as N ′!∞ for each fixed choice of δ0, P1, ..., Pk, η0, ..., η7,K.

We shall implicitly assume throughout that N ′ is sufficiently large depending on
δ0, P1, ..., Pk, η0, ..., η7; in particular, all quantities of the form o(1) will be small.

Next, we perform the “W -trick” from [18] to eliminate obstructions to uniformity
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arising from small moduli. We shall need a slowly growing function w=w(N ′) of N ′. For
sake of concreteness(15) we shall set

w := 1
10 log log log N ′.

We then define the quantity W by

W :=
∏
p<w

p

and the integer(16) N by

N :=
⌊

N ′

2W

⌋
. (6)

Here and in the sequel, all products over p are understood to range over primes, and bxc
is the greatest integer less than or equal to x. The quantity W will be used to eliminate
the local obstructions to pseudorandomness arising from small prime moduli; one can
think of W (or more precisely the cyclic group ZW ) as the finitary counterpart of the
“profinite factor” generated by the periodic functions in infinitary ergodic theory. From
the prime number theorem (4), one sees that

W � log log N (7)

and
N ′ =N1+o(1). (8)

In particular, the asymptotic limit N ′!∞ is equivalent to the asymptotic limit N!∞
for the purposes of the o( ·) notation, and so we shall now treat N as the underlying
asymptotic parameter instead of N ′.

From (5), (6) and (7) we have

∣∣A∩[
1
2WN

]
\[w]

∣∣�W
N

log N

(15) Actually, the arguments here work for any choice of function w:Z+!Z+ which is bounded by
1
10

log log log N ′ and which goes to infinity as N ′!∞. This is important if one wants an explicit lower
bound on the number of polynomial progressions in a certain range.

(16) Unlike previous work such as [18], we will not need to assume that N is prime (which is the
finitary equivalent of the underlying space X being totally ergodic), although it would not be hard to
ensure that this were the case if desired. This is ultimately because we shall clear denominators as soon
as they threaten to occur, and so there will be no need to perform division in X=ZN . On the other

hand, this clearing of denominators will mean that many (fine) multiplicative factors such as Q( h) shall
attach themselves to the (coarse-scale) shifts one is averaging over. In any case, the “W -trick” of passing
from the integers Z to a residue class W ·Z+b can already be viewed as a kind of reduction to the totally
ergodic setting, as it eliminates the effects of small periods.
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(recall that implicit constants can depend on δ0). On the other hand, since A consists
entirely of primes, all the elements in A\[w] are coprime to W . By the pigeonhole
principle,(17) we may thus find b=b(N)∈[W ] coprime to W such that

∣∣{x∈
[
1
2N

]
:Wx+b∈A

}∣∣� W

φ(W )
N

log N
, (9)

where φ(W )=
∏

p<w(p−1) is the Euler totient function of W , i.e. the number of elements
of [W ] which are coprime to W .

Let us fix this b. We introduce the underlying measure space X :=ZN =Z/NZ,
with the uniform probability measure given by (2). We also introduce the coarse-scale
M :=Nη0 , the sieve level R:=Nη2 , and the fine scale H :=Nη7 . It will be important to
observe the following size hierarchy:

1�W �W 1/η6 �H�H1/η6 �R�R1/η1 �M �N = |X|. (10)

Indeed, each quantity on this hierarchy is larger than any bounded power of the preceding
quantity, for suitable choices of the η parameters, for instance RO(1/η1)6M1/4.

Remark 2.1. In the linear case [18] we have M=N , while the parameter H is not
present (or can be thought of as O(1)). We shall informally refer to parameters of size(18)
O(M) as coarse-scale parameters, and parameters of size H as fine-scale parameters; we
shall use the symbol m to denote coarse-scale parameters and h for fine-scale parameters
(reserving x for elements of X). Note that because the sieve level R is intermediate
between these parameters, we will be able to easily average the pseudorandom measure ν

over coarse-scale parameters, but not over fine parameters. Fortunately, our averages
will always involve at least one coarse-scale parameter, and after performing the coarse-
scale averages first, we will have enough control on main terms and error terms to then
perform the fine averages. The need to keep the fine parameters short arises because
at one key “Weierstrass approximation” stage to the argument, we shall need to control
the product of an extremely large number (about O(1/η6), in fact) of averages (or more
precisely “dual functions”), and this will cause many fine parameters to be multiplied
together in order to clear denominators. This is still tolerable because H remains smaller
than R, M and N even after being raised to a power O(1/η6). Note that it is key here
that the number of powers O(1/η6) does not depend on η7. It will therefore be important

(17) In the case A=P, we may use the prime number theorem in arithmetic progressions (or the
Siegel–Walfisz theorem) to choose b, for instance to set b=1. However, we will not need to exploit this
ability to fix b here.

(18) Later on we shall also encounter some parameters of size O(
√

M ) or O(M1/4), which we shall
also consider to be coarse-scale.
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to keep large parts of our argument uniform in the choice η7, although we can and will
allow η7 to influence o(1) error terms. The quantity H (and thus η7) will not actually
make an impact on the argument until §4, when the local Gowers norms are introduced.

We define the standard shift operator T :X!X on X by Tx:=x+1, with the asso-
ciated action on functions g:X!R by Tg :=g�T−1, and thus Tng(x)=g(x−n) for any
n∈Z. We introduce the normalized counting function f :X!R+ by setting

f(x) :=


φ(W )

W
log R, whenever x∈

[
1
2N

]
and Wx+b∈A,

0, otherwise,
(11)

where we identify
[
1
2N

]
with a subset of ZN in the usual manner. The use of log R

instead of log N as a normalizing factor is necessary in order to bound f pointwise by
the pseudorandom measure ν which we shall encounter in later sections; the ratio η2

between log R and log N represents the relative density between the primes and the
almost primes. Observe from (9) that f has relatively large mean:∫

X

f � η2.

In particular we have ∫
X

f > η3. (12)

Remark 2.2. We will eventually need to take η2 (and hence η3) to be quite small, in
order to ensure that the measure ν obeys all the required pseudorandomness properties
(this is controlled by the parameter η1, which has not yet made a formal appearance).
Fortunately, the Bergelson–Leibman theorem (Theorem 1.1, or more precisely Theo-
rem 3.2 below) works for sets of arbitrarily small positive density, or equivalently for
(bounded) functions of arbitrarily small positive mean.(19) This allows us to rely on
fairly crude constructions for ν which will be easier to estimate. This is in contrast to
the recent work of Goldston, Yıldırım and Pintz [13] on prime gaps, in which it was
vitally important that the density of the prime counting function relative to the almost
prime counting function be as high as possible, which in turn required a near-optimal
(and thus highly delicate) construction of the almost prime counting function.

(19) As in [18], the exact quantitative bound provided by this theorem (or more precisely Theo-
rem 3.2) will not be relevant for qualitative results such as Theorem 1.3. Of course, such bounds would
be important if one wanted to know how soon the first polynomial progression in the primes (or a dense
subset thereof) occurs; for instance such bounds influence how small η4 and thus all subsequent η’s need
to be, which in turn influences the exact size of the final o(1) error in Theorem 2.3. Unfortunately, as the
only known proof of Theorem 1.1 proceeds via infinitary ergodic theory, no explicit bounds are currently
known, however it is reasonable to expect (in view of results such as [15] and [33]) that effective bounds
will eventually become available.
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To prove Theorem 1.3, it will suffice to prove the following quantitative estimate.

Theorem 2.3. (Polynomial Szemerédi theorem in the primes, quantitative version)
Let the notation and assumptions be as above. Then we have

Em∈[M ]

∫
X

TP1(Wm)/W f ... TPk(Wm)/W f > 1
2c

(
1
2η3

)
−o(1), (13)

where the function c( ·) is the one appearing in Theorem 3.2. (Observe that since Pj(0)=0
for all j∈[k], the polynomial Pk(Wm)/W has integer coefficients.)

Indeed, suppose that the estimate (13) held. Then by expanding all the averages
and using (11), we conclude that∣∣{(x,m)∈X×[M ] : x+Pj(Wm)/W ∈

[
1
2N

]
and W (x+Pj(Wm)/W )+b∈A

}∣∣
>

(
1
2c

(
1
2η3

)
−o(1)

)
MN

(
W

φ(W ) log N

)k

.

Here we are using the fact (from (10)) that Pj(Wm) is much less than 1
2N for m∈[M ],

and so one cannot “wrap around” the cyclic group ZN . Observe that each element in the
set on the left-hand side yields a different pair (x′,m′):=(Wx+b, Wm) with the property
that x′+P1(m′), ..., x′+Pk(m′)∈A. On the other hand, as N!∞, the right-hand side
goes to infinity. The claim follows.

Remark 2.4. The above argument in fact proves slightly more than is stated by
Theorem 1.3. Indeed, it establishes a large number of pairs (x′,m′) with x′∈[N ], m′∈[M ]
and x′+P1(m′), ..., x′+Pk(m′)∈A; more precisely, there are at least(20) cNM/logk N

such pairs for some c depending on δ0, P1, ..., Pk, η0, ..., η7.(21) By throwing away the
contribution of those x′ of size �N (which can be done either by modifying f in the
obvious manner, or by using a standard upper bound sieve to estimate this component),
one can in fact assume that x′ is comparable to N . Similarly, one may assume m′

to be comparable to Nη0 . The upshot of this is that for any given η0>0 one in fact
obtains infinitely many “short” polynomial progressions x′+P1(m′), ..., x′+Pk(m′) with

(20) To obtain such a bound it is important to remember that we can take w, and hence W , to
be as slowly growing as one pleases; see [18] for further discussion. Note that if A=P is the full set of

primes then the Bateman–Horn conjecture [3] predicts an asymptotic of the form (γ+o(1))NM/logk N
for an explicitly computable γ; we do not come close to verifying this conjecture here.

(21) The arguments in this paper can be easily generalized to give a lower bound of

cNM1 ... Mr/logk N on the number of tuples (x′, m′
1, ..., m′

r) with

x′+P1(m′
1, ..., m′

r), ..., x′+Pk(m′
1, ..., m′

r)∈A,

x′∈[N ], m′
l∈[Ml] for l∈[r], and Pj∈Z[m1, ...,mr] for j∈[k]. To obtain this, one would only need to

slightly modify the arguments in §5 (see Remark 5.19), whereas the rest of the proof remains the same.
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m′ comparable to (x′)η0 . One can take smaller and smaller values of η0 and diagonalize
to obtain the same statement with the bound m′=(x′)o(1). This stronger version of
Theorem 1.3 is already new in the linear case Pj =(j−1)m, although it is not too hard
to modify the arguments in [18] to establish it. Note that an inspection of the Furstenberg
correspondence principle reveals that the Bergelson–Liebman theorem (Theorem 1.1) has
an even stronger statement in this direction, namely that if A has positive upper density
in the integers Z rather than the primes P, then there exists a fixed m 6=0 for which the set
{x:x+Pj(m)∈A for all j∈[k]} is infinite (in fact, it can be chosen to have positive upper
density). Such a statement might possibly be true for primes (or dense subsets of the
primes) but is well beyond the technology of this paper. For instance, to establish such
a statement even in the simple case (P1, P2)=(0,m) is tantamount to asserting that the
primes have bounded gaps arbitrarily often, which is still not known unconditionally even
after the recent breakthroughs in [13]. On the other hand, it may be possible to establish
such a result with a logarithmic dependence between x′ and m′, e.g. m′�logO(1) x′. We
do not pursue this issue here.

It remains to prove Theorem 2.3. This shall occupy the remainder of the paper. The
proof is lengthy, but splits into many non-interacting parts; see Figure 1 for a diagram
of the logical dependencies of this paper.

2.5. Miscellaneous notation

To conclude this section, we record some additional notation which will be used heavily
throughout this paper.

We have already used the notation Z[m] to denote the ring of integer-coefficient
polynomials in one indeterminate(22) m. More generally one can consider Z[x1, ...,xd],
the ring of integer-coefficient polynomials in d indeterminates x1, ...,xd. More generally
still we have Z[x1, ...,xd]D, the space of D-tuples of polynomials in Z[x1, ...,xd]; note that
each element of this space defines a polynomial map from Zd to ZD. Thus we shall think
of elements of Z[x1, ...,xd]D as D-dimensionally-valued integer-coefficient polynomials
over d variables. The degree of a monomial xn1

1 ...xnd

d is n1+...+nd; the degree of a
polynomial in Z[x1, ...,xd]D is the highest degree of any monomial which appears in any
component of the polynomial; we adopt the convention that the zero polynomial has
degree −∞. We say that two D-dimensionally-valued polynomials "P , "Q∈Z[x1, ...,xd]D

are parallel if n"P =m"Q for some non-zero integers n and m.

(22) We shall use boldface letters to denote abstract indeterminates, reserving the non-boldface
letters for concrete realizations of these indeterminates, which in this paper will always be in the ring of
integers Z.
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Figure 1. The main theorems in this paper and their logical dependencies. The labels on the
arrows indicate the section(s) where the implication is proven, and which appendices are used;
if no section is indicated, the result is proven immediately after it is stated. Self-contained
arguments are indicated using a filled-in circle.
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If  n=(n1, ..., nD) and "m=(m1, ...,mD) are two vectors in Zd, we use

 n·"m :=n1m1+...+nDmD ∈Z

to denote their dot product.
If f :X!R and g:X!R are two functions, we say that f is pointwise bounded

by g, and write f6g, if we have f(x)6g(x) for all x∈X. Similarly, if g:X!R+ is non-
negative, we write f=O(g) if we have f(x)=O(g(x)) uniformly for all x∈X. If A⊂X, we
use 1A:X!{0, 1} to denote the indicator (characteristic) function of A; thus 1A(x)=1
when x∈A and 1A(x)=0 when x /∈A. Given any statement P , we use 1P to denote 1
when P is true and 0 when P is false. Thus, for instance, 1A(x)=1x∈A.

We define a convex body to be an open bounded convex subset of a Euclidean
space Rd. We define the inradius of a convex body to be the radius of the largest
ball that is contained inside the body; this will be a convenient measure of how “large”
a body is.(23)

3. Three pillars of the proof

As in [18], our proof of Theorem 2.3 rests on three independent pillars—a quantitative
Szemerédi-type theorem (proven by traditional ergodic theory), a transference principle
(proven by finitary ergodic theory), and the construction of a pseudorandom majorant ν

for f (with the pseudorandomness proven by sieve theory). In this section we describe
each of these pillars separately, and state where they are proven.

3.1. The quantitative Szemerédi-type theorem

Theorem 2.3 concerns a multiple polynomial average of an unbounded function f . To
control such an object, we first need to establish an estimate for bounded functions g.
This is achieved as follows (cf. [18, Proposition 2.3]).

Theorem 3.2. (Polynomial Szemerédi theorem, quantitative version) Let the nota-
tion and assumptions be as in the previous section. Let δ>0, and let g:X!R be any
function obeying the pointwise bound 06g61+o(1) and the mean bound

∫
X

g>δ−o(1).
Then we have

Em∈[M ]

∫
X

TP1(Wm)/W g ... TPk(Wm)/W g > c(δ)−o(1) (14)

for some c(δ)>0 depending on δ, P1, ..., Pk, but independent of N and W .

(23) In our paper there will only be essentially two types of convex bodies: “coarse-scale” convex

bodies with inradius at least M1/4, and “fine-scale” convex bodies, with inradius at least �H. In almost
all cases, the convex bodies will in fact simply be rectangular boxes.
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It is not hard to see that this theorem implies Theorem 1.1. The converse is not
immediately obvious (the key point being, of course, that the bound c(δ) in (14) is
uniform in both N and W ); however, it is not hard to deduce Theorem 3.2 from (a
multidimensional version of) Theorem 1.1 and the Furstenberg correspondence principle;
one can also use the uniform version of the Bergelson–Leibman theorem proved in [5].
As the arguments here are fairly standard, and are unrelated to those in the remainder
of the paper, we defer the proof of Theorem 3.2 to Appendix B.

3.3. Pseudorandom measures

To describe the other two pillars of the argument it is necessary for the measure ν to
make its appearance. (The precise properties of ν, however, will not actually be used
until §5 and §6.)

Definition 3.4. (Measure, [18]) A measure is a non-negative function ν:X!R+ with
the total mass estimate ∫

X

ν =1+o(1) (15)

and the crude pointwise bound
ν�ε Nε (16)

for any ε>0.

Remark 3.5. As remarked in [18], it is really νµX which is a measure rather than ν,
where µX is the uniform probability measure on X; ν should be more accurately referred
to as a “probability density” or “weight function”. However, we retain the terminology
“measure” for compatibility with [18]. The condition (16) is needed here to discard
certain error terms arising from the boundary effects of shift ranges (such as those arising
from the van der Corput lemma). This condition does not prominently feature in [18],
as the shifts range over all of ZN , which has no boundary. Fortunately, (16) is very easy
to establish for the majorant that we shall end up using. We note though that while the
right-hand side of (16) does not look too large, we cannot possibly afford to allow factors
such as Nε to multiply into error terms such as o(1), as these terms will almost certainly
cease to be small at that point. Hence we can only really use (16) in situations where
we already have a polynomial gain in N , which can for instance arise by exploiting the
gaps in (10).

The simplest example of a measure is the constant measure ν≡1. Another model
example worth keeping in mind is the random measure where ν(x)=log R with indepen-
dent probability 1/log R for each x∈X, and ν(x)=0 otherwise. The following definitions
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attempt to capture certain aspects of this random measure, which will eventually be satis-
fied by a certain truncated divisor sum concentrated on almost primes. These definitions
are rather technical, and their precise form is only needed in later sections of the paper.
They are somewhat artificial in nature, being a compromise between the type of control
needed to establish the relative polynomial Szemerédi theorem (Theorem 3.16) and the
type of control that can be easily verified for truncated divisor sums (Theorem 3.18). It
may well be that a simpler notion of pseudorandomness can be given.

Definition 3.6. (Polynomial forms condition) Let ν:X!R+ be a measure. We say
that ν obeys the polynomial forms condition if, given any 06J, d61/η1, any polynomials
Q1, ..., QJ∈Z[m1, ...,md] of d unknowns of total degree at most 1/η1, with coefficients at
most W 1/η1 and such that Qj−Qj′ is non-constant for every distinct j, j′∈[J ], for every
ε>0, and for every convex body Ω⊂Rd with inradius at least Nε, and contained in the
ball B(0,M2), we have the bound

E
 h∈Ω∩Zd

∫
X

∏
j∈[J]

TQj( h)ν =1+oε(1). (17)

Note the first appearance of the parameter η1, which is controlling the degree of the
pseudorandomness here. Note also that the bound is uniform in the coefficients of the
polynomials Q1, ..., QJ .

Examples 3.7. The mean bound (15) is a special case of (17); another simple example
is

Eh∈[H]

∫
X

νThνTWh2
ν =1+o(1).

Observe that the smaller one makes η1, the stronger the polynomial forms condition
becomes.

Remark 3.8. Definition 3.6 is a partial analogue of the “linear forms condition”
in [18]. The parameter η1 is playing multiple roles, controlling the degree, dimension,
number and size of the polynomials in question. It would be more natural to split this
parameter into four parameters to control each of these attributes separately, but we
have chosen to artificially unify these four parameters in order to simplify the notation
slightly. The parameter ε will eventually be set to be essentially η7, but we leave it
arbitrary here, to emphasize that the definition of pseudorandomness does not depend
on the choice of η7 (or H). This will be important later, basically because we need to
select ν (or more precisely η2 (or R), which is involved in the construction of ν) before
we are allowed to choose η7.
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The next condition is in a similar spirit, but considerably more complicated; it allows
for arbitrarily many factors in the average, as long as they have a partly linear structure,
and they are organized into relatively small groups, with a separate coarse-scale averaging
applied to each of the groups.

Definition 3.9. (Polynomial correlation condition) Let ν:X!R+ be a measure. We
say that ν obeys the polynomial correlation condition if, given any 06D,J, L61/η1, any
integers D′, D′′,K>0, and any ε>0, and given any vector-valued polynomials

"Pj ∈Z[h1, ...,hD′′ ]D and "Qj,k, !Sl ∈Z[h1, ...,hD′′ ]D
′

of degree at most 1/η1 for j∈[J ], k∈[K] and l∈[L] obeying the following non-degeneracy
conditions:

• for any distinct j, j′∈[J ] and any k∈[K], the (D+D′)-dimensionally-valued poly-
nomials ("Pj , "Qj,k) and ("Pj′ , "Qj′,k) are not parallel,

• the coefficients of "Pj and !Sl are bounded in magnitude by W 1/η1 ,
• the D′-dimensionally-valued polynomials !Sl are distinct as l varies in [L],

and given any convex body Ω⊂RD with inradius at least M1/4 and convex bodies
Ω′⊂RD′

and Ω′′⊂RD′′
with inradii at least Nε, with all the convex bodies contained in

B(0,M2), then

E
 n∈Ω′∩ZD′E

 h∈Ω′′∩ZD′′

∫
X

( ∏
k∈[K]

E
"m∈Ω∩ZD

∏
j∈[J]

T
!Pj( h)·"m+"Qj,k( h)· nν

) ∏
l∈[L]

T
 Sl( h)· nν

=1+oD′,D′′,K,ε(1).

(18)

Remark 3.10. It will be essential here that D′, D′′ and K can be arbitrarily large;(24)
otherwise, this condition becomes essentially a special case of the polynomial forms con-
dition. Indeed, in our argument, these quantities will get as large as O(1/η6), which is far
larger than 1/η1. As in the preceding definition, ε will eventually be set to equal essen-
tially η7, but we refrain from doing so here to keep the definition of pseudorandomness
independent of η7, to avoid the appearance of circularity in the argument.

Remark 3.11. The correlation condition (18) would follow from the polynomial forms
condition (17), if we had the pointwise bounds

E
"m∈Ω∩ZD

∏
j∈[J]

T
!Pj( h)·"m+"Qj,k( h)· nν =1+o(1) (19)

(24) An analogous phenomenon occurs in the correlation condition in [18], where it was essential that
the exponent q appearing in that condition (which is roughly analogous to K here) could be arbitrarily
large.
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for each k∈[K] and all  h and  n. Unfortunately, such a bound is too optimistic to be true:
for instance, if "Pj( h)=Qj,k( h)=0, then the left-hand side is an average of νJ , which is
almost certainly much larger than 1. In the number-theoretic applications in which ν is
supposed to concentrate on almost primes, one also has similar problems when "Pj( h) and
Qj,k( h) are non-zero but very smooth (i.e. they have many small prime factors slightly
larger than w). In [18] these smooth cases were modeled by a weight function τ , which
obeyed arbitrarily large moment conditions which led to integral estimates analogous to
(18). In this paper we have found it more convenient to not explicitly create the weight
function, instead placing the integral estimate (18) in the correlation condition hypothesis
directly. In fact, one can view (18) as an assertion that (19) holds “asymptotically almost
everywhere” (cf. Proposition 6.2 below).

Remark 3.12. One could generalize (18) slightly by allowing the number of terms
J in the j product to depend on k, but we will not need this strengthening and in any
event it follows automatically from (18), by a Hölder inequality argument similar to that
used in Lemma 3.14 below.

Definition 3.13. (Pseudorandom measure) A pseudorandom measure is any measure
ν which obeys both the polynomial forms condition and the correlation condition.

The following lemma (cf. [18, Lemma 3.4]) is useful.

Lemma 3.14. If ν is a pseudorandom measure, then so is ν1/2 := 1
2 (1+ν) (possibly

with slightly different decay rates for the o(1) error terms).

Proof. It is clear that ν1/2 satisfies (15) and (16). Because ν obeys the polynomial
forms condition (17), one can easily verify using the binomial formula that ν1/2 does also.
Now we turn to the polynomial correlation condition, which requires a little more care.
Setting "Qj,k to be independent of k, we obtain that

E
 n∈Ω′∩ZD′E

 h∈Ω′′∩ZD′′

∫
X

(
E
"m∈Ω∩ZD

∏
j∈[J]

T
!Pj( h)·"m+"Qj( h)· nν

)K ∏
l∈[L]

T
 Sl( h)· nν

=1+oD′,D′′,K,ε(1)

for all K>0 and "Pj , "Qj and !Sl obeying the hypotheses of the correlation condition. By
the binomial formula, this implies that

E
 n∈Ω′∩ZD′E

 h∈Ω′′∩ZD′′

∫
X

(
E
"m∈Ω∩ZD

∏
j∈[J]

T
!Pj( h)·"m+"Qj( h)· nν−1

)K ∏
l∈[L]

T
 Sl( h)· nν

=0K +oD′,D′′,K,ε(1).
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(Recall of course that 00=1.) Let us take K to be a large even integer. Another appli-
cation of the binomial formula allows one to replace the final ν by ν1/2. By the triangle
inequality in a weighted Lebesgue norm lK , we may then replace the other occurrences
of ν by ν1/2 also:

E
 n∈Ω′∩ZD′E

 h∈Ω′′∩ZD′′

∫
X

(
E
"m∈Ω∩ZD

∏
j∈[J]

T
!Pj( h)·"m+"Qj( h)· nν1/2−1

)K

×
∏

l∈[L]

T
 Sl( h)· nν1/2 =0K +oD′,D′′,K,ε(1).

This was only proven for even K, but follows also for odd K by the Cauchy–Schwarz
inequality (94). By Hölder’s inequality, we obtain a similar statement when the Qj ’s are
now allowed to vary in k:

E
 n∈Ω′∩ZD′E

 h∈Ω′′∩ZD′′

∫
X

( ∏
k∈[K]

(
E
"m∈Ω∩ZD

∏
j∈[J]

T
!Pj( h)·"m+"Qj,k( h)· nν1/2−1

))
×

∏
l∈[L]

T
 Sl( h)· nν1/2 =0K +oD′,D′′,K,ε(1).

Applying the binomial formula again, we see that ν1/2 obeys (18) as desired.

3.15. The transference principle

We can now state the second pillar of our argument (cf. [18, Theorem 3.5]).

Theorem 3.16. (Relative polynomial Szemerédi theorem) Let the notation and as-
sumptions be as in §2. Then, given any pseudorandom measure ν and any g:X!R
obeying the pointwise bound 06g6ν and the mean bound∫

X

g > η3, (20)

we have
Em∈[M ]

∫
X

TP1(Wm)/W g ... TPk(Wm)/W g > 1
2c

(
1
2η3

)
−o(1), (21)

where c( ·) is the function appearing in Theorem 3.2.

Apart from inessential factors of 2 (and the substantially worse decay rates concealed
within the o(1) notation), this theorem is significantly stronger than Theorem 3.2, which
is essentially the special case ν=1. In fact, we shall derive Theorem 3.16 from Theo-
rem 3.2 using the transference principle technology from [18]. The argument is lengthy
and will occupy §§4–7.
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3.17. Construction of the majorant

To conclude Theorem 2.3 from Theorem 3.16 and (12) it clearly suffices to show the
following (cf. [18, Proposition 9.1]).

Theorem 3.18. (Existence of pseudorandom majorant) Let the notation and as-
sumptions be as in §2. Then, there exists a pseudorandom measure ν such that the
function f defined in (11) enjoys the pointwise bound 06f6ν.

This is the third pillar of the argument. The majorant ν acts as an “enveloping
sieve” for the primes (or more precisely, for the primes equal to b modulo W ), in the
sense of [25] and [26]. It is defined explicitly in §8. However, for the purposes of the proof
of the other pillars of the argument (Theorems 3.2 and 3.16) it will not be necessary to
know the precise definition of ν, only that ν majorizes f and is pseudorandom. In order
to establish this pseudorandomness, it is necessary that η2 is small compared to η1. On
the other hand, observe that ν does not depend on H, and thus it is insensitive to the
choice of η7.

The proof of Theorem 3.18 follows similar lines to those in [18] and [19], except that
the “local” or “singular series” calculation is more complicated, as one is now forced to
count solutions to one or more polynomial equations over Fp, rather than linear equations.
Fortunately, it turns out that the polynomials involved happen to be linear in at least
one “coarse-scale” variable, and so the number of solutions can be counted relatively
easily, without recourse to any deep arithmetic facts (such as the Weil conjectures). We
establish Theorem 3.18 in §§8–12, using some basic facts about convex bodies, solutions
to polynomial equations in Fp, and distribution of prime numbers which are recalled in
Appendices C–E, respectively.

4. Overview of the proof of the transference principle

We now begin the proof of the relative polynomial Szemerédi theorem (Theorem 3.16).
As in [18], this theorem will follow quickly from three simpler components. The first
is the uniformly quantitative version of the ordinary polynomial Szemerédi theorem,
Theorem 3.2, which will be proven in Appendix B. The second is a “polynomial gener-
alized von Neumann theorem” (Theorem 4.5) which allows us to neglect the contribu-
tion of sufficiently “locally Gowers-uniform” contributions to (21). The third is a “local
Koopman–von Neumann structure theorem” (Theorem 4.7) which decomposes a function
06f6ν (outside of a negligible set) into a bounded positive component fU⊥ and a locally
Gowers-uniform error fU . The purpose of this section is to formally state the latter two
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components and show how they imply Theorem 3.16; the proofs of these components will
then occupy subsequent sections of the paper.

The pseudorandom measure ν plays no role in the ordinary polynomial Szemerédi
theorem (Theorem 3.2). In the von Neumann theorem (Theorem 4.5) the pseudorandom-
ness of ν is exploited via the polynomial forms condition (Definition 3.6). In the structure
theorem (Theorem 4.7) it is instead the polynomial correlation condition (Definition 3.9)
which delivers the benefits of pseudorandomness.

4.1. Local Gowers norms

As mentioned in the introduction, a key ingredient in the proof of Theorem 3.16 will be
the introduction of a norm ‖ · ‖

U
!Q([H]t,W )
M

which controls averages such as those in (21).
It is here that the parameter η7 makes its first appearance, via the shift range H. The
purpose of this subsection is to define these norms formally.

Let f :X!R be a function. For any d>1, recall that the (global) Gowers uniformity
norm ‖f‖Ud of f is defined by the formula

‖f‖2
d

Ud :=Em1,...,md∈ZN

∫
X

∏
(ω1,...,ωd)∈{0,1}d

Tω1m1+...+ωdmdf.

An equivalent definition is

‖f‖2
d

Ud :=E
m

(0)
1 ,...,m

(0)
d ,m

(1)
1 ,...,m

(1)
d ∈ZN

∫
X

∏
(ω1,...,ωd)∈{0,1}d

Tm
(ω1)
1 +...+m

(ωd)
d f,

as can be seen by making the substitutions m
(1)
j :=m

(0)
j +mj , j∈[d], and shifting the

integral by m
(0)
1 +...+m

(0)
d .

We will not directly use the global Gowers norms in this paper, because the range of
the shifts m in those norms is too large for our applications. Instead, we shall need local
versions of this norm. For any steps a1, ..., ad∈Z, we define the local Gowers uniformity
norm Ua1,...,ad√

M
by(25)

‖f‖2
d

U
a1,...,ad√

M

:=E
m

(0)
1 ,...,m

(0)
d ,m

(1)
1 ,...,m

(1)
d ∈[

√
M ]

∫
X

∏
(ω1,...,ωd)∈{0,1}d

Tm
(ω1)
1 a1+...+m

(ωd)
d adf.

(22)
Thus, for instance, when

√
M=N and a1, ..., ad are invertible in Z×N , then the Ua1,...,ad√

M

norm is the same as the Ud norm. When
√

M is much smaller than N , however, there

(25) We will need to pass from shifts of size O(M) to shifts of size O(
√

M ) to avoid dealing with
certain boundary terms (similar to those arising in the van der Corput lemma).
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appears to be no obvious comparison between these two norms. It is not immediately ob-
vious that the local Gowers norm is indeed a norm, but we shall show this in Appendix A,
where basic properties of these norms are established. In practice, we shall take a1, ..., ad

to be rather small compared to R or M , indeed these steps will have size O(HO(1)).

Remark 4.2. One can generalize this norm to complex-valued functions f by conju-
gating those factors of f for which ω1+...+ωd is odd. If we then set f=e(φ)=e2πiφ for
some phase function φ:X!R/Z, then the local Gowers ‖f‖U

a1,...,ad√
M

norm is informally
measuring the extent to which the d-fold difference∑

ω1,...,ωd∈{0,1}

(−1)ω1+...+ωdφ(x+m
(ω1)
1 a1+...+m

(ωd)
d ad)

is close to zero, where x ranges over X, and m
(0)
j and m

(1)
j range over [M ] for j∈[d].

Even more informally, these norms are measuring the extent to which φ “behaves like”
a polynomial of degree less than d on arithmetic progressions of the form{

x+m1a1+...+mdad :m1, ...,md ∈
[√

M
]}

,

where x∈X is arbitrary. The global Gowers norm Ud, in contrast, measures similar
behavior over the entire space X.

We shall estimate the Gowers-uniform contributions to (21), via repeated application
of the van der Corput lemma, using the standard polynomial exhaustion theorem (PET)
induction scheme [4]. This will eventually allow us to control these contributions, not by
a single local Gowers-uniform norm, but rather by an average of such norms, in which the
shifts h1, ..., hd are fine and parameterized by a certain polynomial. More precisely, given
any t>0 and any d-tuple "Q=(Q1, ..., Qd)∈Z[h1, ...,ht,W]d of polynomials, we define the

averaged local Gowers uniformity norm U
"Q([H]t,W )√

M
by the formula

‖f‖2
d

U
!Q([H]t,W )√

M

:=E
 h∈[H]t‖f‖

2d

U
Q1( h,W ),...,Qd( h,W )
√

M

. (23)

Inserting (22), we thus have

‖f‖2
d

U
!Q([H]t,W )√

M

:=E
 h∈[H]tEm

(0)
1 ,...,m

(0)
d ,m

(1)
1 ,...,m

(1)
d ∈[

√
M ]∫

X

∏
(ω1,...,ωd)∈{0,1}d

Tm
(ω1)
1 Q1( h,W )+...+m

(ωd)
d Qd( h,W )f.

(24)

In Appendix A we show that the local Gowers uniformity norms are indeed norms; by the
triangle inequality in l2

d

, this implies that the averaged local Gowers uniformity norms
are also norms. To avoid degeneracies, we will assume that none of the polynomials
Q1, ..., Qd vanish.
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Remark 4.3. The distinction between local Gowers uniform norms and their aver-
aged counterparts is a necessary feature of our “quantitative” setting. In the “qualitative”
setting of traditional (infinitary) ergodic theory (where X is infinite), there is no need
for this sort of distinction; if the local Gowers uniformity norms go to zero as M!∞
for the shifts h1=...=hd=1, then it is not hard (using various forms of the Cauchy–
Schwarz–Gowers inequality, such as those in Appendix A) to show that the same is true
for any other fixed choice of shifts h1, ..., hd, and hence the averaged norms will also go
to zero as M!∞ for any fixed choice of "Q and H. The converse implications are also
easy to establish. Thus one can use a single local Gowers uniformity norm, U1,...,1√

M
, to

control everything in the limit M!∞ with H bounded; this then corresponds to the
Gowers–Host–Kra seminorms used in [21] and [23] to control polynomial averages. How-
ever, in our more quantitative setting, where H is allowed to grow like a (very small)
power of N , we cannot afford to use the above equivalences (as they will amplify the o(1)
errors in our arguments to be unacceptably large), and so must turn instead to the more
complicated-seeming averaged local Gowers uniformity norms.

4.4. The polynomial generalized von Neumann theorem

We are now ready to state the second main component of the proof of Theorem 3.16 (the
first component being Theorem 3.2).

Theorem 4.5. (Polynomial generalized von Neumann theorem) Let the notation
and assumptions be as in §2. Then, there exist d>2, t>0 of size O(1) and a d-tuple
"Q∈Z[h1, ...,ht,W]d of degree O(1) with coefficients O(1), and with none of the compo-
nents of "Q vanishing , as well as a constant c>0 depending only on P1, ..., Pk, such that
the inequality∣∣∣∣Em∈[M ]

∫
X

TP1(Wm)/W g1 ... TPk(Wm)/W gk

∣∣∣∣�min
j∈[k]

‖gj‖c

U
!Q([H]t,W )√

M

+o(1) (25)

holds for any functions g1, ..., gk:X!R obeying the pointwise bound |gj |61+ν for all
j∈[k] and x∈X, and some pseudorandom measure ν.

This theorem is a local polynomial analogue of [18, Proposition 5.3]. It will be proven
by a vast number of applications of the van der Corput lemma and the Cauchy–Schwarz
inequality following the standard PET induction scheme; the idea is to first apply the
van der Corput lemma repeatedly to linearize the polynomials P1, ..., Pk, and then apply
the Cauchy–Schwarz inequality repeatedly to estimate the linearized averages by local
Gowers norms. The presence of the measure ν will cause a large number of shifts of ν

to appear as weights, but these will ultimately be controllable via the polynomial forms
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condition (Definition 3.6). The final values of d and t obtained will be very large (indeed,
they exhibit Ackermann-type behavior in the maximal degree of P1, ..., Pk) but can be
chosen to be small compared to 1/η1, which controls the pseudorandomness of ν.

The proof of Theorem 4.5 is elementary but rather lengthy (and notation intensive),
and shall occupy all of §5. The ν=1 case of this theorem is a finitary version of a similar
result in [21], while the linear case of this theorem (when the Pj−Pj′ are all linear)
is essentially in [18]. Indeed, the proof of this theorem will use a combination of the
techniques from both of these papers.

4.6. The local Koopman–von Neumann theorem

The third major component of the proof of Theorem 3.16 is the following structure
theorem.

Theorem 4.7. (Structure theorem) Let the notation and assumptions be as in §2.
Let t>0 and d>2 be of size O(1), and let "Q∈Z[h1, ...,ht,W]d be polynomials of degree
O(1) with coefficients O(1) (and with none of the components of "Q vanishing). Then,
given any pseudorandom measure ν and any g:X!R+ with the pointwise bound 06g6ν,
there exist functions gU⊥ , gU :X!R with the pointwise bound

0 6 gU⊥(x)+gU (x) 6 g(x) (26)

of g obeying the following estimates:
• (boundedness of the structured component)

0 6 gU⊥(x) 6 1 for all x∈X; (27)

• (gU⊥ captures most of the mass)∫
X

gU⊥ >
∫

X

g−O(η4)−o(1); (28)

• (uniformity of the unstructured component)

‖gU‖
U
!Q([H]t,W )√

M

6 η
1/2d

4 +o(1). (29)

Remark 4.8. Note the first apperance of the parameter η4, which is controlling the
accuracy of this structure theorem. One can make this accuracy as strong as desired,
but at the cost of pushing η7 (and thus H) down, which will ultimately worsen many of
the o(1) errors appearing here and elsewhere.
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Theorem 4.7 is the most technical and difficult component of the entire paper, and is
proven in §6 and §7. It is a “finitary ergodic theory” argument which relies on iterating
a certain “dichotomy between structure and randomness”. Here, the randomness is
measured using the local Gowers uniformity norm U

"Q([H]t,W )√
M

. To measure the structured
component, we need the machinery of dual functions, as in [18], together with an energy
incrementation argument which we formalize abstractly in Theorem 7.1. A key point
will be that ν−1 is “orthogonal” to these dual functions in a rather strong sense (see
Proposition 6.5), which will be the key to approximating functions bounded by ν with
functions bounded by 1. This will be accomplished by a rather tricky series of applications
of the Cauchy–Schwarz inequality and will rely heavily on the polynomial correlation
condition (Definition 3.9).

4.9. Proof of Theorem 3.16

Using Theorems 4.5 and 4.7, we can now quickly prove Theorem 3.16 (and hence Theo-
rem 1.3, assuming Theorem 3.18), following the same argument as in [18].

Let the notation and assumptions be as in §2. Let ν be a pseudorandom measure,
and let g:X!R obey the pointwise bound 06g6ν and (20).

Let d>0, t>0 and "Q be as in Theorem 4.5; these expressions depend only on
P1, ..., Pk, and so we do not need to explicitly track their influence on the O( ·) and
o( ·) notation. Applying Theorem 4.7, we thus obtain functions gU and gU⊥ obeying the
properties claimed in that theorem. From (26) we have

Em∈[M ]

∫
X

TP1(Wm)/W g ... TPk(Wm)/W g

>Em∈[M ]

∫
X

TP1(Wm)/W (gU⊥+gU ) ... TPk(Wm)/W (gU⊥+gU ).

We expand the right-hand side into 2k=O(1) terms. Consider any of the 2k−1 of these
terms which involve at least one factor of gU . From (26) and (27) we know that gU and
gU⊥ are both bounded pointwise in magnitude by ν+1+o(1), which is O(ν+1) when N

is large enough. Thus, by Theorem 4.5 and (29), the contribution of all of these terms
can be bounded in magnitude by a constant multiple of

‖gU‖c

U
!Q([H]t,W )√

M

+o(1)� η
c/2d

4 +o(1)

for some c>0 depending only on P1, ..., Pk. On the other hand, from (28), (20) and the
choice of parameters, we have that ∫

X

gU⊥ > 1
2η3.
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Applying this, (27) and Theorem 3.2 yields

Em∈[M ]

∫
X

TP1(Wm)/W gU⊥ ... TPk(Wm)/W gU⊥ > c
(

1
2η3

)
> 0.

Putting all this together, we conclude that

Em∈[M ]

∫
X

TP1(Wm)/W g ... TPk(Wm)/W g > c
(

1
2η3

)
−O(ηc/2d

4 )−o(1).

As η4 is chosen small compared to η3, Theorem 3.16 follows.

5. Proof of the generalized von Neumann theorem

In this section we prove Theorem 4.5. In a nutshell, our argument here will be a rigorous
implementation of the following scheme:

polynomial average

�weighted linear average+o(1) (van der Corput)

�weighted parallelopiped average+o(1) (weighted gen. von Neumann)

�unweighted parallelopiped average+o(1) (Cauchy–Schwarz).

The argument is based upon that used to prove [18, Proposition 5.3], namely repeated
application of the Cauchy–Schwarz inequality to replace various functions gj by ν (or
ν+1), followed by application of the polynomial forms condition (Definition 3.6) to re-
place the resulting polynomial averages of ν by 1+o(1). The major new ingredient in the
argument compared to [18] will be the polynomial exhaustion theorem (PET) induction
scheme (used for instance in [6]) in order to estimate the polynomial average in (25)
by a linear average similar to that treated in [18, Proposition 5.3]. After using PET
induction to achieve this linearization, the rest of the proof is broadly similar to that in
[18, Proposition 5.3], except for the fact that the shift parameters are restricted to be
of size M or

√
M rather than N , and that there is also some additional averaging over

short shift parameters of size O(H).
The arguments are elementary and straightforward, but will require a rather large

amount of new notation in order to keep track of all the weights and factors created by
applications of the Cauchy–Schwarz inequality. Fortunately, none of this notation will
be needed in any other section; indeed, this section can be read independently of the rest
of the paper (although it of course relies on the material in earlier sections, and also on
Appendix A).
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We begin with some simple reductions. First observe (as in [18]) that Lemma 3.14
allows us to replace the hypotheses |gj |61+ν by the slightly stronger |gj |6ν, at the
(acceptable) cost of worsening the implicit constant in (25) by a factor of 2k. Next, we
claim that it suffices to find d, t, c and "Q∈Z[h1, ...,ht,W]d for which we have the weaker
estimate ∣∣∣∣Em∈[M ]

∫
X

TP1(Wm)/W g1 ... TPk(Wm)/W gk

∣∣∣∣�‖g1‖c

U
!Q([H]t,W )√

M

+o(1) (30)

(i.e. we only control the average using the norm of g1, rather than the best norm of all
of the gi’s). Indeed, if we could show this, then by symmetry we could find dj , tj , and
"Qj∈Z[h1, ...,htj ,W]dj , j∈[k], such that∣∣∣∣Em∈[M ]

∫
X

TP1(Wm)/W g1 ... TPk(Wm)/W gk

∣∣∣∣�‖gj‖
cj

U
!Qj([H]

tj ,W )
√

M

+o(1),

whenever j∈[k] and ν is pseudorandom. The claim then follows by using Lemma A.3 to
obtain a local Gowers norm U

"Q([H]t,W )√
M

which dominates each of the individual norms
U
"Qj([H]tj ,W )√

M
, and taking c:=minj∈[k] cj . (Note that the pointwise bound |gj |6ν and the

polynomial forms condition easily imply that the U
"Qj([H]tj ,W )√

M
norm of gj is O(1).)

It remains to prove (30). It should come as no surprise to the experts that this type
of “generalized von Neumann” theorem will be proven via a large number of applications
of van der Corput’s lemma and the Cauchy–Schwarz inequality. In order to keep track of
the intermediate multilinear expressions which arise during this process, it is convenient
to prove a substantial generalization of this estimate. We first need the notion of a
polynomial system, and averages associated with such systems.

Definition 5.1. (Polynomial system) A polynomial system S consists of the following
objects:

• An integer D>0, which we call the number of fine degrees of freedom;
• A non-empty finite index set A (the elements of which we shall refer to as nodes

of the system);
• A polynomial Rα∈Z[m,h1, ...,hD,W] in D+2 variables attached to each node

α∈A;
• A distinguished node α0∈A;
• A (possibly empty) collection A′⊂A\{α0} of inactive nodes. The nodes in A\A′

will be referred to as active. Thus for instance the distinguished node α0 is always active.
We say that a node α∈A is linear if Rα−Rα0 is at most linear in m, thus the

distinguished node is always linear. We say that the entire system S is linear if every
active node is linear. We make the following non-degeneracy assumptions:

• If α and β are distinct nodes in A, then Rα−Rβ is not constant in m,h1, ...,hD.
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• If α and β are distinct linear nodes in A, then Rα−Rβ is not constant in m.
Given any two nodes α and β, we define the distance d(α, β) between the two nodes

to be the m-degree of the polynomial Rα−Rβ (which is non-zero by hypothesis); thus this
distance is symmetric, non-negative, and obeys the non-Archimedean triangle inequality

d(α, γ) 6max(d(α, β), d(β, γ)).

Note that α is linear if and only if d(α, α1)61, and furthermore we have d(α, β)=1 for
any two distinct linear nodes α and β.

Example 5.2. Take D:=0, A:={1, 2, 3}, with R1 :=0, R2 :=m and R3 :=m2, and let
3 be the distinguished node. Then the node 3 is linear and the other two are non-linear.
(If the distinguished node was 1 or 2, the situation would be reversed.)

Remark 5.3. The non-Archimedean semi-metric is naturally identifiable with a tree
whose leaves are the nodes of S, and whose intermediate nodes are balls with respect to
this semi-metric; the distance between two nodes is then the height of their join. It is
this tree structure (and the distinction of nodes into active, inactive and distinguished)
that shall implicitly govern the dynamics of the PET induction scheme which we shall
shortly perform. We will however omit the details, as we shall not explicitly use this tree
structure in this paper.

Definition 5.4. (Realizations and averages) Let S be a polynomial system and ν be
a measure. We define a ν-realization  f=(fα)α∈A of S to be an assignment of a function
fα:X!R to each node α with the following properties:

• for any node α, we have the pointwise bound |fα|6ν;
• for any inactive node α, we have fα=ν.
We refer to the function fα0 attached to the distinguished node α0 as the distin-

guished function. We define the average ΛS(  f )∈R of a system S and its ν-realization  f

to be the quantity

ΛS(  f ) :=Eh1,...,hD∈[H]Em∈[M ]

∫
X

∏
α∈A

TRα(m,h1,...,hD,W )fα.

Example 5.5. If S is the system in Example 5.2, then

ΛS(  f ) =Em∈[M ]

∫
X

f1T
mf2T

m2
f3. (31)

Example 5.6. The average

Eh,h′∈[H]Em∈[M ]

∫
X

νTm+hf2T
m+h′f2T

(m+h)2f3T
(m+h′)2f3
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can be written in the form ΛS(  f ) with distinguished function f3, where S is a system
with D:=2, A:={1, 2, 2′, 3, 3′} with the node 1 inactive and distinguished node 3, with
R1 :=0, R2 :=m+h1, R2′ :=m+h2, R3 :=(m+h1)2 and R4 :=(m+h2)2, and  f is given
by f1 :=ν, f2′ :=f2 and f3′ :=f3.

Example 5.7. (Base example) Let S be the system with D:=0, A:={1, ..., k}, α0 :=1,
A′=∅ (thus all nodes are active) and Qj :=Pj(Wm)/W. We observe from (3) that this is
indeed a system. Then  f :=(g1, ..., gk) is a ν-realization of S with distinguished function
g1, and

ΛS(  f ) =Em∈[M ]

∫
X

TP1(Wm)/W g1 ... TPk(Wm)/W gk.

This system S is linear if and only if the polynomials Pj−Pj′ are all linear.

Remark 5.8. (Translation invariance) Given a polynomial system S and a polyno-
mial R∈Z[m,h1, ...,ht,W], we can define the shifted polynomial system S−R by replac-
ing each of the polynomials Rα by Rα−R; it is easy to verify that this does not affect any
of the characteristics of the system, and in particular we have ΛS(  f )=ΛS−R(  f ) for any
ν -realization  f of S (and hence of S−R). This translation invariance gives us the free-
dom to set any single polynomial Rα of our choosing to equal 0; indeed, we shall exploit
this freedom whenever we wish to use van der Corput’s lemma or the Cauchy–Schwarz
inequality to deactivate any given node.

The estimate (30) then follows immediately from the following proposition.

Proposition 5.9. (Generalized von Neumann theorem for polynomial systems) Let
S be a polynomial system with distinguished node α0. Then, if η1 is sufficiently small
depending on S and α0, there exist d, t>0, "Q∈Z[h1, ...,ht,W]d and c>0 depending only
on S and α0 such that one has the bound

|ΛS(  f )|�S ‖fα0‖c

U
!Q([H]t,W )√

M

+oS(1)

whenever ν is a pseudorandom measure and  f is a ν-realization of S with distinguished
function fα0 .

Indeed, one simply applies this proposition to Example 5.7 to conclude (30).
It remains to prove Proposition 5.9. This will be done in three stages. The first is

the “linearization” stage, in which a weighted form of van der Corput’s lemma and the
polynomial forms condition are applied repeatedly (using the PET induction scheme)
to reduce the proof of Proposition 5.9 to the case where the system S is linear. The
second stage is the “parallelopipedization” stage, in which one uses a weighted variant
of the “Cauchy–Schwarz–Gowers inequality” to estimate the average ΛS(f) associated
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with a linear system S by a weighted average of the distinguished function fα0 over
parallelopipeds. Finally, there is a relatively simple “Cauchy–Schwarz” stage in which the
polynomial forms condition is used one last time to replace the weights by the constant 1,
at which point the proof of Proposition 5.9 is complete. We remark that the latter two
stages (dealing with the linear system case) also appeared in [18]; the new feature here
is the initial linearization step, which can be viewed as a weighted variant of the usual
polynomial generalized von Neumann theorem (see e.g. [6]). This linearization step is
also the step which shall use the fine shifts h=O(H) (for reasons which will be clearer
in §6); this should be contrasted with the parallelopipedization step, which relies on
coarse-scale shifts m=O

(√
M

)
.

5.10. PET induction and linearization

We now reduce Proposition 5.9 to the linear case. We shall rely heavily here on van der
Corput’s lemma, which in practical terms allows us to deactivate any given node at the
expense of duplicating all the other nodes in the system. Since this operation tends to
increase the number of active nodes in the system, it is not immediately obvious that
iterating this operation will eventually simplify the system. To make this more clear we
need to introduce the notion of a weight vector.

Definition 5.11. (Weight vector) A weight vector is an infinite vector !w=(w1, w2, ... )
of non-negative integers wj , with only finitely many of the wj ’s being non-zero. Given
two weight vectors !w=(w1, w2, ... ) and !w′=(w′

1, w
′
2, ... ), we say that !w<!w′ if there exists

k>1 such that wk<w′
k, and such that wj =w′

j for all j>k. We say that a weight vector
is linear if wj =0 for all j>2.

It is well known that the space of all weight vectors forms a well-ordered set; indeed,
it is isomorphic to the ordinal ωω. In particular, we may perform strong induction on
this space. The space of linear weight vectors forms an order ideal; indeed, a weight is
linear if and only if it is less than (0, 1, 0, ... ).

Definition 5.12. (Weight) Let S be a polynomial system, and let α be a node in S
(in practice this will not be the distinguished node α0). We say that two nodes β and γ

in S are equivalent relative to α if d(β, γ)<d(α, β). This is an equivalence relation on the
nodes of S, and the equivalence classes have a well-defined distance from α. We define
the weight vector !wα(S) of S relative to α by setting the jth component for any j>1 to
equal the number of equivalence classes at distance j from α.

Example 5.13. Consider the system in Example 5.2. The weight of this system
relative to the node 1 is (1, 1, 0, ... ), whereas the weight of the system in Example 5.6
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relative to the node 2 is (0, 1, 0, ... ) (note that the inactive node 1 is not relevant here,
nor is the node 2′ which has distance 0 from 2), which is a smaller weight than that of
the previous system.

The key inductive step in the reduction to the linear case is then the following.

Proposition 5.14. (Inductive step of linearization) Let S be a polynomial system
with distinguished node α0 and a non-linear active node α. If η1 is sufficiently small
depending on S, α0 and α, then there exists a polynomial system S ′ with distinguished
node α′0 and an active node α′ with !wα′(S ′)<!wα(S) with the following property : given
any pseudorandom measure ν and any ν-realization  f of S, there exists a ν-realization
 f ′ of S ′ with the same distinguished function (thus fα0 =f ′α′0

) such that

|ΛS(  f )|2�ΛS′(  f ′)+oS(1). (32)

Indeed, given this proposition, a strong induction on the weight vector !wα(S) im-
mediately implies that, in order to prove Proposition 5.9, it suffices to do so for linear
systems (since these, by definition, are the only systems without non-linear active nodes).

Before we prove this proposition in general, it is instructive to give an example.

Example 5.15. Consider the expression (31) with f1, f2 and f3 bounded pointwise
by ν. We rewrite this expression as

ΛS(  f ) =
∫

X

f1Em∈[M ]T
mf2T

m2
f3

and thus, by the Cauchy–Schwarz inequality (94),

|ΛS(  f )|2 6

(∫
X

ν

) ∫
X

ν|Em∈[M ]T
mf2T

m2
f3|2.

By (15), the first factor is 1+o(1). Also, from van der Corput’s lemma (Lemma A.1), we
have

|Em∈[M ]T
mf2T

m2
f3|2 6Eh,h′∈[H]Em∈[M ]T

m+hf2T
m+h′f2T

(m+h)2f3T
(m+h′)2f3+o(1).

We may thus conclude a bound of the form (32), where ΛS′(  f ′) is the quantity studied
in Example 5.6. Note from Example 5.13 that S ′ has a smaller weight than S relative to
suitably chosen nodes.

Proof of Proposition 5.14. By using translation invariance (Remark 5.8), we may
normalize Rα=0. We split A=A0∪A1, where A0 :={β∈A:d(α, β)=0} and A1 :=A\A0.
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Since α is non-linear, the distinguished node α0 lies in A1. Then Rβ is independent of
m for all β∈A0: Rβ(m,h1, ..., hd,W )=Rβ(h1, ..., hd,W ). We can then write

ΛS(  f ) =Eh1,...,hD∈[H]

∫
X

Fh1,...,hD
Em∈[M ]Gm,h1,...,hD

,

where
Fh1,...,hD

:=
∏

β∈A0

TRβ(h1,...,hd,W )fβ

and
Gm,h1,...,hD

:=TRβ(m,h1,...,hd,W )fβ .

Since |fβ | is bounded pointwise by ν, we have that |Fh1,...,hD
|6Hh1,...,hD

, where

Hh1,...,hD
:=

∏
β∈A0

TRβ(h1,...,hD,W )ν, (33)

and thus, by the Cauchy–Schwarz inequality,

|ΛS(  f )|2 6

(
Eh1,...,hD∈[H]

∫
X

Hh1,...,hD

)
Eh1,...,hD∈[H]

∫
X

Hh1,...,hD
|Em∈MGm,h1,...,hD

|2.

Since ν is pseudorandom and thus obeys the polynomial forms condition, we see from
Definition 3.6 and (33) (taking η1 sufficiently small) that

Eh1,...,hD∈[H]

∫
X

Hh1,...,hD
=1+oS(1)

(note by hypothesis that the Rβ−Rβ′ are not constant in m,h1, ...,hD). Since we are
always assuming N to be large, the oS(1) error is bounded. Thus we reduce to showing
that

Eh1,...,hD∈[H]

∫
X

Hh1,...,hD
|Em∈MGm,h1,...,hD

|2�ΛS′(  f ′)+oS(1)

for some suitable S ′ and  f ′. But by the van der Corput lemma (Lemma A.1) (using (16)
to get the upper bounds on Gm,h1,...,hD

), we have

|Em∈MGm,h1,...,hD
|2�Eh,h′∈[H]Em∈[M ]Gm+h,h1,...,hD

Gm+h′,h1,...,hD
+o(1),

and so, to finish the proof, it suffices to verify that the expression

Eh1,...,hD,h,h′∈[H]Em∈[M ]

∫
X

Hh1,...,hD
Gm+h,h1,...,hD

Gm+h′,h1,...,hD
(34)

is of the form ΛS′(  f ′) for some suitable S ′ and  f ′. By inspection, we see that we can
construct S ′ and  f ′ as follows:

• We have D+2 fine degrees of freedom, which we label h1, ...,hD, h and h′.
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• The nodes A′ of S ′ are A′ :=A0∪A1∪A′
1, where A′

1 is another copy of A1 (disjoint
from A0∪A1), with distinguished node α′0=α0∈A1.

• We choose the node α′ to be an active node of S in A1 which has minimal distance
from α0. (Note that A1 always contains at least one active node, namely α0.)

• If β∈A0, then β is inactive in S ′, with

R′
β(m,h1, ...,hd,h,h′,W) := Rβ(m,h1, ...,hd,W)

and  f ′β :=ν;
• If β∈A1, then β is inactive in S ′ if and only if it is inactive in S, with

R′
β(m,h1, ...,hd,h,h′,W) := Rβ(m+h,h1, ...,hd,W)

and  f ′β :=  fβ ;
• If β′∈A′

1 is the counterpart of some node β∈A1, then β′ is inactive in S ′ if and
only if β is inactive in S, with

R′
β′(m,h1, ...,hd,h,h′,W) := Rβ(m+h′,h1, ...,hd,W)

and  f ′β′ :=  fβ .
It is then straightforward to verify that S ′ is a polynomial system, that  f ′ is a real-

ization of S ′, and that (34) is equal to ΛS′(  f ′). It remains to show that !wα′(S ′)<!wα(S).
Let d be the degree in m of Rα−Rα′ , and thus d>1. One easily verifies that the jth
component of !wα′(S ′) is equal to that of !wα(S) for j>d, and equal to one less than that
of !wα(S) when j=d (basically due to the deactivation of all of the nodes in A0). The
claim follows. (The behavior of these weight vectors for j<d is much more complicated,
but is fortunately not relevant due to our choice of ordering on weight vectors.)

5.16. Parallelopipedization

By the preceding discussion, we see that to prove Proposition 5.9 it suffices to do so
in the case where S is linear. To motivate the argument, let us first work through an
unweighted example (with ν=1).

Example 5.17. (Unweighted linear case) Consider the linear average

ΛS(  f ) =Eh,h′∈[H]Em∈[M ]

∫
X

f0T
hmf1T

h′mf2,

with distinguished function f0, and with |f0|, |f1| and |f2| bounded pointwise by 1.
We introduce some new coarse-scale shift parameters m1,m2∈

[√
M

]
. By shifting m to

m−m1−m2, one can express the above average as

Eh,h′∈[H]Em∈[M ]

∫
X

Em1,m2∈[
√

M ]f0T
h(m−m1−m2)f1T

h′(m−m1−m2)f2+o(1),
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and then, shifting the integral by Thm1+h′m2 , we obtain

Eh,h′∈[H]Em∈[M ]

∫
X

Em1,m2∈[
√

M ]T
hm1+h′m2f0T

h(m−m2)+h′m2f1T
h′(m−m1)+hm1f2+o(1).

The point is that Th(m−m2)+h′m2f1 does not depend on m1, while Th′(m−m1)+hm1f2

does not depend on m2. One can then use the Cauchy–Schwarz–Gowers inequality (see
e.g. [19, Corollary B.3]) to estimate this expression by(

Eh,h′∈[H]Em∈[M ]

∫
X

Em1,m′
1,m2,m′

2∈[
√

M ]T
hm1+h′m2f0T

hm′
1+h′m2f0

×Thm1+h′m′
2f0T

hm′
1+h′m′

2f0

)1/4

+o(1).

The main term here can then be recognized as a local Gowers norm (24).

Now we return to the general linear case. Here we will need to address the presence of
many additional weights which are all shifted versions of the measure ν, which requires
the repeated use of weighted Cauchy–Schwarz inequalities. See [18, §5] for a worked
example of this type of computation. Our arguments here shall instead follow those
of [19, Appendix C], in particular relying on the weighted generalized von Neumann
inequality from that paper (reproduced here as Proposition A.2).

We turn to the details. To simplify the notation we write  h:=(h1, ..., hd) and  h:=
(h1, ...,hd). We use the translation invariance (Remark 5.8) to normalize Rα0 =0. We
then split A={α0}∪Al∪Anl, where Al consists of all the linear nodes, and Anl all the non-
linear (and hence inactive) nodes. By the non-degeneracy assumptions in Definition 5.1,
we may write

Rα = bαm+cα

for all α∈Al and some bα, cα∈Z[ h,W] with the bα’s all distinct and non-zero. We can
then write

ΛS(  f ) =E
 h∈[H]DEm∈[M ]

∫
X

fα0

( ∏
α∈Anl

TRα(m, h,W )ν

) ∏
α∈Al

T bαm+cαfα.

We introduce some new coarse-scale shift parameters mα∈
[√

M
]

for α∈Al, and thus the

vector "m:=(mα)α∈Al lies in
[√

M
]Al . We shift m to m−

∑
α∈Al

mα and observe that

Em∈[M ]xm =Em∈[M ]xm−
∑

α∈Al
mα

+o(1)

whenever mα∈
[√

M
]
and xm�εNε for all ε>0. Averaging this in "m (cf. (96)), we obtain

Em∈[M ]xm =E
"m∈[

√
M ]AlEm∈[M ]xm−

∑
α∈Al

mα
+o(1).
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Applying this (and (16)), and shifting the integral by the polynomial

Q0 :=
∑

α∈Al

bα( h,W)mα, (35)

we obtain

ΛS(  f ) =E
 h∈[H]DEm∈[M ]

∫
X

E
"m∈[

√
M ]Al fα0,m, h,"m,W

∏
α∈Al

fα,m, h,"m,W +o(1),

where

fα0, h,"m,W :=TQα0 ( h,"m,W )

(
fα0

∏
α∈Anl

T
Rα(m−

∑
α∈Al

mα, h,W )
ν

)
,

fα,m, h,"m,W :=T
bα( h,W )m+cα( h,W )+

∑
β∈Al

(bβ( h,W )−bα( h,W ))mαfα.

The point of all these manipulations is that for each linear node α∈Al, fα,m, h,"m,W is
independent of the coarse-scale parameter mα. Also observe the pointwise bound

|fα,m, h,"m,W |6 να,m, h,"m,W ,

where
να,m, h,"m,W :=T

bα( h,W )m+cα( h,W )+
∑

β∈Al
(bβ( h,W )−bα( h,W ))mβ ν.

By applying the weighted generalized von Neumann theorem (Proposition A.2) in the "m

variables, we thus have

|ΛS(  f )|6E
 h∈[H]DEm∈[M ]

∫
X

‖fα0,m, h,· ,W ‖�Al (ν)

∏
α∈Al

‖να,m, h,· ,W ‖1/2

�Al\{α}+o(1), (36)

where the Gowers box norms �Al\{α} and the weighted Gowers box norms �Al(ν) are
defined(26) in Appendix A. We now claim the estimate

E
 h∈[H]DEm∈[M ]

∫
X

‖να,m, h,· ,W ‖2
|Al|−1

�Al\{α}� 1 (37)

for each α∈Al. Indeed, the left-hand side can be expanded as

E
 h∈[H]DE

"m(0),"m(1)∈[H]AlEm∈[M ]∫
X

∏
ω∈{0,1}Al\{α}

T
bα( h,W )m+cα( h,W )+

∑
β∈Al

(bβ( h,W )−bα( h,W ))m
(ωβ)
β ν.

(26) These norms will only make a brief appearance here; they are not used elsewhere in the main
argument.
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The distinctness of the bβ ’s ensures that the polynomial shifts of ν here are all distinct,
and so, by the polynomial forms condition (Definition 3.6), we obtain the claim (taking
η1 suitably small).

In view of (36), (37) and Hölder’s inequality, we see that

|ΛS(  f )|�S

(
E
 h∈[H]DEm∈[M ]

∫
X

‖fα0,m, h,· ,W ‖2
|Al|

�Al (ν)

)1/2|Al|

+o(1).

Thus, to prove Proposition 5.9, it suffices to show that

E
 h∈[H]DEm∈[M ]

∫
X

‖fα0,m, h,· ,W ‖2
|Al|

�Al (ν) = ‖fα0‖2
|Al|

U
!Q([H]D,W )√

M

+oS(1) (38)

for some suitable "Q∈Z[h1, ...,hD,W]. The left-hand side of (38) can be expanded as a
weighted average of fα0 over parallelopipeds, or more precisely as

E
 h∈[H]DE

"m(0),"m(1)∈[
√

M ]Al

∫
X

( ∏
ω∈{0,1}Al

TQ0( h,"m(ω),W )fα0

)
w( h,"m(0),"m(1)), (39)

where "m(ω) :=(m(ωα)
α )α∈Al and w( h,"m(0),"m(1)) is the weight

w( h,"m(0),"m(1)) :=Em∈[M ]

∏
ω∈{0,1}Al

∏
α∈Anl

T
Q0( h,"m(ω),W )+Rα(m−

∑
α∈Al

mα, h,W )
ν.

5.18. The final Cauchy–Schwarz inequality

Let us temporarily drop the weight w in (39) and consider the unweighted average

E
 h∈[H]DE

"m(0),"m(1)∈[
√

M ]Al

∫
X

∏
ω∈{0,1}Al

TQ0( h,"m(ω),W )fα0 .

Using (35), this is

E
 h∈[H]DE

"m(0),"m(1)∈[
√

M ]Al

∫
X

∏
ω∈{0,1}Al

T
∑

α∈Al
bα( h,W)m(ωα)

α fα0 ,

which, on comparison with (24), is indeed of the form ‖fα0‖2
|Al|

U
!Q([H]D,W )√

M

for some(27)

"Q∈Z[h1, ...,hD,W]; note that, since the bα’s are non-zero, all the components of "Q are
non-zero. Thus it suffices to show that

E
 h∈[H]DE

"m(0),"m(1)∈[
√

M ]Al

∫
X

( ∏
ω∈{0,1}Al

TQ0( h,"m(ω),W )fα0

)
(w( h,"m(0),"m(1))−1) = oS(1).

(27) There is the (incredibly unlikely) possibility that D=0 or D=1, but by using the monotonicity
of the Gowers norms (Lemma A.3), one can easily increase D to avoid this.
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Applying the Cauchy–Schwarz inequality (94) with the pointwise bound |fα0 |6ν, we
reduce to showing that

E
 h∈[H]DE

"m(0),"m(1)∈[
√

M ]Al

∫
X

( ∏
ω∈{0,1}Al

TQ0( h,"m(ω),W )ν

)
(w( h,"m(0),"m(1))−1)j

=0j +oS(1)

for j=0, 2 (with the usual convention 00=1) which in turn follows if we show that

E
 h∈[H]DE

"m(0),"m(1)∈[
√

M ]Al

∫
X

( ∏
ω∈{0,1}Al

TQ0( h,"m(ω),W )ν

)
w( h,"m(0),"m(1))j =1+oS(1)

for j=0, 1, 2. Let us just demonstrate this in the hardest case j=2, as it will be clear from
the proof that the same argument also works for j=0, 1 (as they involve fewer factors
of ν). We expand the left-hand side as

E
 h∈[H]DE

"m(0),"m(1)∈[
√

M ]AlEm,m′∈[M ]

∫
X

( ∏
ω∈{0,1}Al

TQ0( h,"m(ω),W )ν

)
×

∏
ω∈{0,1}Al

∏
α∈Anl

T
Q0( h,"m(ω),W )+Rα(m−

∑
α∈Al

mα, h,W )
ν

×T
Q0( h,"m(ω),W )+Rα(m′−

∑
α∈Al

mα, h,W )
ν.

One can then invoke the polynomial forms condition (Definition 3.6) one last time (again
taking η1 small enough) to verify that this is indeed 1+oS(1). Note that as every node in
Anl is non-linear, the polynomials Rα have degree at least 2, which ensures that the poly-
nomials used to shift ν here are all distinct. This concludes the proof of Proposition 5.9
in the linear case, and hence in general, and Theorem 4.5 follows.

Remark 5.19. One can define polynomial systems and weights (Definitions 5.1 and
5.12) for systems of multivariable polynomials Rα∈Z[m1, ...,mr,h1, ...,hD,W ] (see for
example [23]). Following the steps of the PET induction (§5.10) and parallelopipedization
(§5.16), one can prove a multivariable version of the polynomial generalized von Neumann
theorem (Theorem 4.5).

6. Polynomial dual functions

This section and the next will be devoted to the proof of the structure theorem, The-
orem 4.7. In these sections we shall assume the notation of §2, and fix the bounded
quantities t>0, d>2 and "Q∈Z[h1, ...,ht,W]d. As they are bounded, we may permit all
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implicit constants in the o( ·) and O( ·) notation to depend on these quantities. We also
fix the pseudorandom measure ν. We shall abbreviate

‖f‖U := ‖f‖
U
!Q([H]t,W )√

M

.

Roughly speaking, the objective here is to split any non-negative function bounded point-
wise by ν into a non-negative function bounded pointwise by 1, plus an error which is
small in the ‖ · ‖U norm. For technical reasons (as in [18]), we will also need to exclude
a small exceptional set of measure o(1), of which more will be said later.

Following [18], our primary tool for understanding the U norm shall be via the
concept of a dual function of a function f associated with this norm.

Definition 6.1. (Dual function) If f :X!R is a function, we define the dual function
Df :X!R by the formula

Df :=E
 h∈[H]tE"m(0),"m(1)∈[

√
M ]d

∏
(ω1,...,ωd)∈{0,1}d\{0}d

T
∑

j∈[d](m
(ωj)
j −m

(0)
j )Qj( h,W )f,

where m(k)=(m(k)
1 , ...,m

(k)
d ) for k=0, 1.

From (24) and the translation invariance of the integral
∫

X
, we obtain the funda-

mental relationship

‖f‖2
d

U =
∫

X

fDf. (40)

Thus we have a basic dichotomy: either f has small U norm, or else it correlates with
its own dual function.(28) As in [18], it is the iteration of this dichotomy via a stopping
time argument which shall power the proof of Theorem 4.7.

For future reference, we observe the trivial but useful facts that D is monotone and
homogeneous of degree 2d−1:

|f |6 g pointwise =⇒ |Df |6Dg pointwise; (41)

D(λf) =λ2d−1Df for all λ∈R. (42)

We will need two key facts about dual functions, both of which follow primarily
from the polynomial correlation condition. The first, which is fairly easy, is that dual
functions are essentially bounded.

(28) In the language of infinitary ergodic theory, it will be the dual functions which generate (in the
measure-theoretic sense) the characteristic factor for the U norm. The key points will be that the dual
functions are essentially bounded, and that ν−1 is essentially orthogonal to the characteristic factor.
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Proposition 6.2. (Essential boundedness of dual functions) Let f :X!R obey the
pointwise bound |f |6ν+1. Then for any integer K>1 we have the moment estimates∫

X

|Df |K(ν+1) 6 2(22d−1)K +oK(1). (43)

In particular , if we define the global bad set

Ω0 := {x∈X :Dν(x) > 22d

}, (44)

then we have the measure bound∫
X

(Dν)K1Ω0(ν+1) = oK(1) (45)

for all K>0, and the pointwise bound

|Df |(1−1Ω0) 6 22d

. (46)

Remark 6.3. In [18], the correlation conditions imposed on ν were strong enough so
that one could bound the dual function Df uniformly by 22d−1+o(1), thus removing the
need for a global bad set Ω0. One could do something similar here by strengthening the
correlation condition. However, we were then unable to establish Theorem 3.18, i.e. we
were unable to construct a measure concentrated on almost primes which obeyed this
stronger correlation condition. The basic difficulty is that the polynomials in "Q could
contain a number of common factors which could significantly distort functions such as
Dν at some rare points (such as the origin). Fortunately, the presence of a small global
bad set does not significantly impact our analysis (similarly to how sets of measure zero
have no impact on ergodic theory), especially given that it does not depend on f . In
practice, K will get as large as 1/η6, but no greater.

Proof. We begin with (43). By (41) and (42), it suffices to show that∫
X

(
Dν+1

2

)K
ν+1

2
=1+oK(1);

in view of Lemma 3.14, it suffices to show that∫
X

(Dν)Kν =1+oK(1).

The left-hand side can be expanded as

E
 h(1),..., h(K)∈[H]t∫

X

∏
k∈[K]

(
E
"m(0),"m(1)∈[

√
M ]d

∏
(ω1,...,ωd)∈{0,1}d\{0}d

T
∑

j∈[d](m
(ωj)
j −m

(0)
j )Qj( h

(k),W )ν

)
ν.
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But this is 1+oK(1) from (18) (with D=d, D′=0, D′′=Kt, L=1, and the "Qj,k and !Sl

vanishing). This proves (43). From Chebyshev’s inequality, this implies that∫
X

(Dν)K′
1Ω0(ν+1) 6

2(22d−1)K′

2K
+oK(1)

for any 06K ′<K. For fixed K ′, the right-hand side can be made arbitrarily small by
taking K large, and then choosing N large depending on K; thus, the left-hand side is
o(1), which is (45). Finally, (46) follows from (41) and (44).

The global bad set Ω0 is somewhat annoying to deal with. Let us remove it by
defining the modified dual function D̃f of f as

D̃f := (1−1Ω0)Df.

Then Proposition 6.2 and (40) immediately imply the following result.

Corollary 6.4. (Boundedness of modified dual function) Let f :X!R obey the
pointwise bound |f |6ν+1. Then D̃f takes values in the interval

I := [−22d

, 22d

]. (47)

Furthermore, we have the correlation property∫
X

fD̃f = ‖f‖2
d

U +o(1). (48)

The second important estimate is easy to state, although non-trivial to prove.

Proposition 6.5. (ν−1 orthogonal to products of modified dual functions) Let
16K61/η6 be an integer , and let f1, ..., fK :X!R be functions with the pointwise bounds
|fk|6ν+1 for all k∈[K]. Then∫

X

D̃f1 ... D̃fK(ν−1) = o(1). (49)

Remark 6.6. Note that (43) already gives an upper bound of O(1) for (49); the
whole point is thus to extract enough cancellation from the factor ν−1 to upgrade this
bound to o(1).

The rest of the section is devoted to the proof of Proposition 6.5. The argument
follows that of [18, §6], and is based on a large number of applications of the Cauchy–
Schwarz inequality, and the polynomial correlation condition (Definition 3.9). The ar-
guments here are not used again elsewhere in this paper, and so the rest of this section
may be read independently of the remainder of the paper.

We begin with a very simple reduction: from (45) we can replace the modified dual
functions D̃fk by their unmodified counterparts Dfk. Our task is then to show that∫

X

Df1 ...DfK(ν−1) = o(1). (50)
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6.7. A model example

Before we prove Proposition 6.5 in general, it is instructive to work with a simple example
to illustrate the idea. Let us take an oversimplified toy model of the dual function Df ,
namely

Df :=Eh∈[H]Em∈[
√

M ]T
mhf.

This does not quite correspond to a local Gowers norm,(29) but will serve as an illustrative
model nonetheless. Pick functions f1, ..., fK with the pointwise bounds |fk|6ν for k∈[K]
and consider the task of showing (50). We expand the left-hand side as

Eh1,...,hK∈[H]Em1,...,mK∈[
√

M ]

∫
X

Tm1h1f1 ... TmKhK fK(ν−1). (51)

Note that we cannot simply take absolute values and apply the pseudorandomness con-
ditions, as these will give bounds of the form O(1) rather than o(1). One could instead
attempt to apply the Cauchy–Schwarz inequality many times (as in the previous section),
however the fact that K=O(1/η2

6) could be very large compared to the pseudorandomness
parameter 1/η1 defeats a naive implementation of this idea. Instead, we must perform a
change of variables to introduce two new parameters n(0) and n(1) to average over (which
only requires a single Cauchy–Schwarz inequality to estimate) rather than K parameters
(which would essentially require K applications of the Cauchy–Schwarz inequality).

More precisely, we introduce two slightly less coarse-scale parameters n(0), n(1)∈
[M1/4] than m1, ...,mK . Define the multipliers ĥk :=

∏
k′∈[K]\k hk′ , thus ĥk=O(HK−1),

which are small compared to M1/4 by the relative sizes of η7, η6 and η2. Shifting each
of the mk’s by ĥk(n(1)−n(0)) and using (16), we conclude that (51) is equal to

Eh1,...,hK∈[H]Em1,...,mK∈[
√

M ]

∫
X

( ∏
k∈[K]

T (mk+ĥk(n(1)−n(0)))hkfk

)
(ν−1)+oK(1)

for all n(0), n(1)∈[M1/4]. Averaging over all n(0) and n(1), and shifting the integral by

n(0)h1 ... hK = ĥ1n
(0)h1 = ...= ĥKn(0)hK ,

we can thus write (51) as

Eh1,...,hK∈[H]Em1,...,mK∈[
√

M ]En(0),n(1)∈[M1/4]∫
X

Tn(1)h1...hK (Tm1h1f1 ... TmKhK fK)Tn(0)h1...hK (ν−1)+oK(1),

(29) However, the slight variant Eh∈[H]Em,m′∈[
√

M ]T
(m−m′)hf does correspond to a (very simple)

local Gowers norm, with t=d=1 and "Q=(h1).
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which we may factorize as

Eh1,...,hK∈[H]

∫
X

(
En(1)∈[M1/4]

∏
k∈[K]

Em∈[
√

M ]T
n(1)h1...hk+mhkfk

)
×En(0)∈[M1/4]T

n(0)h1...hK (ν−1)+oK(1).

By the Cauchy–Schwarz inequality, it thus suffices to show that

Eh1,...,hK∈[H]

∫
X

(
En(1)∈[M1/4]

∏
k∈[K]

Em∈[
√

M ]T
n(1)h1...hk+mhkfk

)2

�K 1

and
Eh1,...,hK∈[H]

∫
X

(En(0)∈[M1/4]T
n(0)h1...hK (ν−1))2 = oK(1).

To prove the first estimate, we estimate fk by ν and expand the square to reduce to
showing that

Eh1,...,hK∈[H]En(1),n(2)∈[M1/4]

∫
X

2∏
j=1

∏
k∈[K]

Em∈[
√

M ]T
n(j)h1...hk+mhkν�K 1,

but this follows from the correlation condition (18) (for η1 small enough(30)). To prove
the second estimate, we again expand the square and reduce to showing that

Eh1,...,hK∈[H]

∫
X

(En(0)∈[M1/4]T
n(0)h1...hK ν)j =1+oK(1)

for j=0, 1, 2, which will again follow from (18) for η1 small enough.

6.8. Conclusion of the argument

Now we prove (50) in the general case. We may take d>1, since the d=0 case follows
from (15). We expand the left-hand side as

E
 hE"m

∫
X

( ∏
k∈[K]

∏
ω∈{0,1}d\{0}d

T
∑

j∈[d](m
(ωj)
j,k −m

(0)
j,k)Qj( h

(k),W )fk

)
(ν−1),

where ω=(ω1, ..., ωd) and we use the abbreviations

E
 h :=E

 h(1),..., h(K)∈[H]t and E
"m :=E

m
(ω)
j,k∈[

√
M ],ω∈{0,1},j∈[d],k∈[K]

.

(30) It is important to note however that η1 does not have to be small relative to K or to parameters
such as η7.
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We introduce moderately coarse-scale parameters n
(0)
j , n

(1)
j ∈[M1/4] for j∈[d], and the

multipliers
ĥk,j = ĥk,j( h, W ) :=

∏
k′∈[K]\{k}

Qj( h(k′),W ).

Observe that ĥk,j =O(HO(K)), which will be much smaller than M1/4 by the relative
sizes of η7, η6 and η2. Shifting each m

(1)
j,k by ĥk,j(n

(1)
j −n

(0)
j ) and using (16), we can then

rewrite (50) as

E
 hE"m

∫
X

( ∏
k∈[K]

∏
ω∈{0,1}d\{0}d

T
∑

j∈[d](m
(ωj)
j,k −m

(0)
j,k+ĥk,j(n

(ωj)
j −n

(0)
j ))Qj( h

(k),W )fk

)
(ν−1)

+oK(1)

for any n
(0)
1 , ..., n

(0)
d , n

(1)
1 , ..., n

(1)
d ∈[M1/4]. Now, from construction, we have

ĥk,jQj( h(k),W ) = bj ,

where
bj = bj( h, W ) :=

∏
k∈[K]

Qj( h(k),W )

(note that bj 6=0 by hypothesis on "Q), and after averaging over the n variables, we can
write the left-hand side of (50) as

E
 h,"m, n(0), n

(1)
1

∫
X

∏
ω∈{0,1}d

T
∑

j∈[d](n
(ωj)
j −n

(0)
j )bj gω, h,"m+oK(1),

where  n(j)=(n(j)
0 , ..., n

(j)
d ) will be understood to range over [M1/4]d for j=0, 1,

gω, h,"m :=
∏

k∈[K]

T
∑

j∈[d](m
(ωj)
j,k −m

(0)
j,k)Qj( h

(k),W )fk

for ω∈{0, 1}d\{0}d, and
g{0}d, h,"m := ν−1.

Shifting the integral by T
∑

j∈[d] n
(0)
j bj , we can rewrite this as

E
 h,"m

∫
X

E
 n(0), n(1)

∏
ω∈{0,1}d

T
∑

j∈[d] n
(ωj)
j bj gω, h,"m+oK(1).

Now use the Cauchy–Schwarz–Gowers inequality (99) to obtain the pointwise estimate∣∣∣∣E n(0), n(1)

∏
ω∈{0,1}d

T
∑

j∈[d] n
(ωj)
j bj gω, h,"m

∣∣∣∣
6

∏
ω′∈{0,1}d

(
E
 n(0), n(1)

∏
ω∈{0,1}d

T
∑

j∈[d] n
(ωj)
j bj gω′, h,"m

)1/2d

.
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By Hölder’s inequality, we thus see that to prove (50) it suffices to show that the quantity

E
 h,"m

∫
X

E
 n(0), n(1)

∏
ω∈{0,1}d

T
∑

j∈[d] n
(ωj)
j bj gω′, h,"m (52)

is OK(1) when ω′∈{0, 1}d\{0}d and is oK(1) when ω′=0d.

Let us first deal with the case when ω′ 6=0d. Our task is to show that

E
 h,"m

∫
X

E
 n(0), n(1)

∏
ω∈{0,1}d

T
∑

j∈[d] n
(ωj)
j bj

∏
k∈[K]

T
∑

j∈[d](m
(ω′j)

j,k −m
(0)
j,k)Qj( h

(k),W )fk =OK(1).

We can bound fk pointwise by ν, and factorize the left-hand side as

E
 h, n(0), n(1)

∫
X

∏
k∈[K]

E
"m(0),"m(1)∈[

√
M ]d

∏
ω∈{0,1}d

T
∑

j∈[d](m
(ω′j)
j −m

(0)
j )Qj( h

(k),W )+n
(ωj)
j bj ν.

But this is 1+oK(1)=OK(1) by (3.9) with L=0 (here we use the fact that the bj ’s are
non-zero polynomials of  h and W ). For this we need η1 to be sufficiently small depending
on t, d and "Q, but not on K.

Finally, we have to deal with the case ω=0d. Since gω′, h,"m=ν−1 and bj =bj( h, W )
are independent of W , we can rewrite (52) as

E
 h, n(0), n(1)

∫
X

∏
ω∈{0,1}d

T
∑

j∈[d] n
(ωj)
j bj( h,W )(ν−1),

and so, by the binomial formula, it suffices to show that

E
 h, n(0), n(1)

∫
X

∏
ω∈A

T
∑

j∈[d] n
(ωj)
j bj( h,W )ν =1+o(1)

for all A⊂{0, 1}d. But this follows from the polynomial correlation condition (18) (with
K=0), again taking η1 sufficiently small depending on t, d and "Q. This concludes the
proof of (50), and hence of Proposition 6.5.

7. Proof of the structure theorem

We can now complete the proof of the structure theorem by using the arguments of [18,
§7 and §8] more or less verbatim. In fact these arguments can be abstracted as follows.
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Theorem 7.1. (Abstract structure theorem) Let I be an interval bounded by O(1).
Let ν:X!R+ be any measure, and let f 7!D̃f be a (non-linear) operator obeying the
following properties:

• if the pointwise bound |f |6ν+1 holds, then D̃f :X!I takes values in I, in par-
ticular

D̃f =O(1); (53)

• if 16K61/η6 and f1, ..., fK :X!R are functions satisfying the pointwise bound
|fk|6ν+1, k∈[K], then (49) holds.

Then, for any g:X!R+ with the pointwise bound 06g6ν, there exist functions
gU⊥ , gU :X!R obeying estimates (26), (27) and (28), such that∣∣∣∣∫

X

gU D̃gU

∣∣∣∣ 6 η4. (54)

Indeed, Theorem 4.7 immediately follows by applying Theorem 7.1, with (29) fol-
lowing from (54) and (48).

In the remainder of this section we prove Theorem 7.1. Henceforth we fix I, ν and
D̃ obeying the hypotheses of the theorem.

7.2. Factors

As in [18], we shall recall the very useful notion of factor from ergodic theory, though
for our applications we actually only need the finitary version of this concept.

Let us set X to be the probability space X=(X,BX , µX), where X=ZN , BX =2X

is the power set of X and µX is the uniform probability measure on X. We define a
factor(31) to be a quadruple Y=(Y,BY , µY , πY ), where (Y,BY , µY ) is a probability space
(and thus BY is a σ -algebra on Y and µY is a probability measure on BY ) together with
a measurable map π:X!Y such that (πY )∗µX =µY , or in other words µX(π−1

Y (E))=
µY (E) for all E∈BY . The factor map πY induces the pullback map π∗Y :L2(Y)!L2(X)
and its adjoint (πY )∗:L2(X)!L2(Y), where L2(X) is the usual Lebesgue space of square-
integrable functions on X. We refer to the projection π∗Y (πY )∗:L2(X)!L2(X) as the
conditional expectation operator, and denote π∗Y (πY )∗(f) by E(f |Y); this is a linear
self-adjoint orthogonal projection from L2(X) to π∗Y L2(Y).

(31) In infinitary ergodic theory one also requires the probability spaces X and Y to be invariant
under the shift T , and for the factor map π to respect the shift. In the finitary setting it is unrealistic to
demand these shift-invariances, for if N were prime then this would mean that there were no non-trivial
factors whatsoever. While there are concepts of “approximate shift-invariance” which can be used as a
substitute, see [33], we will fortunately not need to use them here, as the remainder of the argument
does not even involve the shift T at all.
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The conditional expectation operator is in fact completely determined by the σ -
algebra π−1

Y (BY )⊂BX . Since X is finite (with every point having positive measure),
π−1

Y (BY ) is generated by a partition of X into atoms (which by abuse of notation we
refer to as atoms of the factor Y), and the conditional expectation is given explicitly by
the formula

E(f |Y)(x) =Ey∈B(x)f(y),

where B(x) is the unique atom of π−1(BY ) which contains x. We refer to the number
of atoms of Y as the complexity of the factor Y.(32) By abuse of notation, we say that
a function f :X!R is measurable with respect to Y if it is measurable with respect to
π−1

Y (BY ), or equivalently if it is constant on all atoms of Y. Thus for instance (πY )∗Lq(Y)
consists of the functions in Lq(X) which are measurable with respect to Y.

If Y=(Y,BY , µY , πY ) and Y′=(Y ′,BY ′ , µY ′ , πY ′) are two factors, we may form their
join Y∨Y′=(Y ×Y ′,BY ×BY ′ , µY ×µY ′ , πY ⊕πY ′) in the obvious manner; note that the
atoms of Y∨Y′ are simply the non-empty intersections of atoms of Y with atoms of
Y′, and so any function which is measurable with respect to Y or Y′ is automatically
measurable with respect to Y∨Y′.

Note that any function f :X!R automatically generates a factor (R,BR, f∗µX , f),
where BR is the Borel σ -algebra, which is the minimal factor with respect to which f is
(Borel-)measurable. In our finitary setting it turns out that we need a discretized version
of this construction, which we give as follows.

Proposition 7.3. (Each function generates a factor) For any function G:X!I

there exists a factor Y(G) with the following properties:
• (G lies in its own factor) for any factor Y′,

G =E(G|Y(G)∨Y′)+O(η2
4); (55)

• (bounded complexity) Y(G) has at most Oη4(1) atoms;
• (approximation by continuous functions of G) if A is any atom in Y(G), then

there exists a polynomial ΨA:R!R of degree Oη5(1) with coefficients Oη5(1) such that

ΨA(x)∈ [0, 1] for all x∈ I (56)

and ∫
X

|1A−ΨA(G)|(ν+1)� η5. (57)

(32) It would be more natural to work instead with the entropy of Y rather than the complexity,
but the entropy is a slightly more technical concept and so we have avoided its use here for simplicity.



262 t. tao and t. ziegler

Proof. This is essentially [18, Proposition 7.2], but we shall give a complete proof
here for the convenience of the reader.

We use the probabilistic method. Let α be a real number in the interval [0, 1], chosen
at random. We then define the factor

Y(G) := (R,Bη2
4 ,α, G∗µX , G),

where Bη2
4 ,α is the σ -algebra on the real line R generated by the intervals

[(n+α)η2
4 , (n+α+1)η2

4)

for n∈Z. This is clearly a factor of X, with atoms

An,α :=G−1([(n+α)η2
4 , (n+α+1)η2

4)).

Since G ranges in I, and we allow constants to depend on I, it is clear that there are
at most Oη4(1) non-empty atoms and that G fluctuates by at most O(η2

4) on each atom,
which yields the first two desired properties. It remains to verify that with positive prob-
ability, the approximation by continuous functions property holds for all atoms An,α. By
the union bound, it suffices to show that each individual atom An,α has the approxima-
tion property with probability 1−O(η5).

By the Weierstrass approximation theorem, we can for each α find a polynomial
ΨAn,α

obeying (56) which is equal to 1[(n+α)η2
4 ,(n+α+1)η2

4)+O(δ) outside of the set

En,α := [(n+α−η2
5)η2

4 , (n+α+η2
5)η2

4 ]∪[(n+α+1−η2
5)η2

4 , (n+α+1+η2
5)η2

4 ].

Simple compactness arguments allow us to take ΨAn,α to have degree Oη5(1) and coeffi-
cients Oη5(1). Since

1An,α =1[(n+α)η2
4 ,(n+α+1)η2

4)(G),

we thus conclude (from (15)) that∫
X

|1A−ΨAn,α(G)|(ν+1)� η5+
∫

X

1En,α(G)(ν+1).

By Markov’s inequality, it thus suffices to show that∫ 1

0

(∫
X

1En,α(G)(ν+1)
)

dα� η2
5 .

But this follows from Fubini’s theorem, (15) and the elementary pointwise estimate∫ 1

0

1En,α(G) dα� η2
5 .
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Henceforth we set Y(G) to be the factor given by the above proposition. A key
consequence of the hypotheses of Theorem 7.1 is that ν−1 is well distributed with respect
to any finite combination of these factors.

Proposition 7.4. (ν uniformly distributed with respect to dual function factors)
Let K>1 be an integer with K=Oη4(1), and let f1, ..., fK :X!R be functions with the
pointwise bounds |fk|6ν+1 for all k∈[K]. Let Y :=Y(D̃f1)∨...∨Y(D̃fK). Then

D̃fk =E(D̃fk|Y)+O(η2
4) (58)

for all k∈[K], there is a Y-measurable set Ω⊂X obeying the smallness bound∫
X

1Ω(ν+1)�η4 η
1/2
5 (59)

and we have the pointwise bound

|(1−1Ω)E(ν−1|Y)|6Oη4(η
1/2
5 ). (60)

Proof. We repeat the arguments from [18, Proposition 7.3]. The claim (58) follows
immediately from (55), so we turn to the other two properties. Since each Y(D̃fk) is
generated by Oη4(1) atoms, Y is generated by Oη4,K(1)=Oη4(1) atoms. Call an atom A

of Y small if
∫

X
1A(ν+1)6η

1/2
5 , and let Ω be the union of all the small atoms, then Ω

is clearly Y-measurable and obeys (59). It remains to prove (60), or equivalently that∫
X

1A(ν−1)∫
X

1A
=Ey∈Aν(y)−1�η4 η

1/2
5 +o(1)

for all non-small atoms A.
Fix a non-small atom A. Since A is not small, we have∫

X

1A(ν−1)+2
∫

X

1A =
∫

X

1A(ν+1) >η
1/2
5 .

Hence it will suffice to show that∫
X

1A(ν−1)�η4 η5+o(1).

On the other hand, as A is the intersection of atoms A1, ..., AK from Y(D̃f1), ...,Y(D̃fK),
we see from Proposition 7.3 and an easy induction argument that there exists a polyno-
mial Ψ:RK!R of degree Oη5(1) with coefficients Oη5(1) which maps IK into [0, 1] such
that ∫

X

|1A−Ψ(D̃f1, ..., D̃fK)|(ν+1)�η4 η5.
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In particular, ∫
X

(1A−Ψ(D̃f1, ..., D̃fK))(ν−1)�η4 η5.

On the other hand, by decomposing Ψ into monomials and using (49) (assuming η6

sufficiently small depending on η5), we have∫
X

Ψ(D̃f1, ..., D̃fK)(ν−1) = o(1)

and the claim follows (we can absorb the o(1) error by taking N large enough).

7.5. The inductive step

The proof of the abstract structure theorem proceeds by a stopping time argument. To
clarify this argument we introduce a somewhat artificial definition.

Definition 7.6. (Structured factor) A structured factor is a tuple

YK =(YK ,K, F1, ..., FK ,ΩK),

where K>0 is an integer, F1, ..., FK :X!R are functions with the pointwise bounds
|Fk|6ν+1 for all k∈[K], YK is the factor YK :=YK(F1)∨...∨YK(FK) and ΩK⊂X is a
YK-measurable set. We refer to K as the order of the structured factor, and ΩK as the
exceptional set. We say that the structured factor has noise level σ for some σ>0 if we
have the smallness bound ∫

X

1ΩK
(ν+1) 6σ

and the pointwise bound
|(1−1ΩK

)E(ν−1|YK)|6σ. (61)

If g:X!R is the function in Theorem 7.1, we define the energy Eg(YK) of the structured
factor Y relative to g to be the quantity

Eg(YK) :=
∫

X

(1−1ΩK
)E(g|YK)2.

If YK has noise level σ61, then, since g is bounded in magnitude by ν,

|(1−1ΩK
)E(g|YK)|6 (1−1ΩK

)(E(ν−1|YK)+1)6 1+σ 6 2, (62)

and so we conclude the energy bound

0 6 Eg(YK) 6 4. (63)

This will allow us to apply an energy increment argument to obtain Theorem 7.1. More
precisely, Theorem 7.1 is obtained from the following inductive step.
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Proposition 7.7. (Inductive step) Let YK =(YK ,K, F1, ..., FK ,ΩK) be a struc-
tured factor of order K with noise level 0<σ<η4

4. If we set

FK+1 :=
1

1+σ
(1−1ΩK

)(g−E(g|Y)) (64)

and we suppose that ∣∣∣∣∫
X

FK+1D̃FK+1

∣∣∣∣ >η4, (65)

then there exists a structured factor YK+1=(YK+1,K+1, F1, ..., FK , FK+1,ΩK+1) of
order K+1 with noise level σ+Oη4(η

1/2
5 ) satisfying the energy increment property

Eg(YK+1) > Eg(YK)+cη2
4 (66)

for some constant c>0 (depending only on I).

Let us assume Proposition 7.7 for the moment and deduce Theorem 7.1. Starting
with a trivial structured factor Y0 of order 0, and iterating Proposition 7.7 repeatedly
(and using (63) to prevent the iteration for proceeding for more than 4/cη2

4=Oη4(1)
steps), we may find a structured factor YK of order K=Oη4(1) with noise level

σ =Oη4(η
1/2
5 ) <η4

4 , (67)

such that the function FK+1 defined in (64) obeys the bound∣∣∣∣∫
X

FK+1D̃FK+1

∣∣∣∣ 6 η4.

If we thus set gU :=FK+1 and

gU⊥ :=
1

1+σ
(1−1ΩK

)E(g|Y),

then we easily verify (26) and (54), while (27) follows from (61), since

E(g|Y) 6 1+E(ν−1|Y).

To prove (28), we see from (67) that it suffices to show that∫
X

(1−1ΩK
)E(g|Y) =

∫
X

g−Oη4(η
1/2
5 ).

Since ΩK is Y-measurable, the left-hand side is
∫

X
g−

∫
X

1ΩK
g. But the claim then

follows from (61) and (67). This proves Theorem 7.1.
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It remains to prove Proposition 7.7. Set

YK+1 :=Y∨Y(D̃FK+1) =Y(D̃F1)∨...∨Y(D̃FK+1).

Now, by Proposition 7.4, we can find a YK+1-measurable set Ω obeying the smallness
bound (59) and the pointwise bound

|(1−1Ω)E(ν−1|YK+1)|6Oη4(η
1/2
5 ). (68)

Set ΩK+1 :=ΩK∪Ω. This is still YK+1-measurable and
∫

X
ΩK+16σ+Oη4(η

1/2
5 ); from

(68), we thus conclude that YK+1 has noise level σ+Oη4(η
1/2
5 ). Thus the only thing left

to verify is the energy increment property (66).
From (64) and (65) we have∣∣∣∣∫

X

(1−1ΩK
)(g−E(g|YK))D̃FK+1

∣∣∣∣ > η4−O(η2
4). (69)

Now, from (53), the pointwise bound 06g6ν, (62) and (59), we have∣∣∣∣∫
X

(1ΩK+1−1ΩK
)(g−E(g|YK))D̃FK+1

∣∣∣∣ 6O

(∫
X

(1ΩK+1−1ΩK
)(ν+1)

)
6Oη4(η

1/2
5 ) =O(η2

4),

and hence, by (69),∣∣∣∣∫
X

(1−1ΩK+1)(g−E(g|YK))D̃FK+1

∣∣∣∣ > η4−O(η2
4).

Next, from (58), the pointwise bound 06g6ν and (15), we have∣∣∣∣∫
X

(1−1ΩK+1)(g−E(g|YK))(D̃FK+1−E(D̃FK+1|YK+1))
∣∣∣∣ 6

∫
X

(ν+1)O(η2
4) =O(η2

4),

and thus ∣∣∣∣∫
X

(1−1ΩK+1)(g−E(g|YK))E(D̃FK+1|YK+1)
∣∣∣∣ > η4−O(η2

4).

Since ΩK+1, E(g|YK) and E(D̃FK+1|YK+1) are already YK+1-measurable, we conclude
that ∣∣∣∣∫

X

(1−1ΩK+1)(E(g|YK+1)−E(g|YK))E(D̃FK+1|YK+1)
∣∣∣∣ > η4−O(η2

4).

By (53) and the Cauchy–Schwarz inequality, we conclude that∫
X

(1−1ΩK+1)
∣∣E(g|YK+1)−E(g|YK)

∣∣2 > 2cη2
4−O(η3

4) (70)
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for some c>0.
To pass from this to (66), first observe from (62) and (59) that∫

X

(1ΩK+1−1ΩK
)E(g|YK)2�η4 η

1/2
5 ,

and so, by the triangle inequality and (63), (66) will follow from the estimate∫
X

(1−1ΩK+1)E(g|YK+1)2 >
∫

X

(1−1ΩK+1)E(g|YK)2+2cη2
4−O(η3

4).

Using the identity

E(g|YK+1)2=E(g|YK)2+
∣∣E(g|YK+1)−E(g|YK)

∣∣2+2E(g|YK)(E(g|YK+1)−E(g|YK))

and (70), it will suffice to show that∫
X

(1−1ΩK+1)E(g|YK)(E(g|YK+1)−E(g|YK))� η3
4 .

Now observe that E(g|YK+1)−E(g|YK) is orthogonal to all YK-measurable functions,
and in particular ∫

X

(1−1ΩK
)E(g|YK)(E(g|YK+1)−E(g|YK))= 0.

Thus, it suffices to show that∫
X

(1ΩK+1−1ΩK
)E(g|YK)(E(g|YK+1)−E(g|YK))� η3

4 .

Since everything here is YK+1-measurable, we may replace E(g|YK+1) by g. Using (62),
it then suffices to show that∫

X

(1ΩK+1−1ΩK
)
∣∣g−E(g|YK)

∣∣� η3
4 .

But this follows from the pointwise bound 06g6ν, from (62) and (59). This concludes
the proof of Proposition 7.7, which in turn implies Theorem 7.1 and thus Theorem 4.7.

8. A pseudorandom measure which majorizes the primes

In the remainder of the paper we prove Theorem 3.18, which constructs the pseudoran-
dom measure ν which will pointwise dominate the function f defined in (11). As in all
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previous sections, we are using the notation from §2 to define quantities such as W , R,
M and b.

The measure ν can in fact be described explicitly, following [36], [20] and [19]. Let
χ:R!R be a fixed smooth even function which vanishes outside of the interval [−1, 1]
and obeys the normalization ∫ 1

0

|χ′(t)|2 dt =1, (71)

but is otherwise arbitrary.(33) We then define ν by the formula

ν(x) = νχ(x) :=
φ(W )

W
log R

( ∑
m|Wx+b

µ(m)χ
(

log m

log R

))2

(72)

for x∈[N ], where the sum is over all positive integers m which divide Wx+b, and µ(m)
is the Möbius function of m, defined as (−1)k when m is the product of k distinct primes
for some k>0, and zero otherwise (i.e. zero when m is divisible by a non-trivial square).

Remark 8.1. The definition of ν may seem rather complicated, but its behavior is
in fact rather easily controlled, at least at “coarse-scales” (averaging x over intervals of
length greater than a large power of R), by sieve theory techniques, and in particular
by a method of Goldston and Yıldırım [14], though in the paper here we exploit the
smoothness of the cutoff χ (as in [20], [32] and [19]) to avoid the need for multiple
contour integration, relying on the somewhat simpler Fourier integral expansion instead.
For instance, at such scales it is known from these methods that the average value of ν

is 1+o(1) (see e.g. [20] and [32]), and more generally a large family of linear correlations
of ν with itself are also 1+o(1) (see [18] and [19]). Thus one can view ν as being close
to 1 in a weak (averaged) sense, though of course in a pointwise sense ν will fluctuate
tremendously.

It is easy to verify the pointwise bound f(x)6ν(x). Indeed, from (11) and (72), it
suffices to verify that ∑

m|Wx+b

µ(m)χ
(

log m

log R

)
=1

whenever x∈
[
1
2N

]
and Wx+b∈A. But this is clear, since Wx+b is prime and greater

than R. It is also easy to verify the bound (16), using the elementary result that the
number of divisors of an integer n is Oε(nε) for any ε>0.

(33) This differs slightly from the majorant introduced by Goldston and Yıldırım in [14] and used
in [18]; in our notation, the majorants from those papers corresponds to the case χ(t):=max(1−|t|, 0).
It turns out that choosing χ to be smooth allows for some technical simplifications, at the (acceptable)
cost of lowering η2=log R/log N slightly.
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The remaining task is to verify that ν obeys both the polynomial forms condition
(17) and the polynomial correlation condition (18) (note that (15) follows from (17)).
We can of course take N to be large compared with the parameters η0, ..., η7 and with
the parameters D′, D′′, K and ε (in the case of (18)), as the claim is trivial otherwise.

We begin with a minor reduction designed to eliminate the “wraparound” effects
caused by working in the cyclic group X=Z/NZ rather than the interval [N ]. Let us
define the truncated domain X ′ to be the interval X ′ :=

{
x∈Z:

√
N6x6N−

√
N

}
(say).

From (16), we can replace the average in X by the average in X ′ in both (17) and (18)
while only incurring an error of o(1) or oD′,D′′,K(1) at worst. The point of restricting
to X ′ is that all the shifts which occur in (17) and (18) have size at most O(MO(1/η1))
or OD′,D′′,K(MO(1/η1)), because of the hypotheses on the degree and coefficients of the
polynomials and because all convex bodies are contained in a ball B(0,M2). By choice
of M , these shifts are thus less than

√
N and so we do not encounter any wraparound

issues. Thus (17) is now equivalent to

E
 h∈Ω∩ZdEx∈X′

∏
j∈[J]

ν(x+Q1( h))= 1+oε(1), (73)

and (18) is similarly equivalent to

E
 n∈Ω′∩ZD′E

 h∈Ω′′∩ZD′′Ex∈X′

( ∏
k∈[K]

E
"m∈Ω∩ZD

∏
j∈[J]

ν(x+"Pj( h)·"m+"Qj,k( h)· n)
)

×
∏

l∈[L]

ν(x+!Sl( h)· n) = 1+oD′,D′′,K,ε(1),
(74)

where ν is now viewed as a function on the integers rather than on X=Z/NZ, defined
by (72).

We shall prove (73) and (74) in §11 and §12, respectively. Before doing so, let us
first discuss what would happen if we tried to generalize these averages by considering
the more general expression

E
 x∈Ω∩ZD

∏
j∈[J]

ν(Pj( x)), (75)

where D,J>0 are integers, Ω is a convex body in RD, and P1, ..., PJ∈Z[x1, ...,xD] are
polynomials of bounded degree and whose coefficients are not too large (say of size
O(WO(1))). In light of the linear correlation theory, one would generally expect these
polynomial correlations to also be 1+o(1) as long as the polynomials P1, ..., PJ were
suitably “distinct” and that the range Ω is suitably large.

There will however be some technical issues in establishing such a statement. For
sake of exposition let us just discuss the case J=1, so that we are averaging a single
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factor ν(P ( x)) for some polynomial P of D variables  x=(x1, ..., xD). Even in this simple
case, two basic problems arise.

The first problem is that ν is not perfectly uniformly distributed modulo p for all
primes p. The “W -trick” of using Wx+b instead of x in (72) (and renormalizing by
φ(W )/W to compensate) does guarantee a satisfactory uniform distribution of ν modulo
p for small primes p<w. However, for larger primes p>w, it turns out that ν will generally
avoid the residue class {x:Wx+b=0 mod p}, and instead distribute itself uniformly
among the other p−1 residue classes. This corresponds to the basic fact that primes
(and almost primes) are mostly coprime to any given modulus p. Because of this, the
expected value of an expression such as ν(P (x)) will increase from 1 to roughly (1−1/p)−1

if we know that WP (x)+b is coprime to p, and conversely it will drop to essentially zero
if we know that WP (x)+b is divisible by p. These two effects will essentially balance each
other out, provided that the algebraic variety {x∈FD

p :WP (x)+b=0} has the expected
density of 1/p+O(1/p3/2) (say) over the finite field affine space FD

p . The famous result
of Deligne [7], [8], in which the Weil conjectures were proved, establishes this when
WP +b is non-constant and is absolutely irreducible modulo p (i.e. irreducible over the
algebraic closure of Fp). However, there can be some “bad” primes p>w for which this
irreducibility fails; a particularly “terrible” case arises when p divides the polynomial
WP +b, in which case the variety has density 1 in FD

p and the expected value of (75)
drops to zero. This reflects the intuitive fact that WP (x)+b is much less likely to be
prime or almost prime if WP +b itself is divisible by some prime p. The other bad primes
p do not cause such a severe change in the expectation (75), but can modify the expected
answer of 1+o(1) by a factor of 1+O(1/p)=exp(O(1/p)), leading to a final value which
is something like exp(O(

∑
p bad 1/p)+o(1)). In most cases, this expression will be in fact

very close to 1, because of the restriction p>w. However, the (very slow) divergence of the
sum

∑
p 1/p means that there are some exceptional cases in which averages such as (75)

are unpleasantly large. For instance, for any fixed h 6=0, the average value of ν(x)ν(x+h)
over sufficiently coarse-scales turns out to be exp(O(

∑
p>w:p|h 1/p)+o(1)), which can be

arbitrarily large in the (very rare) case when h contains many prime factors larger than
w, the basic problem being that the algebraic variety {x∈Fp :(Wx+b)(W (x+h)+b)=0},
which is normally empty, becomes unexpectedly large when p>w and p divides h. This
phenomenon was already present in [18], leading in particular to the rather technical
“correlation condition” for ν.

The second problem, which is a new feature in the polynomial case compared with
the previous linear theory, is that we will not necessarily be able to average all of the
parameters x1, ..., xD over coarse-scales (e.g. at scales O(M), O

(√
M

)
or O(M1/4)). In-

stead, some of the parameters will be only averaged over fine scales such as O(H). At
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these scales, the elementary sieve theory methods we are employing cannot estimate
the expression (75) directly; indeed, the problem then becomes analogous to that of
understanding the distribution of primes in short intervals, which is notoriously diffi-
cult. Fortunately, we can proceed by first fixing the fine-scale parameters and using the
sieve theory methods to compute the averages over the coarse-scale parameters rather
precisely, leading to certain tractable divisor sums over “locally bad primes” which can
then be averaged over fine scales. Here we will rely on a basic heuristic from algebraic
geometry, which asserts that a “generic” slice of an algebraic variety by a linear subspace
will have the same codimension as the original variety. In our context, this means that
a prime which is “globally good” with respect to many parameters, will also be “locally
good” when freezing one or more parameters, for “most” choices of such parameters. We
will phrase the precise versions of these statements as a kind of “combinatorial Nullstel-
lensatz” (cf. [1]) in Appendix D. This effect lets us deal with the previous difficulty that
the sum of 1/p over bad primes can occasionally be very large.

We have already mentioned the need to control the density of varieties such as {x∈
FD

p :WP (x)+b=0}, which in general requires the Weil conjectures as proven by Deligne.
Fortunately, for the application to polynomial progressions, the polynomials P involved
will always be linear in at least one of the coarse-scale variables. This makes the density of
the algebraic variety much easier to compute, provided that the coefficients in this linear
representation do not degenerate (either by the linear coefficient vanishing, or by the
linear and constant coefficients sharing a common factor). Thus we are able to avoid using
the Weil conjectures. In fact we will be able to proceed by rather elementary algebraic
methods, without using modern tools from arithmetic geometry; see Appendix D.

8.2. Notation

We now set out some notation which will be used throughout the proof of (73) and (74).
If p is a prime, we use Fp to denote the finite field with p elements.

If P and Q lie in some ring R, we use P |Q to denote the statement that Q is a
multiple of P . An element of a ring is a unit if it is invertible, and irreducible(34) if
it is not a unit, and cannot be written as the product of two non-units. A ring is a
unique factorization domain if every element is uniquely expressible as a finite product
of irreducibles, up to permutations and units. If P1, ..., PJ lie in a unique factorization
domain, we say that P1, ..., PJ are jointly coprime (or just coprime if J=2) if there exists
no irreducible which divides all the P1, ..., PJ , and pairwise coprime if each pair Pj , Pk is
coprime for 16j<k6J ; thus pairwise coprime implies jointly coprime, but not conversely.

(34) We shall reserve the term prime for the rational primes 2, 3, 5, 7, ... to avoid confusion.
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As observed by Hilbert, if R is a unique factorization domain, then so is R[x] (due
to the Euclidean algorithm). In particular, Fp[x1, ...,xD] and Z[x1, ...,xD] are unique
factorization domains (with units Fp\{0} and {−1,+1}, respectively).

Every polynomial in R[x1, ...,xD] can of course be viewed as a function from RD

to R. If P∈Z[x1, ...,xD] is a polynomial and N>1, we write P mod N for the associated
polynomial in ZN [x1, ...,xD] formed by projecting all the coefficients onto the ring ZN ,
and thus P mod N can be viewed as a function from ZD

N to ZN . Note that this projection
may alter the property of two or more polynomials being jointly or pairwise coprime; the
precise analysis of when this occurs will in fact be a major focus of our arguments here.

It will be convenient to introduce the modified exponential function

Exp(x) := max(ex−1, 0).

Thus Exp(x)∼x when x is non-negative and small, while Exp(X)∼ex for x large. Observe
the elementary inequalities

Exp(x+y) 6Exp(2x)+Exp(2y) and Exp(x)K �K Exp(Kx) (76)

for any x, y>0 and K>1.

9. Local estimates

Before we give correlation estimates for ν on the integers, we first need to consider the
analogous problem modulo p. To formalize this problem, we introduce the following
definition.

Definition 9.1. (Local factor) Let P1, ..., PJ∈Z[x1, ...,xD] be polynomials with inte-
ger coefficients. For any prime p, we define the (principal) local factor

cp(P1, ..., PJ) :=Ex∈F D
p

∏
j∈[J]

1Pj(x)=0 mod p .

We also define the complementary local factor

c̄p(P1, ..., PJ) :=Ex∈F D
p

∏
j∈[J]

1Pj(x) 6=0 mod p .

Examples 9.2. If P1, ..., PJ are homogeneous linear forms on FD
p , with total rank r,

then cp(P1, ..., PJ)=p−r. If the forms are independent (and thus J=r), then

c̄p(P1, ..., PJ) =
(

1− 1
p

)J

.
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If D=1, then the local factor cp(x2+1) equals 2/p when p=1 mod 4 and equals 0 when
p=3 mod 4, by quadratic reciprocity. (When p=2, it is equal to 1/p.) More gen-
erally, the Artin reciprocity law [22] relates Artin characters to certain local factors.
Deligne’s celebrated proof [7], [8] of the Weil conjectures implies (as a very special case)
that cp(P )=1/p+Ok,D(1/p3/2) whenever P∈Z[x1, ...,xD] determines a non-singular pro-
jective algebraic variety over Fp. For instance, if P =x2

2−x3
1−ax1−b, so that P de-

termines an elliptic curve, with discriminant ∆=−16(4a3+27b2) coprime to p, then
cp(P )=1/p+O(1/p3/2) (a classical result of Hasse). The Birch and Swinnerton–Dyer
conjectures, if true, would provide more precise information (though not of upper bound
type) on the error term in this case.

Remark 9.3. The factor cp denotes the proportion of points on FD
p which lie on

the algebraic variety determined by the polynomials P1, ..., PJ , while the complementary
factor c̄p is the proportion of points in FD

p for which all the P1, ..., PJ are coprime to p.
Clearly these factors lie between 0 and 1; for instance, when J=0 we have cp=1 and
c̄p=0. Our interest is to estimate cp for higher values of J . This will be of importance
when we come to the “global” estimates for

∏
j∈[J] ν(Pj(x)) over various subsets of Zd;

heuristically, the average value of this expression should be approximately the product
of the complementary factors c̄p as p ranges over the primes.

From the inclusion-exclusion principle we have the identity

c̄p(P1, ..., PJ) =
∑

S⊆[J]

(−1)|S|cp({Pj}j∈S) (77)

and so we can estimate the complementary local factors using the principal local factors.

As mentioned earlier, the precise estimation of cp(P1, ..., PJ) for general P1, ..., PJ is
intimately connected to a number of deep results in arithmetic geometry such as the Weil
conjectures and the Artin reciprocity law. Fortunately, for our applications, we will only
need to know the 1/p coefficient of cp(P1, ..., PJ) and can neglect lower order terms. Also,
we will be working in the case where each of the polynomials Pj are linear in at least
one of the coordinates x1, ..., xD of x and are “non-degenerate” in the other coordinates.
In such a simplified context, we will be able to control cp quite satisfactorily using only
arguments from elementary algebra. To state the results, we first need the notion of a
prime p being good, bad or terrible with respect to a collection of polynomials.

Definition 9.4. (Good prime) Let P1, ..., PJ∈Z[x1, ...,xD] be a collection of polyno-
mials. We say that a prime p is good with respect to P1, ..., PJ if the following hold:

• the polynomials P1 mod p, ..., PJ mod p are pairwise coprime;
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• for each j∈[J ], there exists a coordinate 16kj 6D for which we have the linear
behavior

Pj(x1, ...,xD) =Pj,1(x1, ...,xkj−1,xkj+1, ...,xD)xkj

+Pj,0(x1, ...,xkj−1,xkj+1, ...,xD) mod p,

where Pj,1, Pj,0∈Fp[x1, ...,xkj−1,xkj+1, ...,xD] are such that Pj,1 is non-zero and coprime
to Pj,0.

We say that a prime is bad if it is not good. We say that a prime is terrible if at least
one of the Pj ’s vanish identically modulo p (i.e. all the coefficients are divisible by p).
Note that terrible primes are automatically bad.

Our main estimate on the local factors is then as follows.

Lemma 9.5. (Local estimates) Let P1, ..., PJ∈Z[x1, ...,xD] have degree at most d,
let p be a prime and let S⊂[J ].

(a) If |S|=0, then cp({Pj}j∈S)=1.
(b) If |S|>1 and p is not terrible, then cp({Pj}j∈S)=Od,D,J(1/p).
(c) If |S|=1 and p is good , then cp({Pj}j∈S)=1/p+Od,D,J(1/p2).
(d) If |S|>1 and p is good , then cp({Pj}j∈S)=Od,D,J(1/p2).
(e) If p is terrible, then c̄p(P1, ..., PJ)=0.
(f) If p is not terrible, then c̄p(P1, ..., PJ)=1+Od,D,J(1/p).

The proof of this lemma involves only elementary algebra, but we defer it to Ap-
pendix D so as not to disrupt the flow of the argument.

Remark 9.6. From (77) and Lemma 9.5 (a), (c), (d), we also have

c̄p(P1, ..., PJ) = 1− J

p
+Od,D,J

(
1
p2

)
when p is good. In practice we shall need a more sophisticated version of this fact,
when certain complex weights p−

∑
j∈S zj are inserted into the right-hand side of (77); see

Lemma 10.4.

10. The initial correlation estimate

To prove (73) and (74) we shall need the following initial estimate which handles general
polynomial averages of ν over large scales, but with an error term that can get large if
there are many “bad” primes present. More precisely, this section is devoted to proving
the following result.
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Proposition 10.1. (Correlation estimate) Let P1, ..., PJ∈Z[x1, ...,xD] have degree
at most d for some J,D, d>0. Let Ω be a convex body in RD with inradius at least R4J+1.
Let Pb be the set of primes w6p6Rlog R bad with respect to WP1+b, ...,WPJ +b, and let
Pt⊂Pb be the set of primes w6p6Rlog R which are terrible (as defined in Definition 9.4).
Then

Ex∈Ω∩ZD

∏
j∈[J]

ν(Pj(x))= 1Pt=∅+oD,J,d(1)+OD,J,d

(
Exp

(
OD,J,d

( ∑
p∈Pb

1
p

)))
. (78)

Remark 10.2. We only expect this estimate to be useful when the number of bad
primes is finite. This is equivalent to requiring that the polynomials P1, ..., PJ are co-
prime, and each one is linear in at least one variable. Because the sum

∑
p 1/p is (very

slowly) divergent (see (110)), the last error term can be unpleasantly large on occasion,
but in practice we will be able to introduce averaging over additional parameters which
will make the effect of the error small on average, the point being that the sets Pt and Pb

are generically rather small. The radius R4J+1 is not best possible, but to lower it too
much would require some deep analytical number theory estimates such as the Bombieri–
Vinogradov inequality, which we shall avoid using here. The upper bound Rlog R (which
was not present in earlier work) can also be lowered, but for our purposes any bound
which is subexponential in R will suffice.

Remark 10.3. All the primes p<w will be bad (but not terrible); however, their
contribution will be almost exactly canceled by the φ(W )/W term present in ν, and
we do not need to include them into Pb. Even a single terrible prime will cause the
main term 1Pt=∅ to vanish (basically because one of the Pj(x) will now be inherently
composite and so will be unlikely to have a large value of ν), which will make asymptotics
difficult; however, terrible primes are no worse than merely bad primes for the purposes
of upper bounds.

Proof of Proposition 10.1. Throughout this proof we fix D, J and d, and allow the
implicit constants in the O( ·) and o( ·) notation to depend on these parameters. We will
also always assume R to be sufficiently large depending on D, J and d.

We expand the left-hand side using (72) as(
φ(W )

W
log R

)J ∑
m1,m′

1,...,mJ ,m′
J>1

( ∏
j∈[J]

µ(mj)µ(m′
j)χ

(
log mj

log R

)
χ

(
log m′

j

log R

))

×Ex∈Ω∩ZD

J∏
j=1

1lcm(mj ,m′
j)|WPj(x)+b.

(79)

Here of course lcm( ·) denotes least common multiple. Note that the presence of the µ

and χ factors allows us to restrict m1, ...,m
′
J to be square-free and at most R.
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The first task is to eliminate the role of the convex body Ω, taking advantage of the
large inradius assumption. Let M :=lcm(m1,m

′
1, ...,mj ,m

′
j). Thus M is square-free and

at most R2J . The function x 7!1lcm(mj ,m′
j)|WPj(x)+b is periodic with respect to the lattice

M ·ZD, and thus can be meaningfully defined on the group ZD
M . Applying Corollary C.3

(recalling that Ω is assumed to have inradius at least R4J+1), we thus have

Ex∈Ω∩ZD

J∏
j=1

1lcm(mj ,m′
j)|WPj(x)+b =

(
1+O

(
1

R2J+1

))
Ey∈ZD

M

J∏
j=1

1lcm(mj ,m′
j)|WPj(y)+b.

Let us first dispose of the error term O(1/R2J+1). The contribution of this term to (79)
can be crudely bounded by O(R−2J−1), and so the contribution of this term to (79) can
be crudely bounded by

O

((
φ(W )

W
log R

)J ∑
16m1,m′

1,...,mJ ,m′
J6R

R−2J−1

)
� logJ R

R
= o(1).

Thus we may discard this error, and reduce to showing that(
φ(W )

W
log R

)J ∑
m1,m′

1,...,mJ ,m′
J>1

( ∏
j∈[J]

µ(mj)µ(m′
j)χ

(
log mj

log R

)
χ

(
log m′

j

log R

))
×αlcm(m1,m′

1),...,lcm(mJ ,m′
J )

=1Pt=∅+o(1)+O

(
Exp

(
O

( ∑
p∈Pb

1
p

)))
,

(80)

where αlcm(m1,m′
1),...,lcm(mJ ,m′

J ) is the local factor

αlcm(m1,m′
1),...,lcm(mJ ,m′

J ) :=Ey∈ZD
M

J∏
j=1

1lcm(mj ,m′
j)|WPj(y)+b.

Observe, from the Chinese remainder theorem, that α is multiplicative, so that if

lcm(mj ,m
′
j) =

∏
p

prj

then
αlcm(m1,m′

1),...,lcm(mJ ,m′
J ) =

∏
p

αpr1 ,...,prJ

(note that all but finitely many of the terms in the product are 1). If the m1, ...,m
′
J are

squarefree, then the rj ’s are either 0 or 1, and we simplify further to

αlcm(m1,m′
1),...,lcm(mJ ,m′

J ) =
∏
p

cp((WPj +b)rj=1),
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where the local factors cp are defined in Definition 9.1, and the dummy variable j is
ranging over all the indices for which rj =1. Also note that the mj and m′

j are bounded
by R, and thus we may certainly restrict the primes p to be less than Rlog R without
difficulty.

The next step is to replace the χ factors by terms which are multiplicative in the
mj and m′

j . Since χ is smooth and compactly supported, we have the Fourier expansion

exχ(x) =
∫ ∞

−∞
ϕ(ξ)e−ixξ dξ (81)

for some smooth, rapidly decreasing function ϕ(ξ) (so in particular ϕ(ξ)=OA((1+|ξ|)−A)
for any A>0). For future reference, we observe that (81) and the hypotheses on χ will
imply the identity ∫ ∞

−∞

∫ ∞

−∞

(1+it)(1+it′)
2+it+it′

ϕ(t)ϕ(t′) dt dt′ =1 (82)

(see [19, Lemma D.2], or the proof of [32, Proposition 2.2]).
We follow the arguments in [36], [20], [32] and [19], except that for technical reasons

(having to do with the terrible primes) we will be unable to truncate the ξ variables.
From (81) we have

χ

(
log mj

log R

)
=

∫ ∞

−∞
m
−zj

j dξj and χ

(
log m′

j

log R

)
=

∫ ∞

−∞
(m′

j)
−z′j dξ′j ,

where we adopt the notational conventions

zj :=
1+ξj

log R
and z′j :=

1+ξ′j
log R

.

Our task is thus to show that(
φ(W )

W
log R

)J ∑
m1,m′

1,...,mJ ,m′
J>1

∫ ∞

−∞
...

∫ ∞

−∞( ∏
j∈[J]

µ(mj)µ(m′
j)m

−zj

j (m′
j)
−z′j ϕ(ξj)ϕ(ξ′j) dξj dξ′j

) ∏
p6Rlog R

cp((WPj +b)rj=1)

= 1+o(1)+O

(
Exp

(
O

( ∑
p∈Pb

1
p

)))
.

(83)

The left-hand side can be factorized as∫ ∞

−∞
...

∫ ∞

−∞

(
φ(W )

W
log R

)J ∏
p6Rlog R

Ep

∏
j∈[J]

ϕ(ξj)ϕ(ξ′j) dξj dξ′j ,
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where Ep=Ep(z1, ..., z
′
J) is the Euler factor

Ep :=
∑

m1,...,m′
J∈{1,p}

∏
j∈[J]

µ(mj)µ(m′
j)m

−zj

j (m′
j)
−z′j cp((WPj +b)rj=1).

Note that if the zj and z′j were zero, then this would just be the complementary factor
c̄p(WP1+b, ...,WPJ +b) defined in Definition 9.1; see (77). Of course, zj and z′j are
non-zero. To approximate Ep in this case, we introduce the Euler factor

E′
p :=

∏
j∈[J]

(1−1/p1+zj )(1−1/p1+z′j )
1−1/p1+zj+z′j

.

Note that E′
p never vanishes.

Lemma 10.4. (Euler product estimate) We have

∏
p6Rlog R

Ep

E′
p

=
(

1Pt=∅+o(1)+O

(
Exp

(
O

( ∑
p∈Pb

1
p

))))(
W

φ(W )

)J

.

Proof. For p<w, we directly compute (since w is slowly growing compared to R,
and WPj +b is equal modulo p to b, which is coprime to p) that

Ep =1+o(1) and E′
p =

(
1− 1

p

)J

+o(1),

and hence (again because w is slowly growing)

∏
p<w

Ep

E′
p

=(1+o(1))
(

W

φ(W )

)J

.

Thus it will suffice to show that∏
w6p6Rlog R

Ep

E′
p

=1Pt=∅+o(1)+O

(
Exp

(
O

( ∑
p∈Pb

1
p

)))
.

For p terrible, Lemma 9.5 gives the estimate

Ep�
1
p
� 1

p
E′

p,

and so it will suffice to show that∏
w6p6Rlog R

p not terrible

Ep

E′
p

=1+o(1)+O

(
Exp

(
O

( ∑
p∈Pb

1
p

)))
.
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For p bad but not terrible, Lemma 9.5 gives the crude estimate

Ep =1+O

(
1
p

)
=exp

(
O

(
1
p

))
E′

p,

and thus ∏
w6p6Rlog R

p bad but not terrible

Ep

E′
p

=1+O

(
Exp

(
O

( ∑
p∈Pb

1
p

)))
.

Thus it suffices to show that ∏
w6p6Rlog R

p good

Ep

E′
p

=1+o(1).

Since the product
∏

p(1+O(1/p2)) is convergent, and w goes to infinity, it in fact suffices
to show that

Ep =
(

1+O

(
1
p2

))
E′

p

for all good primes larger than w. But this easily follows from Lemma 9.5 and Taylor
expansion (recall that the real parts of zj and z′j are 1/log R>0).

Now we use the theory of the Riemann zeta function. From (113) we have that∏
p6Rlog R

E′
p =

∏
j∈[J]

(1+o(1))
ζ(1+zj +z′j)

ζ(1+zj)ζ(1+z′j)
.

On the other hand, from (108) we have

1
ζ(1+(1+iξ)/log R)

= (1+o((1+|ξ|)2))1+iξ

log R

and
ζ(1+(1+iξ)/log R) = (1+o((1+|ξ|)2)) log R

1+iξ

for any real ξ, and hence∏
p6Rlog R

E′
p =

∏
j∈[J]

(1+o((1+|ξj |+|ξ′j |)6))
1

log R

(1+iξj)(1+iξ′j)
2+iξj +iξ′j

.

Applying Lemma 10.4, we conclude that(
φ(W )

W
log R

)J ∏
p6Rlog R

Ep

=
(

1Pt=∅+o

( ∏
j∈[J]

(1+|ξj |+|ξ′j |)6
)

+O

(
Exp

(
O

( ∑
p∈Pb

1
p

)))) ∏
j∈[J]

(1+iξj)(1+iξ′j)
2+iξj +iξ′j

.
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Thus, by the triangle inequality, to show (83) it will suffice to show that

∫
R

...

∫
R

∏
j∈[J]

ϕ(ξj)ϕ(ξ′j)
(1+iξj)(1+iξ′j)

2+iξj +iξ′j
dξj dξ′j =1

and ∫
I

...

∫
I

∏
j∈[J]

|ϕ(ξj)||ϕ(ξ′j)|(1+|ξj |+|ξ′j |)6
|1+iξj ||1+iξ′j |
|2+iξj +iξ′j |

dξj dξ′j =O(1).

But the first estimate follows from (82), while the second estimate follows from the rapid
decrease of ϕ. This proves Proposition 10.1.

To illustrate the above proposition, let us specialize to the case of monic linear
polynomials of one variable (this case was essentially treated in [18] and [14]).

Corollary 10.5. (Correlation condition) Let h1, ..., hJ be integers, and let I⊂R
be an interval of length at least R4J+1. Then

Ex∈I∩Z

∏
j∈[J]

ν(x+hj) = 1+oD,J,d(1)+OD,J,d

(
Exp

(
OD,J,d

( ∑
p∈Pb

1
p

)))
,

where

Pb := {w 6 p 6Rlog R : p |hj−hj′ for some 1 6 j < j′ 6J}.

Proof. Apply Proposition 10.1 with Pj(x):=x+hj and Ω:=I. Then there are no
terrible primes, and the only bad primes larger than w are those which divide hj−hj′

for some 16j<j′6J .

This can already be used to derive the “correlation condition” in [18]; a similar
aplication of Proposition 10.1 also gives the “linear forms condition” from that paper.
We will also need the following variant of the above estimate.

Corollary 10.6. (Correlation condition on progressions) Let h1, ..., hJ be integers,
q>1, a∈Zq and I⊂R be an interval of length at least qR4J+1. Then

Ex∈I∩Z,x=a mod q

∏
j∈[J]

ν(x+hj) =OD,J,d

(
exp

(
OD,J,d

( ∑
p∈Pb

1
p

)))
,

where

Pb := {w 6 p 6Rlog R : p |hj−hj′ for some 1 6 j < j′ 6J}∪{p >w : p | q}. (84)
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Proof. Apply Proposition 10.1 with Pj(x):=(qx+a)+hj and with

Ω := {x∈R : qx+a∈ I}.

Then the bad primes are those which divide hj−hj′ or which divide q. (There are terrible
primes if a and q are not coprime, but this will not affect the upper bound. One can get
more precise estimates as in Corollary 10.5, but we will not need them here.)

This in turn implies the following result.

Corollary 10.7. (Correlation condition with periodic weight) Let h1, ..., hJ be
integers, q>1, I⊂R be an interval of length at least qR4J+1 and f :Z!R+ be periodic
modulo q (and thus definable on Zq). Then

Ex∈I∩Zf(x)
∏

j∈[J]

ν(x+hj) =OD,J,d

(
(Ey∈Zqf(y)) exp

(
OD,J,d

( ∑
p∈Pb

1
p

)))
,

where Pb was defined in (84).

Proof. The left-hand side can be bounded by

Ey∈Zqf(y)Ex∈I∩Z,x=a mod q

∏
j∈[J]

ν(x+hj),

simply because the set {x∈I∩Z:x=a mod q} has cardinality roughly |I∩Z|/q (by the
hypotheses on the length of I). The claim then follows from Corollary 10.6.

11. The polynomial forms condition

In this section we use the above correlation estimates to prove the polynomial forms
condition (73). We begin with a preliminary bound in this direction.

Theorem 11.1. (Polynomial forms condition) Let M,D, d, J>0 and ε>0. Let
P1, ..., PJ∈Z[m1, ...,mD] be polynomials of degree d with all coefficients of size at most
W . Let I⊂R be any interval of length at least R4J+1, and let Ω⊂RD be any convex
body with inradius at least Rε. Then

Ex∈I∩Z,"m∈Ω∩ZD

∏
j∈[J]

ν(x+Pj("m))= 1+oD,d,ε,J

(
exp

(
OD,d,ε,J

( ∑
p∈Pb

1
p

)))
,

where Pb denote the set of all w6p6Rlog R which are “globally bad” in the sense that
p|Pj−Pj′ for some 16j<j′6J .
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Proof. Let us fix D, d, J and ε, and allow all implicit constants to depend on these
quantities. From Corollary 10.5 we have

Ex∈I∩Z

∏
j∈[J]

ν(x+Pj("m))= 1+o(1)+O

(
Exp

(
O

( ∑
p∈P

#m

1
p

)))

for all "m∈Ω′∩ZD, where P
"m is the set of primes w6p6Rlog R such that p|Pj("m)−Pj′("m)

for some 16j<j′6d. Thus it suffices to show that

E
"m∈Ω∩ZDExp

(
O

( ∑
p∈P

#m

1
p

))
= o

(
exp

(
O

( ∑
p∈Pb

1
p

)))
.

Applying (76), we reduce to showing that

E
"m∈Ω∩ZDExp

(
O

( ∑
p∈P

#m\Pb

1
p

))
= o(1).

Applying Lemma E.1, it suffices to show that

∑
w6p6Rlog R

p/∈Pb

logO(1) p

p
E
"m∈Ω∩ZD1p∈P

#m
= o(1).

From (111) and (112), it will suffice to establish the bounds

E
"m∈Ω∩ZD1p∈P

#m
=O

(
1
p

)
+O

(
1

Rε

)
for any w6p6Rlog R with p /∈Pb (note that log(Rlog R)O(1)=o(Rε)). By the triangle
inequality, it suffices to show that

E
"m∈Ω∩ZD1p|Pj("m)−Pj′ ("m) =O

(
1
p

)
+O

(
1

Rε

)
for all 16j<j′6J .

Fix j and j′. Observe that the property p|Pj("m)−Pj′("m) is periodic in each com-
ponent of "m of period p, and can thus meaningfully be defined for "m∈FD

p . Applying
Corollary C.3 (for p�Rε) or Lemma C.4 (for p�Rε), it will thus suffice to show the
bound

Em1∈A1,...,mD∈AD
1p|Pj(m1,...,mD)−Pj′ (m1,...,mD) =O

(
1
M

)
for all subsets A1, ..., AD in Fp of size at least M>1 for some M . But since p /∈Pb, the
polynomial Pj−Pj′ does not vanish modulo p, and the claim follows from Lemma D.3.
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We can improve the error term if the coefficients of the polynomials are not too
large.

Corollary 11.2. (Polynomial forms condition, again) Let M,D, d, J>0 and ε>0.
Let P1, ..., PJ∈Z[m1, ...,mD] be distinct polynomials of degree d with all coefficients of
size at most WM . Let I⊂R be any interval of length at least R4J+1, and let Ω⊂RD be
any convex body with inradius at least Rε. Then

Ex∈I∩Z,"m∈Ω∩ZD

∏
j∈[J]

ν(x+Pj("m))= 1+oD,d,ε,J,M (1).

Proof. Let Pb denote the set of all primes w6p6Rlog R such that p|Pj−Pj′ for some
16j<j′6J . Since Pj−Pj′ is non-zero, this p must then divide a non-zero difference of
two of the coefficients of the Pj ’s, which is O(WM ). Thus the total product of all such
p is at most O(WO(1)), and hence, by Lemma E.3, we have

∑
p∈Pb

1/p=o(1). The claim
now follows from Theorem 11.1.

From Corollary 11.2, the desired estimate (73) quickly follows.

12. The polynomial correlation condition

Now we use the estimates from §10 to prove the polynomial correlation condition (74).
It will suffice to prove the following estimate.

Theorem 12.1. (Polynomial correlation condition) Let B,D,D′, D′′, d, J,K,L>0
and ε>0. For any j∈[J ], k∈[K] and l∈[L], let

"Pj ∈Z[h1, ...,hD′′ ]D and Qj,k, Sl ∈Z[h1, ...,hD′′ ]D
′

be polynomials obeying the following conditions:
• for any 16j<j′6d and k∈[K], the vector-valued polynomials

("Pj , "Qj,k) and ("Pj′ , "Qj′,k)

are not parallel ;
• the coefficients of Pj,d and Sl,d′ are bounded in magnitude by WB ;
• the vector-valued polynomials !Sl are distinct as l varies in [L].
Let I⊂R be any interval of length at least R4L+1, let Ω⊂RD be a bounded con-

vex body with inradius at least R8J+2, and let Ω′⊂RD′
and Ω′′⊂RD′′

have inradii at
least Rε. Suppose also that Ω′′ is contained in the ball B(0, RB). Then

Ex∈I, n∈Ω′∩ZD′ , h∈Ω′′∩ZD′′

( ∏
k∈[K]

E
"m∈Ω∩ZD

∏
j∈[J]

ν(x+"Pj( h)·"m+"Qj,k( h)· n)
)

×
∏

l∈[L]

ν(x+!Sl( h)· n) = 1+oB,D,D′,D′′,d,J,K,L,ε(1).
(85)



284 t. tao and t. ziegler

Proof. We repeat the same strategy of proof as in the preceding section. We fix B,
D, D′, D′′, d, J , K, L and ε, and allow implicit constants to depend on these parameters.
Thus, for instance, the right-hand side of (85) is now simply 1+o(1).

We begin by fixing k, x,  h and  n, and considering a single average

E
"m∈Ω∩ZD

∏
j∈[J]

ν(x+"Pj( h)·"m+"Qj,k( h)· n).

By Proposition 10.1, this average is

1Pt[k,x, h, n]=∅+o(1)+O

(
Exp

(
O

( ∑
p∈Pb[k,x, h, n]

1
p

)))
, (86)

where Pt[k, x, h,  n] is the collection of primes w6p6Rlog R which are terrible with respect
to the linear polynomials

W×[x+"Pj( h)·#m+"Qj,k( h)· n]+b∈Z[m1, ...,mD], j ∈ [J ], (87)

and Pb[k, x, h,  n] is the collection of primes which are bad. We can thus express∏
k∈[K]

E
"m∈Ω∩ZD

∏
j∈[J]

ν(x+"Pj( h)·"m+"Qj,k( h)· n)

using (76) as

1Pt[k,x, h, n]=∅ for all k+o(1)+O

(
Exp

(
O

( ∑
p∈

⋃
k∈[K] Pb[k,x, h, n]

1
p

)))
,

which we estimate crudely by

1+o(1)+O

( ∑
k∈[K]

∑
p∈Pt[k,x, h, n]

1
)

+O

(
Exp

(
O

( ∑
p∈

⋃
k∈[K] Pb[k,x, h, n]\Pt[k,x, h, n]

1
p

)))
.

Observe that if p>w is terrible for (87), then p|"Pj( h) and p|x+"Qj,k( h)· n for some
j∈[J ], while if p>w is bad but not terrible, then

p | ("Pj( h), "Qj,k( h)· n)∧("Pj′( h), "Qj′,k( h)· n)

for some 16j<j′6J , where ∧ denotes the wedge product on the (D+1)-dimensional
space. Thus we may estimate the preceding sum (using (76)) by

1+o(1)+
∑
j∈[J]

∑
k∈[K]

O

( ∑
w6p6Rlog R

p|!Pj( h),x+"Qj,k( h)· n

1
)1/2

+
∑

16j<j′6J

O

(
Exp

(
O

( ∑
w6p6Rlog R

p|(!Pj( h),"Qj,k( h)· n)∧(!Pj′ (
 h),"Qj′,k( h)· n)

1
p

)))1/2

.
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At this point we pause to remove some “globally bad” primes. Let Pb denote the primes
w6p6Rlog R which divide ("Pj , "Qj,k)∧("Pj′ , "Qj′) for some 16j<j′6J and k∈[K] (note
that this is now the wedge product in D+D′ dimensions). Because the wedge products
("Pj , "Qj,k)∧("Pj′ , "Qj′) are non-zero and have coefficients O(WO(1)), the product of all
these primes is O(WO(1)), and hence, by Lemma E.3, we have

∑
p∈Pb

1/p=o(1). Thus
we may safely delete these primes from the expression inside the Exp( ·). If we then
apply Lemma E.1, we can bound the above sum as

1+o(1)+
∑
j∈[J]

O

( ∑
w6p6Rlog R

p|!Pj( h),x+"Qj,k( h)· n

1
)1/2

+
∑

16j<j′6J

O

( ∑
w6p6Rlog R

p/∈Pb

logO(1) p

p
1p|(!Pj( h),"Qj,k( h)· n)∧(!Pj′ (

 h),"Qj′,k( h)· n)

)1/2

.

Inserting this bound into (85) and using the Cauchy–Schwarz inequality, we reduce to
showing the bounds

Ex∈I, n∈Ω′, h∈Ω′′

∏
l∈[L]

ν(x+!Sl( h)· n) = 1+o(1), (88)

Ex∈I, n∈Ω′, h∈Ω′′

∑
w6p6Rlog R

p|!Pj( h),x+"Qj,k( h)· n

∏
l∈[L]

ν(x+!Sl( h)· n) = o(1), (89)

Ex∈I, n∈Ω′, h∈Ω′′

∑
w6p6Rlog R

p/∈Pb

logO(1) p

p
1p|(!Pj( h),"Qj,k( h)· n)∧(!Pj′ (

 h),"Qj′,k( h)· n)

×
∏

l∈[L]

ν(x+!Sl( h)· n) = o(1) (90)

for all 16j<j′6J and k∈[K].
The bound (88) already follows from Corollary 11.2 and the hypotheses on Sl,d′ . We

now turn to (89). We rewrite the left-hand side as∑
w6p6Rlog R

E
 n∈Ω′, h∈Ω′′

(
1p|!Pj( h)Ex∈I 1x=−"Qj,k( h)· n mod p

∏
l∈[L]

ν(x+!Sl( h)· n)
)

. (91)

Let us first consider the contributions of the primes p which are larger than R4L+1. In
this case, we bound ν extremely crudely by O(R2 log R) (taking absolute values in (72)),
to bound the inner expectation of (91) by

O

(
(R2 log R)L

R4L+1

)
= o(R−1/2)
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(say), and to show that

E
 h∈Ω′′

∑
R4L6p6Rlog R

1p|!Pj( h)�R1/2.

But from the bounds on Ω′′ and  h, we see that "Pj( h)=O(RO(1)), and so at most O(1)
primes p can contribute to the sum for each  h. The claim follows.

Now we consider the contributions of the primes p between w and R4L+1. We can
then apply Corollary 10.7 and estimate the inner expectation of (91) by

1
p
O

(
exp

(
O

( ∑
16l<l′6L

∑
w6p′6Rlog R

p′| Sl( h)− Sl′ (
 h)

1
p′

)))
,

which, by Lemma E.1, can be bounded by

O

(
1
p

)
+

∑
16l<l′6L

∑
w6p′6Rlog R

logO(1) p′

pp′
O(1p′| Sl( h)− Sl′ (

 h)).

The contribution to (91) can thus be bounded by the sum of∑
w6p6Rlog R

1
p
O(E

 h∈Ω′′1p|!Pj( h))

and ∑
16l<l′6L

∑
w6p,p′6Rlog R

logO(1) p′

pp′
E
 h∈Ω′′1p|!Pj( h)1p′| Sl( h)− Sl′ (

 h).

Now, by hypothesis, the vector-valued polynomials "Pj and !Sl−!Sl′ are non-zero. Thus,
by Lemma D.3,

E
 h∈A1×...×AD′′

1p′| Sl( h)− Sl′ (
 h)�

1
M

whenever A1, ..., AD′′⊂Fp′ have cardinality at least M . Applying Corollary C.3 and
Lemma C.4, we conclude that

E
 h∈Ω′′1p′| Sl( h)− Sl′ (

 h)�
1
p′

+
1

Rε
.

A similar argument gives

E
 h∈Ω′′1p|!Pj( h)�

1
p

+
1

Rε
,

and hence, by the Cauchy–Schwarz inequality,

E
 h∈Ω′′1p|!Pj( h)1p′| Sl( h)− Sl′ (

 h)�
1

(pp′)1/2
+

1
Rε/2

.
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Applying all of these bounds, we can thus bound the total contribution of this case to
(91) by

∑
w6p6Rlog R

1
p

(
O

(
1
p

)
+O

(
1

Rε

))
+

∑
w6p,p′6Rlog R

logO(1) p′

pp′

(
O

(
1

(pp′)1/2

)
+O

(
1

Rε/2

))
,

which is o(1), by (111) and (112).
Finally, we consider (90). We first apply Theorem 11.1 to bound

Ex∈I

∏
l∈[L]

ν(x+!Sl( h)· n) =O

(
exp

(
O

( ∑
16l<l′6L

∑
w6p′6Rlog R

p′|( Sl( h)− Sl′ (
 h))· n

1
p′

)))
.

Once again, we must extract the “globally bad” primes. Let Π′
b denote all the primes

w6p′6Rlog R which divide !Sl−!Sl′ for some 16l<l′6L. Since these polynomials are non-
zero and have coefficients O(WO(1)), the product of all the primes in Π′

b is O(WO(1)), and
hence, by Lemma E.3, as before these primes contribute only o(1) and can be discarded.
If we then apply Lemma E.1, we can bound the preceding expression by

O(1)+
∑

16l<l′6L

∑
w6p′6Rlog R

p′ /∈Π′b

logO(1) p′

p′
O(1p′|( Sl( h)− Sl′ (

 h))· n).

Thus, to prove (90), it suffices to show the estimates

∑
w6p6Rlog R

p/∈Pb

logO(1) p

p
E
 n, h1p|(!Pj( h),"Qj,k( h)· n)∧(!Pj′ (

 h),"Qj′,k( h)· n) = o(1)

and ∑
w6p,p′6Rlog R

p/∈Pb

p′ /∈Π′b

logO(1) p logO(1) p′

pp′

×E
 n, h1p|(!Pj( h),"Qj,k( h)· n)∧(!Pj′ (

 h),"Qj′,k( h)· n)1p′|( Sl( h)− Sl′ (
 h))· n = o(1)

for all 16j<j′6J and all 16l<l′6L, where  n and  h are averaged over Ω′∩ZD′
and

Ω′′∩ZD′′
, respectively. Applying the Cauchy–Schwarz inequality to the expectation in

the latter estimate and then factorizing the double sum, we see that it will suffice to
show that ∑

w6p6Rlog R

p/∈Pb

logO(1) p

p
(E

 n, h1p|(!Pj( h),"Qj,k( h)· n)∧(!Pj′ (
 h),"Qj′,k( h)· n))

1/2 = o(1) (92)
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and ∑
w6p′6Rlog R

p/∈
∏

b′

logO(1) p′

p′
(E

 n, h1p|( Sl( h)− Sl′ (
 h))· n)1/2 = o(1). (93)

Since p /∈Pb, we observe from Lemma D.3, Corollary C.3 and Lemma C.4 that

E
 h1p|(!Pj( h),"Qj,k( h)· n)∧(!Pj′ (

 h),"Qj′,k( h)· n)�
1
p

+
1

Rε
,

and the claim (92) now follows from (111) and (112). The estimate (93) is proven
similarly. This (finally!) completes the proof of Theorem 12.1.

Appendix A. Local Gowers uniformity norms

In this appendix we shall collect a number of elementary inequalities based on the
Cauchy–Schwarz inequality, including several related to Gowers-type uniformity norms.

The formulation of the Cauchy–Schwarz inequality which we shall rely on is

|Ea∈A,b∈Bf(a)g(a, b)|2 6 (Ea∈AF (a))(Ea∈AF (a)|Eb∈Bg(a, b)|2) (94)

whenever f :A!R, F :A!R+ and g:A×B!R are functions on non-empty finite sets
A and B with the pointwise bound |f |6F .

A well-known consequence of the Cauchy–Schwarz inequality is the van der Corput
lemma, which allows one to estimate a coarse-scale average of a function f by coarse-scale
averages of “derivatives” of f over short scales. Here is the precise formulation we need.

Lemma A.1. (van der Corput) Let N , M and H be as in §2. Let {xm}m∈Z be a
sequence of real numbers obeying the bound

xm�ε Nε (95)

for any ε>0 and m∈Z. Then

Em∈[M ]xm =Eh∈[H]Em∈[M ]xm+h+o(1) (96)

and
|Em∈[M ]xm|2�Eh,h′∈[H]Em∈[M ]xm+hxm+h′+o(1). (97)

Proof. From (95) we see that

Em∈[M ]xm =Em∈[M ]xm+h+o(1)

for all h∈[H]; averaging over all h and rearranging, we obtain (96). Applying (94), we
conclude that

|Em∈[M ]xm|�Em∈[M ]|Eh∈[H]xm+h|2+o(1)

and (97) follows.
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We will use Lemma A.1 only in one place, namely in Proposition 5.14, which is
the key inductive step needed to estimate a polynomial average by a collection of linear
averages.

Next, we recall some Cauchy–Schwarz–Gowers inequalities, which can be found for
instance in [19, Appendix B]. Let X be a finite non-empty set. If A is a finite set and
f :XA!R, define the Gowers box norm ‖f‖�A as

‖f‖�A :=
(
Em(0),m(1)∈XA

∏
ω∈{0,1}A

f((m(ωα)
α )α∈A)

)1/2|A|

, (98)

where ω=(ωα)α∈A and m(j)=(m(j)
α )α∈A for j=0, 1. This is indeed a norm(35) for |A|>2.

It obeys the Cauchy–Schwarz–Gowers inequality∣∣∣∣E"m(0),"m(1)∈XA

∏
ω∈{0,1}A

fω((m(ωα)
α )α∈A)

∣∣∣∣ 6
∏

ω∈{0,1}A

∣∣‖fω‖�A

∣∣. (99)

We shall also need a weighted variant of this inequality.

Proposition A.2. (Weighted generalized von Neumann inequality) Let A be a non-
empty finite set , and let f :XA!R be a function. For every α∈A, let fα:XA\{α}!R
and να:XA\{α}!R+ be functions with the pointwise bound |fα|6να. Then we have∣∣∣∣E"m∈XAf("m)

∏
α∈A

fα("m|A\{α})
∣∣∣∣ 6

∣∣‖f‖�A(ν)

∣∣ ∏
α∈A

‖να‖1/2

�A\{α} ,

where "m|A\{α} is the restriction of "m∈XA to XA\{α}, and ‖f‖�A(ν) is the weighted
Gowers box norm of f , defined by the formula

‖f‖2
|A|

�A(ν) :=E
"m(0),"m(1)∈XA

( ∏
ω∈{0,1}A

f((m(ωα)
α )α∈A)

)

×
∏
α∈A

∏
ω(α)∈{0,1}A\{α}

να((m
(ω

(α)
β )

β )β∈A\{α}).

Proof. This is a special case of [19, Corollary B.4], in which all functions fB and νB

associated with subsets B of A of cardinality |A|−2 or less are set equal to 1.

The local Gowers norm Ua1,...,ad√
M

defined in (22) is related to the above Gowers box
norms by the obvious identity

‖f‖U
a1,...,ad√

M

=(Ex∈X‖Fx‖2
d

�d)1/2d

(100)

(35) If |A|=0 then ‖f‖�A =f(∅), while if |A|=1 then ‖f‖�A =|Ef |.
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for any f :X!R, where for each x∈X the function Fx:
[√

M
]d!R is defined by

Fx(m1, ...,md) := f(x+a1m1+...+admd).

In particular, since �d is a norm for d>2, we easily verify from Minkowski’s inequality
that Ua1,...,ad√

M
is a norm also when d>2. This in turn implies that the averaged local

Gowers norms U
"Q([H]t,W )√

M
are also indeed norms.

Now we introduce the concept of concatenation of two or more averaged local Gowers
norms. If "Q∈Z[h1, ...,ht,W]d and "Q′∈Z[h′1, ...,h

′
t′ ,W]d

′
are a d-tuple and d′-tuple of

polynomials, respectively, we define the concatenation

"Q⊕"Q′ ∈Z[h1, ...,ht,h′1, ...,h
′
t,W]d+d′

to be the (d+d′)-tuple of polynomials whose first d components are those of "Q (using
the obvious embedding of Z[h1, ...,ht,W] into Z[h1, ...,ht,h′1, ...,h

′
t′ ,W]) and the last

d′ components are those of "Q′ (using the obvious embedding of Z[h′1, ...,h
′
t′ ,W] into

Z[h1, ...,ht,h′1, ...,h
′
t,W]). One can similarly define the concatenation of more than two

tuples of polynomials in the obvious manner.
The key lemma concerning concatenation is as follows.

Lemma A.3. (Domination lemma) Let k>1. For each j∈[k], let tj >0 be an integer
and "Qj∈Z[h1, ...,htj ,W]dj be a polynomial. Let t:=t1+...+tk, d:=d1+...+dk, and let
"Q∈Z[h1, ...,ht,W]d be the concatenation of all the "Qj. Then we have

‖g‖
U
!Qj([H]

tj ,W )
√

M

6 ‖g‖
U
!Q([H]t,W )√

M

for all j∈[k] and all g:X!R.

Proof. By induction we may take k=2. By symmetry it thus suffices to show that

‖g‖
U
!Q([H]t,W )√

M

6 ‖g‖
U
!Q⊕!Q′([H]t+t′ ,W )√

M

for any g:X!R and any "Q∈Z[h1, ...,ht,W ]d and "Q′∈Z[h′1, ...,h
′
t′ ,W ]d

′
. We may take

d′>1 as the case d′=0 is trivial. From (105) and Hölder’s inequality, it suffices to prove
the estimate

‖g‖U
a1,...,ad√

M

6 ‖g‖
U

a1,...,ad,a′1,...,a′
d′√

M

for all a1, ..., ad, a
′
1, ..., a

′
d∈Z. Applying (100), we see that it suffices to prove the mono-

tonicity formula(36)
‖f‖�d([

√
M ]) 6 ‖f‖�d+d′ ([

√
M ])

(36) This is of course closely connected with the monotonicity of the Gowers Ud norms, noted for
instance in [18].
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for any f :
[√

M
]d!R, where we extend f to

[√
M

]d+d′ by adding d′ dummy variables.
Thus

f(m1, ...,md,md+1, ...,md+d′) := f(m1, ...,md).

But this easily follows by raising both sides to the power 2d and using the Cauchy–
Schwarz–Gowers inequality (99) for the �d+d′ norm (setting 2d factors equal to f , and
the other 2d+d′−2d factors equal to 1).

Appendix B. The uniform polynomial Szemerédi theorem

In this appendix we use the Furstenberg correspondence principle and the Bergelson–
Leibman theorem [6] to prove the quantitative polynomial Szemerédi theorem, Theo-
rem 3.2. The arguments here are reminiscent of those in [5]; see also [35] for another
argument in a similar spirit.

Firstly, observe that to prove Theorem 3.2 it certainly suffices to do so in the case
when g is an indicator function 1E , since in the general case one can obtain a lower bound
g> 1

2δ1E , where E :=
{
x∈X :g(x)> 1

2δ
}
, which must have measure at least 1

2δ−o(1).
Fix P1, ..., Pk and δ, and suppose by contradiction that Theorem 3.2 failed. Then

(by the axiom of choice(37)) we can find a sequence of N going to infinity, and a sequence
of indicator functions 1EN

:Z/NZ!R of density

|EN |
N

> δ−o(1) (101)

such that

lim
N!∞

Em∈[M ]

∫
Z/NZ

∏
j∈[k]

T
Pj(Wm)/W
N 1EN

=0,

where TN is the shift on Z/NZ and N is always understood to lie along the sequence
(recall that M and W both depend on N).

The next step is to use an averaging argument (dating back to Varnavides [38]) to
deal with the fact that M is growing rather rapidly in N . Let B>1 be an integer, then

(37) It is not difficult to rephrase this argument so that the axiom of choice is not used; we leave
the details to the interested reader. The weak sequential compactness of probability measures which
we need later in this section can also be established by an Arzelà–Ascoli type diagonalization argument
which avoids the axiom of choice. On the other hand, the only known proof of the multi-dimensional
Bergelson–Leibman theorem does use the axiom of choice, and so the main result of this paper also
currently requires this axiom. However, it is expected that the Bergelson–Leibman theorem (and hence
our result also) will eventually be provable by means which avoid using this axiom. For instance, for the
1-dimensional Bergelson–Leibman theorem one can use the Gowers–Host–Kra seminorm characteristic
factors as in [9], which do not require choice.
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for N sufficiently large we have

Em∈[M ]

∫
Z/NZ

∏
j∈[k]

T
Pj(Wm)/W
N 1EN

6
1

B3

and hence

Em∈[M/B]

∫
Z/NZ

∏
j∈[k]

T
Pj(Wbm)/W
N 1EN

� 1
B2

for all b∈[B]. In particular

Em∈[M/B]

B∑
b=1

∫
Z/NZ

∏
j∈[k]

T
Pj(Wbm)/W
N 1EN

� 1
B

,

and hence by the pigeonhole principle (and the axiom of choice) we can find mN∈[M/B]
for all sufficiently large N such that

B∑
b=1

∫
Z/NZ

∏
j∈[k]

T
Pj(WbmN )/W
N 1EN

� 1
B

and hence

lim
N!∞

∫
Z/NZ

∏
j∈[k]

T
Pj(WbmN )/W
N 1EN

=0

for each b>1.
We now eliminate the W and mN dependences by “lifting” the 1-dimensional shift

to several dimensions. Let d be the maximum degree of the P1, ..., Pk, then we may write

Pj(WbmN )
W

=
∑
h∈[d]

Wh−1mh
Nbhcj,h

for some integer constants cj,h. Thus, if we set TN,h :=T
W h−1mh

N

N , we have

lim
N!∞

Em∈[M ]

∫
Z/NZ

∏
j∈[k]

( ∏
h∈[d]

T
cj,hbh

N,h

)
1EN

=0 for all b > 1. (102)

Now we use the Furstenberg correspondence principle to take a limit. Let Ω be the
product space Ω:={0, 1}Zd

, endowed with the usual product σ -algebra and with the
standard commuting shifts T1, ..., Td defined by

Th((ωn)n∈Zd) := (ωn−eh
)n∈Zd for h∈ [d],
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where e1, ..., ed is the standard basis for Zd. We can define a probability measure µN on
this space by µN :=Ex∈Z/NZµN,x, where µN,x is the Dirac measure at the point

(1T
n1
1 ...T

nd
d x∈EN

)n∈Zd .

One easily verifies that µN is invariant under the commuting shifts T1, ..., Td. Also if we
let A⊂Ω be the cylinder set

A := {(ωn)n∈Zd :ω0 =1},

then we see from (101) and (102) that µN (A)>δ−o(1) and

lim
N!∞

µN

( ⋂
j∈[k]

( ∏
h∈[d]

T
cj,hbh

h

)
A

)
=0

for all b>1. By weak sequential compactness, we may after passing to a subsequence
assume that the measures µN converge weakly to another probability measure µ on Ω,
which is thus translation-invariant and obeys the bounds

µ(A) > δ > 0

and

µ

( ⋂
j∈[k]

( ∏
h∈[d]

T
cj,hbh

h

)
A

)
=0 for all b > 1.

But this contradicts the multidimensional Bergelson–Leibman recurrence theorem [6,
Theorem A0]. This contradiction concludes the proof of Theorem 3.2.

Appendix C. Elementary convex geometry

In this paper we shall frequently be averaging over sets of the form Ω∩ZD, where Ω⊂RD

is a convex body. It is thus of interest to estimate the size of such sets. Fortunately we
will be able to do this using only very crude estimates (we only need the main term in
the asymptotics, and do not need the deeper theory of error estimates). We shall bound
the geometry of Ω using the inradius r(Ω); this is more or less dual to the approach in
[19], which uses instead the circumradius.

Observe that the cardinality of Ω∩ZD equals the Lebesgue measure of the Minkowski
sum (Ω∩ZD)+

[
− 1

2 , 1
2

]D of Ω∩ZD with the unit cube
[
− 1

2 , 1
2

]D. The latter set differs
from Ω only on the

√
D/2 -neighborhood N√

D/2(∂Ω) of the boundary ∂Ω. We thus have
the Gauss bound

|Ω∩ZD|=mes(Ω)+O(mes(N√
D/2(∂Ω))),
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where mes( ·) denotes Lebesgue measure. By dilation and translation, we thus have

|Ω∩(m·ZD+a)|=m−D[mes(Ω)+O(mes(Nm
√

D/2(∂Ω)))] (103)

for any m>0 and a∈RD.
Now we estimate the boundary term in terms of the inradius r(Ω) of Ω.

Lemma C.1. (Gauss bound) Suppose that Ω⊂RD is a convex body. Then for any
0<r<r(Ω) we have

mes(Nr(∂Ω))�D
r

r(Ω)
mes(Ω).

Proof. We may rescale r(Ω)=1 (so 0<r<1), and translate so that Ω contains the
open unit ball B(0, 1). Elementary convex geometry then shows that for a sufficiently
large constant CD>0, we have

B(x, r)⊂Ω whenever x∈ (1−CDr)·Ω

and
B(x, r)∩Ω = ∅ whenever x /∈ (1+CDr)·Ω.

This shows that
Nr(∂Ω)⊂ [(1+CDr)·Ω]\[(1−CDr)·Ω]

and the claim follows.

From Lemma C.1 and (103) we conclude that

|Ω∩(m·ZD+a)|=
(

1+OD

(
m

r(Ω)

))
m−Dmes(Ω), (104)

whenever 0<m6r(Ω) and a∈ZD. As a corollary we obtain the following result.

Corollary C.2. (Equidistribution of residue classes) Let m>1 be an integer ,
a∈ZD

m and Ω⊂RD be a convex body. If r(Ω)>CDm for some sufficiently large con-
stant CD>0, then we have

Ex∈Ω∩ZD1x∈m·ZD+a =
(

1+OD

(
m

r(Ω)

))
m−D.

This lets us average m-periodic functions on convex bodies as follows.

Corollary C.3. (Averaging lemma) Let m>1 be an integer , and let f :ZD!R+

be a non-negative m-periodic function (and thus f can also be identified with a function
on ZD

m). Let Ω⊂RD be a convex body. If r(Ω)>CDm for some sufficiently large constant
CD>0, then we have

Ex∈Ω∩ZDf(x) =
(

1+OD

(
m

r(Ω)

))
Ey∈ZD

m
f.
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Proof. We expand the left-hand side as

Ex∈Ω∩ZDf(x) =
∑

y∈ZD
m

f(y)Ex∈Ω∩ZD1x∈m·ZD+y

and apply Corollary C.2.

Corollary C.3 is no longer useful when the period m is large compared to the inradius
r(Ω). In such cases we shall need to rely instead on the following cruder estimate.

Lemma C.4. (Covering inequality) Let Ω⊂RD be a convex body with r(Ω)>CD for
some large constant CD>1, and let f :ZD!R+ be an arbitrary function. Then

Ex∈Ω∩ZDf(x)�D sup
y∈RD

Ex∈y+[−r(Ω),r(Ω)]D∩ZDf(x).

Proof. From (104) we have that |Ω∩ZD|∼mes(Ω), so it suffices to show that∑
x∈Ω∈ZD

f(x)�D mes(Ω) sup
y∈RD

Ex∈y+[−r(Ω),r(Ω)]D∩ZDf(x).

This will follow if we can cover Ω by OD(mes(Ω)/r(Ω)D) translates of the cube

[−r(Ω), r(Ω)]D.

By rescaling and translating, we reduce to verifying the following fact: if Ω is a
convex body containing B(0, 1), then Ω can be covered by OD(mes(Ω)) translates of
[−1, 1]D. To see this, we use a covering argument of Ruzsa [27]. First observe that
because the cube

[
− 1

2 , 1
2

]D is contained in a dilate of B(0, 1) (and hence Ω) by OD(1),

the Minkowski sum Ω+
[
− 1

2 , 1
2

]D is also contained in an OD(1)-dilate of Ω and thus has

volume OD(mes(Ω)). Now let x1+
[
− 1

2 , 1
2

]D
, ..., xN +

[
− 1

2 , 1
2

]D be a maximal collection
of disjoint shifted cubes with x1, ..., xN∈Ω, then by the previous volume bound we have
N�Dmes(Ω). But by maximality we see that the cubes x1+[−1, 1]D, ..., xN +[−1, 1]D

must cover Ω, and the claim follows.

Appendix D. Counting points of varieties over Fp

Let R be an arbitrary ring, and let P1, ..., PJ∈R[x1, ...,xD] be polynomials. Our interest
here is to control the “density” of the (affine) algebraic variety

{(x1, ..., xD)∈RD :Pj(x1, ..., xD) = 0 for all j ∈ [J ]},
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and more precisely to estimate quantities such as

Ex1∈A1,...,xD∈AD

∏
j∈[J]

1Pj(x1,...,xD)=0 (105)

for certain finite non-empty subsets A1, ..., AD⊂R (typically A1, ..., AD will either be all
of R, or some arithmetic progression). We are particularly interested in the case when
R is the finite field Fp, but in order to also encompass the case of the integers Z (and of
polynomial rings over Fp or Z), we shall start by working in the more general context of
a unique factorization domain.

Of course, the proper way to do this would be to use the tools of modern algebraic
geometry, for instance using the concepts of generic point and algebraic dimension of
varieties. Indeed, the results in this appendix are “morally trivial” if one uses the fact
that the codimension of an algebraic variety is preserved under restriction to generic
subspaces. However, to keep the exposition simple we have chosen a very classical,
pedestrian and elementary approach, to emphasize that the facts from algebraic geometry
which we will need are not very advanced.

From the factor theorem (which is valid over any unique factorization domain) we
have the following result.

Lemma D.1. (Generic points of a one-dimensional polynomial) Let P∈R[x] be a
polynomial of one variable of degree at most d over a ring R. If P 6=0, then P (x) 6=0 for
all but at most d values of x∈R.

As a corollary, we obtain the following result.

Corollary D.2. (Generic points of a multi-dimensional polynomial) Let

P ∈R[x1, ...,xD]

be a polynomial in D variables of degree at most d over a ring R. If P 6=0, then
P ( · , xD) 6=0 for all but at most d values of xD∈R, where P ( · , xD)∈F [x1, ...,xD−1] is
the polynomial in D−1 variables formed from P by replacing xD by xD.

Proof. View P as a 1-dimensional polynomial of xD with coefficients in the ring
R[x1, ...,xD−1] (which contains R), and apply Lemma D.1.

As a consequence, we obtain a “baby combinatorial Nullstellensatz” (cf. [1]).

Lemma D.3. (Baby Nullstellensatz) Let P∈R[x1, ...,xD] be a polynomial of D vari-
ables of degree at most d over a ring R. Let A1, ..., AD be finite subsets of R with
|A1|, ..., |AD|>M for some M>0. If P 6=0, then

Ex1∈A1,...,xD∈AD
1P (x1,...,xD)=0 6

Dd

M
�D,d

1
M

.
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Proof. We use induction over D. The case D=0 is vacuous. Now suppose that
D>1 and that the claim has already been proven for D−1. By Corollary D.2, we have
P ( · , xD) 6=0 for all but at most d values of xD∈AD. The exceptional values of xD

can contribute at most d/M , while the remaining values of xD will contribute at most
(D−1)d/M by the induction hypothesis. This completes the induction.

This gives us a reasonable upper bound on the quantity (105) in the case J=1, which
then trivially implies the same bound for J>1. However, we expect to do better than
1/M type bounds for higher J when the polynomials P1, ..., PJ are jointly coprime. To
exploit the property of being coprime we recall the classical resultant of two polynomials.

Definition D.4. (Resultant) Let R be a ring, d, d′>1, and

P = a0+a1x+...+adxd and Q= b0+b1+...+bd′xd′

be two polynomials in R[x] of degree at most d and d′, respectively. Then the resultant
Resd,d′(P,Q)∈R is defined to be the determinant of the (d+d′)×(d+d′) matrix whose
rows are the coefficients in R of the polynomials P , xP, ...,xd′−1P , Q,xQ, ...,xd−1Q,
with respect to the basis 1,x, ...,xd+d′−1.

More generally, if D>1, j∈[D], dj , d
′
j >1 and P and Q are two polynomials in

R[x1, ...,xD] with degxj
(P )6dj and degxj

(Q)6d′j , then we define the resultant

Resdj ,d′j ,xj
(P,Q)∈R[x1, ...,xj−1,xj+1, ...,xD]

by viewing P and Q as 1-dimensional polynomials of xj over the ring

R[x1, ...,xj−1,xj+1, ...,xD]

and using the 1-dimensional resultant defined earlier.

Example D.5. If d=d′=1, then the resultant of a+bx and c+dx is ad−bc, and the
resultant of a(x1)+b(x1)x2 and c(x1)+d(x1)x2 in the x2 variable is

a(x1)d(x1)−b(x1)c(x1).

Let P,Q∈R[x] have degrees d and d′, respectively, for some d, d′>1, where R is a
unique factorization domain. By splitting the determinant into a matrix and its adjugate,
we obtain an identity

Resd,d′(P,Q) =AP +BQ (106)

for some polynomials A,B∈R[x] of degree at most d′−1 and d−1, respectively. Thus,
if P and Q are irreducible and coprime, then the resultant cannot vanish by unique
factorization. The same extends to higher dimensions, as we show next.
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Lemma D.6. Let R be a unique factorization domain, let j∈[D], and suppose that
P,Q∈R[x1, ...,xD] are such that degxj

(P )=dj >1 and degxj
(Q)=d′j >1. If P and Q

are irreducible and coprime, then Resd,d′,xj (P,Q) 6=0.

Proof. View P and Q as 1-dimensional polynomials over the unique factorization
domain R[x1, ...,xj−1,xj+1, ...,xD] and apply the preceding argument.

Lemma D.7. (Generic points of multiple polynomials) Let P1, ..., PJ∈R[x1, ...,xD]
have degrees at most d over a unique factorization domain R, and suppose that all the
P1, ..., PJ are non-zero and jointly coprime. Then P1( · , xD), ..., PJ( · , xD) are non-zero
and jointly coprime for all but at most OJ,d(1) values of xD∈R.

Proof. By splitting each of the Pj ’s into factors, we may assume that all the Pj ’s
are irreducible. By eliminating any two polynomials which are scalar multiples of each
other, we may then assume that the Pj ’s are pairwise coprime. The claim is vacuous for
k<2, so it will suffice to verify the claim for k=2.

Suppose first that P1 is constant in xD. Then P1( · , xD)=P1 is irreducible, and the
only way it can fail to be coprime to P2( · , xD) is if P2( · , xD) is a multiple of P1. But
we know that P2 itself is not a multiple of P1; viewing P2 modulo P1 as a polynomial of
degree at most d in xD over the ring R[x1, ...,xD−1]/(P1), we see from Lemma D.1 that
the number of exceptional xD is at most d.

A similar argument works if P2 is constant in xD. So now we may assume that
degxD

(P1)=d1 and degxD
(P2)=d2 for some d1, d2>1, which allows us to compute the

resultant Resd1,d2,xD
(P1, P2)∈F [x1, ...,xD−1]. By Lemma D.6, this resultant is non-zero;

also, by definition, we see that the resultant has degree Od(1).

From (106) we see that if P1( · , xD) and P2( · , xD) have any common factor in
R[x1, ...,xD−1] (which we may assume to be irreducible), then this factor must also
divide Resd1,d2,xD

(P1, P2). From degree considerations we see that there are at most
Od(1) such factors. Let Q∈R[x1, ...,xD−1] be one such possible factor. Since P1 and P2

are coprime, we know that Q cannot divide both P1 and P2; say it does not divide P2.
Then, by viewing P2 modulo Q as a polynomial of yD over R[x1, ..., xD−1]/Q, as before
we see that there are at most d values of xD for which Q divides P2( · , xD). Putting this
all together, we obtain the claim.

This gives us a variant of Lemma D.3.

Lemma D.8. (Second baby Nullstellensatz) Let P1, ..., PJ∈R[x1, ...,xD] be polyno-
mials in D variables of degree at most d over a unique factorization domain R. Let
A1, ..., AD be finite subsets of F with |A1|, ..., |AD|>M for some M>0. If all the
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P1, ..., PJ are non-zero and jointly coprime, then

Ex1∈A1,...,xD∈AD

∏
j∈[J]

1Pj(x1, ..., xD) non-zero, jointly coprime =1−OD,d,J

(
1
M

)
and

Ex1∈A1,...,xD∈AD

∏
j∈[J]

1Pj(x1,...,xD)=0�D,d,J
1

M2
.

Remark D.9. One could obtain sharper results by using Bezout’s lemma, but the
result here will suffice for our applications.

Proof. The first claim follows by repeating the proof of Lemma D.3 (replacing Corol-
lary D.2 by Lemma D.7) and we leave it to the reader. To prove the second claim, we
again use induction over D. The base case D=0 is again trivial, so assume D>1 and
that the claim has already been proven for D−1.

By Lemma D.7, we know that for all but OJ,d(1) values of xD the polynomials
P1( · , xD), ..., PJ( · , xD) are all non-zero and jointly coprime. This case will contribute
OD,d,J(1/M2) by the induction hypothesis. Now consider one of the OJ,d(1) exceptional
values of xD. For each such xD, at least one of the polynomials Pj( · , xD) has to be
non-zero, otherwise xD−xD would be a common factor of P1, ..., PJ , a contradiction.
Applying Lemma D.3, we see that the contribution of each such xD is thus OD,d,J(1/M2),
and the claim follows.

We now specialize the above discussion to compute the local factors cp and c̄p defined
in Definition 9.1. We first observe the following easy upper bounds.

Lemma D.10. (Crude local bounds) Let P1, ..., PJ∈Z[x1, ...,xD] be polynomials of
degree at most d, and let p be a prime.

(i) If all the P1, ..., PJ vanish identically modulo p, then

cp(P1, ..., PJ) = 1.

(ii) If at least one of P1, ..., PJ vanish identically modulo p, then

c̄p(P1, ..., PJ) = 0.

(iii) If at least one of P1, ..., PJ is a non-zero constant modulo p, then

cp(P1, ..., PJ) = 0.

(iv) If at least one of P1, ..., PJ is non-constant modulo p, then

cp(P1, ..., PJ)�d,D
1
p
.
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(v) If the P1, ..., PJ are jointly coprime modulo p, then

cp(P1, ..., PJ)�d,D
1
p2

.

Proof. (i), (ii) and (iii) are trivial, while (iv) and (v) follow from Lemmas D.3
and D.8, respectively (setting A1=...=AD=R=Fp).

Now we can refine the bound for a single polynomial P in the case when P is linear
in one variable, with linear and constant coefficients coprime.

Lemma D.11. (Linear case) Let P∈Z[x1, ...,xD] have degree at most d, and let p

be a prime. Suppose that P mod p is linear in the xj variable for some j∈[d], and thus

P (x1, ...,xD) =P1(x1, ...,xj−1,xj+1, ...,xD)xj +P0(x1, ...,xj−1,xj+1, ...,xD) mod p

for some polynomials P0, P1∈Fp[x1, ...,xj−1,xj+1, ...,xD]. Suppose also that the linear
coefficient P1 is non-zero and coprime to the constant coefficient P0. Then

cp(P ) =
1
p

+Od,D

(
1
p2

)
.

Proof. Let us split FD−1
p =A∪B∪C, where A is the subset of FD−1

p where P1 6=0,
B is the subset of FD−1

p where P1=0 and P2 6=0, and C is the subset of FD−1
p where

P1=P2=0. Then an elementary counting argument shows that

cp(P ) =
|A|+|C|p

pD
=

1
p
− |B|+|C|

pD
+

|C|
pD−1

.

As P1 is not zero, by Lemma D.10 (iv) we have |B|+|C|�dpD−2. Since P1 and P2 are
coprime modulo p, by Lemma D.10 (v) we have |C|�dpD−2. The claim follows.

We can now quickly prove Lemma 9.5.

Proof of Lemma 9.5. The claims (a), (b) and (d) follow from Lemma D.10 and Defi-
nition 9.4, while (c) follows from Lemma D.11 and Definition 9.4. The claim (e) is trivial,
and the claim (f) follows from (a), (b) and (77).

Appendix E. The distribution of primes

In this section we recall some classical results about the distribution of primes.
For Res>1, define the Riemann zeta function

ζ(s) :=
∞∑

n=1

1
ns

.
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Our argument will be elementary enough that we will not need the meromorphic contin-
uation of ζ to the region Res61. From the unique factorization of the positive integers,
we have the Euler product formula

ζ(s) =
∏
p

(
1− 1

ps

)−1

. (107)

We also have the bounds

ζ(s) =
1

s−1
+O(log(2+|Ims|)) and

1
ζ(s)

=O(log(2+|Ims|)) (108)

whenever 1<Res<10 (see e.g. [37, Chapter 3]).
From the prime number theorem∑

p<x

1 = (1+o(1))
x

log x
, as x!∞

(which, incidentally, can be deduced readily from (108)), and summation by parts, we
easily obtain the estimates∑

p<x

log p =x+o(x), as x!∞, (109)

∑
p<x

1
p

= log log(10+x)+O(1) for x> 0, (110)

∑
p<x

logKp

p
�K logK(10+x) for K > 0 and x> 0, (111)

∣∣∣∣∑
p>x

logKp

ps

∣∣∣∣�K,s
logK−1 x

xRes−1
for K > 0, x> 1 and Res> 1. (112)

In a similar spirit we have, whenever 1<Res<2 and x>2,∣∣∣∣∑
p>x

log
(

1− 1
ps

)∣∣∣∣�∑
p>x

1
pRes

�
∞∑

n=0

∑
2nx<p62n+1x

1
2nResxRes

�
∞∑

n=0

1
2n(Res−1)xRes−1 log x

� 1
(Res−1)xRes−1 log x

.

In particular, when Res=1+1/log R and x=Rlog R, we have

∑
p>Rlog R

log
(

1− 1
ps

)
= o(1),
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and hence, from (107),

∏
p6Rlog R

(
1− 1

ps

)−1

=(1+o(1))ζ(s) whenever Res=1+
1

log R
. (113)

We will frequently encounter expressions of the form exp
(
K

∑
p∈P 1/p

)
, where p

ranges over some set of primes (typically finite). Such sums can eventually be somewhat
large, due to (110). Fortunately the very slow nature of the divergence of

∑
p 1/p lets us

estimate this exponential by a slowly divergent sum over primes, conceding only a few
logarithmic factors.

Lemma E.1. (Exponentials can be replaced by logarithms) Let P be any set of
primes, and let K>1. Then

exp
(

K
∑
p∈P

1
p

)
6 1+OK

( ∑
p∈P

logKp

p

)

or equivalently

Exp
(

K
∑
p∈P

1
p

)
�K

∑
p∈P

logKp

p
.

Remark E.2. Note that the sums are only over primes in P, rather than products
of primes in P, which would have been the case if we had written

exp
(

K
∑
p∈P

1
p

)
=

∏
p∈P

exp
(

K

p

)
=

∏
p∈P

(
1+OK

(
1
p

))
.

The fact that we keep the sum over primes is useful for applications, as it allows us to
work over fields Fp rather than mere rings ZN when performing certain local counting
estimates. This lets us avoid certain technical issues involving zero divisors which would
otherwise complicate the argument. The additional logarithmic powers of p are some-
times dangerous, but in several cases we will be able to acquire an additional factor of
1/p from an averaging argument, which will make the summation on the right-hand side
safely convergent regardless of how many logarithms are present, due to (112).

Proof. Let us fix K and suppress the dependence of the O( ·) notation on K. By a
limiting argument we may take P to be finite. We expand the left-hand side as a power
series

1+
∞∑

n=1

Kn

n!

∑
p1,...,pn∈P

1
p1 ... pn

.
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By paying a factor of n, we may assume that pn is greater than or equal to the other
primes, thus bounding the previous expression by

1+
∞∑

n=1

Kn

(n−1)!

∑
pn∈P

∑
p1,...,pn−1∈P

p1,...,pn−16pn

1
p1 ... pn

.

We rewrite pn as p and rearrange this as

1+
∑
p∈P

1
p

∞∑
n=1

Kn

(n−1)!

( ∑
p′∈P

p′6p

1
p′

)n−1

.

From (110) we have ∑
p′∈P

p′6p

1
p′

6 log log(10+p)+O(1),

and so we can bound the previous expression by

1+
∑
p∈P

1
p

∞∑
n=1

K(K log log(10+p)+O(1))n−1

(n−1)!
.

Summing the power series we obtain the result.

Finally, we record a very simple lemma, using the quantities w and W defined in
§8.2.

Lemma E.3. (Divisor bound) Let P be any collection of primes such that

∏
p∈P

p 6MWM

for some M>0. Then ∑
p∈P

p>w

1
p

= oM (1).

Proof. We trivially bound 1/p by 1/w, and observe that the number of primes in
P larger than w is at most log(MWM )/log w=oM (log W ). But from (109) we have
log W�w. The claim follows.
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[26] Ramaré, O. & Ruzsa, I. Z., Additive properties of dense subsets of sifted sequences. J.
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