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1. I n t r o d u c t i o n  

Grosswald conjectured that the Bessel Polynomials 

y,~(x)= ~ (n+j)! xj 
j=o 2ff(n---~. j! 

are all irreducible over the rationals and obtained several results concerning their irre- 

ducibility. The statement of this conjecture and his results are described in his book 

Bessel Polynomials [7]. The author in [4] established that  almost all Bessel Polynomials 

are irreducible. More precisely, if k(t) denotes the number of n<.t for which y,~(x) is 

reducible, then k(t)=o(t). He later [5] observed that the argument could be strength- 

ened to obtain k(t)<<t/logloglogt. More recently, it was shown by Sid Graham and 

the author [6] that  a simplification of these methods with some additional elementary 

arguments lead to k(t)<<t 2/3. In this paper, we prove that  yn(X) is irreducible for all 

but finitely many (possibly 0) positive integers n. Although the current methods lead to 

an effective bound on the number of reducible y,~(x), such a bound would be quite large 

and we do not concern ourselves with it. 

The coefficient of xJ in yn(x) is (2  +j) I-I~=1(2k-1) and, hence, integral. The con- 

stant term is 1. Thus, the irreducibility of yn(X) over the rationals is equivalent to the 

irreducibility of yn(x) over the integers. It is slightly more convenient to consider 

j_~0 ( 2 n - j ) !  x j Zn(X) =x~yn(2/Z) = _ j!(n_j)!  

rather than y,~(x). The polynomials z~(x) are monic polynomials with integer coefficients, 

and yn(X) is irreducible if and only if zn(x) is irreducible. The methods we discuss here 
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will enable us to obtain the following general result from which the irreducibility of all 

but finitely many yn(X) is an immediate consequence. 

THEOREM 1. There exists an absolute constant no such that for any n>/no and any 
integers ao, a l ,  . . . ,  an with la0]=]an] =1,  

( 2 n - j ) !  xj 
L ajj! (n- j)!  
j = 0  

is irreducible. 

There is an equivalent formulation of Theorem 1 with the coefficients of z~(x) re- 

placed by the coefficients of y,~(x). Specifically, for n sufficiently large and for arbitrary 

integers ao, al ,  a2, ..., as with la0]= ]a~ ]= 1, the polynomial 

n 

E a j (n+j)! xj 
j=o 2J(n-j)! j! 

is irreducible. For computational reasons, which will not be elaborated on, the author 

suspects that  Theorem 1 holds with n0= 1 and conjectures so here. 

The remainder of the paper is divided up as follows. In w we discuss some prelim- 

inary material related to Newton polygons. We also mention some errors that appear in 

the literature. In w we illustrate the techniques in this paper by giving a new proof of 

a related theorem of I. Schur [8]. w contains a proof of Theorem 1. 

2. N e w t o n  p o l y g o n s  

For a prime p and integers a and b with ab~O, we make use of the p-adic notation 

v(a/b)=vp(a/b)=el-e2 where p~'lla and pr 

We define ~(0)=+cx~. Let f(x)-=~-'~jn__o ajxJeZ[x] with aoa,~O. Let 

S =  {(0, u(a,,)), (1, u(a~_l)) ,  ..., ( n - l ,  ~(al)),  (n, ~'(ao))}, 

a set of points in the extended plane. Following Grosswald [7], we refer to the elements 

of S as spots. We consider the lower edges along the convex hull of these spots. The left- 

most edge has one endpoint being (0, v(a,~)) and the rigbt-most edge has (n, ~(a0)) as an 

endpoint. The endpoints of every such edge belong to the set S. The slopes of the edges 

are increasing when calculated from left to right. The polygonal path formed by these 

edges is called the Newton polygon for f(x) with respect to p. Dumas [2] established the 

following: 
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LEMMA 1. Let g(x) and h(x) be in Z[x] with g(0)h(0)~0,  and let p be a prime. Let 

k be a non-negative integer such that pk divides the leading coefficient of g(x)h(x) but 

pk+l does not. Then the edges of the Newton polygon for g(x)h(x) with respect to p can 

be formed by constructing a polygonal path beginning at (0, k) and using translates of the 

edges in the Newton polygons for g(x) and h(x) with respect to the prime p (using exactly 

one translate for each edge). Necessarily, the translated edges are translated in such a 

way as to form a polygonal path with the slopes of the edges increasing. 

A proof of Lemma 1 can be found in [11] and further discussions and examples 

related to them can be found in [1]. We emphasize that ,  for our purposes, when referring 

to the "edges" of a Newton polygon, we shall not allow two different edges of the same 

Newton polygon to have the same slope. 

Many of the irreducibility results of Grosswald [7] concerning Bessel Polynomials are 

based on making use of Newton polygons. The author was unable to verify one of these 

results, Theorem 1 (f) on p. 99 of [7]. The result asserts that  if p is the largest prime 

factor of n or of n +  1, then zn(x) cannot have any factors of degree < p - 1 .  Later (cf. [4]), 

Grosswald used this result to help establish that z~(x) is irreducible for all n ~  106. This 

consequence of Theorem 1 (f) would now be in question, but Sid Graham has meanwhile 

verified that  zn(x) is irreducible for n ~  107 using methods from [6]. Much of the work in 

this paper began as an effort to correct Theorem 1 (f). 

Before ending this discussion, we mention that  the statement of Theorem A r in [7] 

is not correct. The  reference to this theorem in [7], however, has a correct statement of 

a similar result. The error in Theorem A r is that spots are considered along the edges of 

the Newton polygon rather than arbitrary lattice points. The polynomial f (x )=(x+2)  2 

with the prime p=2  provides a simple counterexample. 

Our use of Newton polygons is summarized in the following lemma. 

LEMMA 2. Let k and l be integers with k >l~O. Suppose g(x)=~y=o bjxJeZ[x] and 

p is a prime such that p~bn, plbj for all jE{O, 1 , . . . , n - l - 1 } ,  and the right-most edge 

of the Newton polygon for g(x) with respect to p has slope < 1/k. Then for any integers 
n ao, al, ..., an with l ao l= lan l= l ,  the polynomial f (x)=~-] j=  o ajbjxJ cannot have a factor 

with degree in the interval [l+1, k]. 

Proof. We first consider the case that  aj =1 for all jE{0,  1, ..., n} so that  f (x)=g(x).  

Assume f (x )  in this case has a factor with degree in [l+1, k]. Then there exist u(x) 

and v(x) in Z[x] with f (x)--u(x)v(x)  and l+l<.degu(x)<.k. We consider the Newton 

polygon for f (x)=g(x) with respect to p. Since the slopes of the edges of the Newton 

polygon for f (x)  increase from left to right, the conditions of the lemma imply that each 

edge has slope in [0, 1/k). The left-most edge of the Newton polygon may have slope 0. 
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For now, we consider an edge of the Newton polygon which does not have slope 0. Let 

(a, b) and (c, d) be two lattice points on such an edge. Then the slope of the line passing 

through these points is the slope of the edge so that  

1 Id-b] 1 
I c - <" < -f 

Hence, [c-a[ > k. In other words, any two lattice points on an edge with non-zero slope 

of the Newton polygon for f(x) with respect to p have their x-coordinates separated by a 

distance > k. Since deg u(x)<~ k, we get that  translates of the edges of the Newton polygon 

for u(x) with respect to p cannot be found within those edges of the Newton polygon 

for f(x) with respect to p which have non-zero slope. From Lemma 1 (with k--0), the 

left-most edge of the Newton polygon for f(x) must have slope 0 and length ~> deg u(x). 
The conditions of the present lemma imply that  vibn_j)~ 1 for j e ( / + 1 , / + 2 ,  ..., n} so 

that  if the'left-most edge of the Newton polygon for f(x) with respect to p has slope 0, 

then it has length <~l<deguix), giving a contradiction. 

Next, we consider the general case of arbi trary integers ao, al ,  ..., an with a 0 = + l  

and an==t=l. The conditions on a0 and an imply that  the left- and right-most endpoints 

of the Newton polygon for .f(x) with respect to p are the same as the left- and right-most 

endpoints of the Newton polygon for g(x) with respect to p, respectively. Also, p]ajbj 
for all je{0, 1, ..., n - l - l } .  All the edges of the Newton polygon for g(x) with respect to 

p lie above or on the line containing the right-most edge. The same statement holds for 

f(x) in place of g(x). Note that  via j bj) >1 v(bj) for all j �9 {0, 1, ..., n}. Hence, we also get 

that all the edges of the Newton polygon for f(x) lie above or on the line containing the 

right-most edge of the Newton polygon for gix). Since the right-most endpoint for each of 

these two Newton polygons is the same, we deduce that the slope of the right-most edge 

of the Newton polygon for f(x) is less than or equal to the slope of the right-most edge 

of the Newton polygon for gix). Therefore, the right-most edge of the Newton polygon 

for f(x) must have slope <l/k. Thus, f(x) satisfies the same conditions imposed on 

g(x) in the statement of the lemma so that  by appealing to the first part of the proof, 

the lemma follows. [] 

Observe that  one may strengthen Lemma 2 by requiring only p{aoan rather than 

lao[=la~[-=l. We will not, however, make use of this stronger version of Lemma 2 in the 

proof of Theorem 1. 

3. A t h e o r e m  o f  I. S c h u r  

As mentioned in the previous section, this paper began partially as an effort to correct 

Theorem 1 (f) in [7]. A second motivation for the author 's  approach to establishing 
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Theorem 1 is based on an interest of the author to find a proof of a result of I. Schur [8] 

that  makes use of Newton polygons. This result of Schur is the following. 

THEOREM 2. Let n be a positive integer, and let no, al, ..., an denote arbitrary inte- 

gers wi th  laol=lanl=l. Then 

X n X n - 1  

an ~. +an-1 ~ +... +alx +ao 

is irreducible over the rationals. 

Schur's approach made use of prime ideals in algebraic number fields rather than 

Newton polygons. We note that  other than the use of Newton polygons, the approach 

used here makes considerable use of the techniques in Schur's paper. In particular, Schur's 

argument made use of a very nice lemma given next, the proof of which was the largest 

portion of his paper [8]. As it turned out, the lemma had already been established by 

Sylvester [9]. It is a generalization of Bertrand's postulate that  for every integer m~>l, 

there is a prime in the interval (m, 2m] (take k=m). 

LEMMA 3. Let m and k be positive integers with m>~k. Then there is a prime 

p~ k+ 1 which divides one of the numbers m +  1, m+2 ,  ..., m +  k. 

Proof of Theorem 2. To make use of Lemma 2, we consider 

n V n n !  xj" 
~-~ n,. xj and f (x)  = E aj-~. g(x )  = ~ . ,  i !  
j=o ~ j=o 

It suffices to show that  f (x)  is irreducible over the integers. Assume f (x)  is reducible. 

Let k be the smallest degree of an irreducible factor of f(x).  Necessarily, k~  in .  Thus, 

n-k>/k  so that  Lemma 3 implies there is a prime p>~k+l dividing n - l  for some 1E 

{0, 1, ..., k - l } .  We consider the Newton polygon for g(x) with respect to such a prime p. 

For jE{0,  1, . . . , n - l - l } ,  we get that  n!/j! is divisible by n - l  and, hence, p. To obtain a 

contradiction and thereby prove the theorem, Lemma 2 implies that  it suffices to show 

that  the right-most edge of the Newton polygon for g(x) with respect to p has slope 

< 1/k. Observe that the slope of the right-most edge can be determined by 

max ~" u(n!)-~(n!/j!) 
l~j~n(  j }" 

Fix jE  {1, ..., n}. Note that  p,(n!)-,(n!/2) is the largest power of p which divides j!. Let 

r be the non-negative integer for which pr ~<n<pr+l. Then for jE  {1, ..., n}, 

�9 1 1 
u(n ' ) -u(n! / j ! )= [ ~ ] +  [~2] + ' " +  [p3@] ~ 3 ( p + . . . + ~ . 7 )  = j P r - i  

26-950233 Acta Mathematk,a 174. lmprim~ le 20juin 1995 
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Therefore, 
v (n ! ) - v (n ! / j ! )  I pr - 1 1 

max [ < . -  < - - .  
l<<.j<~n t j pr(p- -  1) p - 1  

Recall that  p>~k+l. Hence, the right-most edge of the Newton polygon for g(x) with 

respect to p has slope < 1/k, and the proof is complete. [] 

4. T h e  p r o o f  of  T h e o r e m  1 

Throughout this section, we set 

n ( 2 n - j ) !  
f ( x )  = ~ aj j! ( n - j ) !  xs' 

j=O 

where the aj's are as in the statement of Theorem 1. Our goal is to show that  if n is suf- 

ficiently large, then f ( x )  is irreducible. Lemma 2 implies that  we can obtain information 

about the degrees of the factors of f ( x )  by considering the Newton polygon for zn(x). 

LEMMA 4. Let n be a positive integer. Suppose that p is a prime, that k and r are 

positive integers, and that l is a non-negative integer for which 

(i) pr]l(n- l ) ,  

(ii) p>~21+l, 
and 

(iii) log(2n) 1 1 
pr log-----~ + ~ ~< ~" 

Then f (x )  cannot have a factor with degree E[I+I ,  k]. 

Proof. The result is trivial unless l<<.n-1, so we suppose this to be the case. Using 

the notation in Grosswald [7], we define for mE{0, 1, ..., n}, 

(n+m)t  (1) 
cm = m ! ( n - m ) ! '  

so that  zn(x)=~m=O crux n-re. The proof consists of verifying the hypotheses of Lem- 

ma 2. Observe that  c0= l  so that pr From (1), we see that  

Cm = n ( n - 1 ) . . .  ( n -m- t - l )  for m/> 1; 

therefore p[cm for m = l +  l, ..., n. 

Now we need only show that  the right-most edge of the Newton polygon of z,~(x) 

with respect to p has slope < 1/k. The right-most edge has slope 

-,<~<~n(- max ~v(cn)-v__(cn-~,) 
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so that, by (iii), it suffices to establish that 

u(cn)-u(c,~_=) log(2n) 1 
< - - F - -  

u pr logp p -  1 

for l <~ u <~ n. 
From (1), we see that 

Note that 

n~ 
u(c,~)- u (cn- , , )=  u(u!)+p ( ( ( ~ ) ! ) - u (  (n~-u)!)" 

< p-7=p_l  �9 
j = l  j = l  

To handle the remaining terms in (2), we introduce the notation 

so that 

389 

(2) 

(3) 

for j ) l .  We distinguish three cases: j<~r; u<~21; j > r  and u>2l. 
Suppose j ~ r .  By condition (i), there is some m such that n=prm+l. From (ii), 

21<p<.p j. Thus, 

a(2n,j)= ~ t--/7-- J 

= ~ L--V-J k--P-J" 

Similarly, 

o(n,,-- 

a(2n, j ) - a ( n , j ) ~ u / p  ~ 

u ( )! - u  (nT-u) ! = Z ( a ( 2 n , j ) - a ( n , j ) ) .  
j = l  

We note that  a(n, j) is the number of multiples of pJ in the interval ( n - u ,  n]. Moreover, 

the sum above may be truncated at j=[log(2n)/logp] since a(2n, j)=a(n,j)=O when 

pJ >2n. To complete the proof it therefore suffices to show that 
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Since [w] is an increasing function, we see that 

a(2n, j ) - a ( n , j ) =  ~ I P 3 J <.j<.r. 

Since u>0 ,  (3) follows in this case. 

Now suppose that u<~21. Since 21<p, 2n-21 is the only multiple o fp  in [2n-2/ ,  2n]. 

Therefore, (2n-u,  2n] has no multiples of p, and so a(2n, j)=O. Thus, (3) holds in this 

case. 

Finally, suppose that  j>r  and u>21. The number of multiples of pT in (2n-u,  2n] 

is ~< [u/p r] + 1. Moreover, one of these multiples, 2 n -  2l, is not divisible by pJ since j > r. 

Therefore, 

a(2n, j) <~ a(2n, r ) -  l <~ [~7]. 

Since a(n,j)~O, inequality (3) holds in this case, completing the proof. [] 

The next lemma is a version of Lemma 4 for negative values of I. For the purposes 

of establishing Theorem 1, we will only require a weakened form of the next lemma 

corresponding to the c a s e / = - 1 .  

LEMMA 5. Let n be a positive integer. Suppose that p is a prime, that k and r are 
positive integers, and that l is a negative integer for which 

(i') p ll(n-l), 
(ii') p>>.21ll+l, 

and 
1 log(2n) } 1 1 

(iii') max p_2-~1+1 ,(pT_211}+l)log p +-~_1<<.-~. 

Then f(x)  cannot have a factor with degree E [I/I, k]. 

Proof. We only sketch the first part of the proof as it is essentially the same as the 

first part of the proof of Lemma 4. We suppose that [l I <~n since otherwise the conclusion 

of the lemma is trivial. By considering Lemma 2 and 

C m = ( n ) ( n + m ) ( n + m - 1 ) . . . ( n + l )  for m~> 1, 

it suffices to show that the right-most edge of the Newton polygon of zn(x) with respect 

to p has slope < 1/k. We continue as in the proof of Lemma 4 modifying the way we 

deal with the last two terms on the right-hand side of (2). To get our desired result, it 

follows from (iii') that we need only establish the inequality 

( (2n)! ~ _  ( n' ) o~ 
u (2n-u) ! ]  u (n---'u)! = E ( a ( 2 n ' j ) - a ( n ' J ) )  

j = l  (4) 
1 log(2n) 

<uma  p-291+1' (pr- logpJ 
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for l <~ u<~ n. 
Next, we observe that  the argument in the proof of Lemma 4 gives here that  if j~<r, 

then 

a(2n,j)= - = - 1 -  [--:77- j . 

and 

Hence, 

a ( n , j ) = - l -  [-'~-l'l-u 

.-o/..= [7] 
This last expression on the right is simply the number of multiples of pJ in the interval 

I=(21-u, l-u], and condition (ii') assures tha t  there is at most one such multiple. 

We consider now three cases depending on the size of u and establish that  (4) holds 

in each case. First, we consider l<~u<~p+21. For such u, one checks that  

n - l - p < n - u + l < ~ n  and 2 n - 2 l - p < 2 n - u + l < 2 n .  

Hence, each of the expressions (2n)!/(2n-u)! and n!/(n-u)! occuring at the beginning 

of (4) is not divisible by p, and the inequality in (4) easily follows. 

Next, we consider the case that  p+21<u<./+21. For such u, 

n - l - p r  < n - u + l  <~ n and 2n-21-p~ < 2 n - u + l  <~ 2n, 

and we deduce that  none of n , n - 1 , . . . , n - u + l  are divisible by / and none of 2n, 

2n-1 , . . . ,2n-u+l  are divisible b y / .  In other words, we can restrict the sum in (4) 

to j<r. As mentioned above, for each j<r, we have that  a(2n, j ) -a(n, j )=O or 1. 

Furthermore, a(2n, j ) -a(n ,  j)= 1 precisely when there is a multiple of pJ in the interval 

I=(21-u,l-u].  The latter can only happen if there is an integer l' such that  

2 l - u + 1 ~ <  l'p j <. l -u .  

Since l - u < 0 ,  we deduce t h a t / ' < 0  and 

pJ ~ - l '  p j ~ - 2 l + u -  1 = 2 I l l + u -  1. 

It follows that  we can now restrict the sum in (4) to 

rlog(u+21/i-1)] 
J ~< L log p J <~ 

log(u+ 21/1-1) 
log p 

27-950233 Acta Mathemafica 174. |mprim~ le 20 jura L995 
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Since a(2n, j)-a(n,j)<.l for each such j ,  it suffices to show in this case that  

log( ,+21tl- 1) 1 
u logp  ~ p - 2 1 / l + l "  

This inequality holds since u>.p+2l+l =p-211]+ 1 and since the left-hand side is a de- 

creasing function of u. 

Finally, we consider the case that  pr+21<u<.n. As in the proof of Lemma 4, we 

restrict the sum in (4) to j<~[log(2n)/logp]. As above, for each j<r, we obtain a(2n,j)- 
a(n,j)~l. Among the mlmbers 2n, 2 n - l ,  ..., 2 n - u + l ,  the multiples o f p  ~ are precisely 

the numbers of the form 2n-2l-tp r where r e { l ,  2, ..., [ (u+21/I-  1)/p~]}. It follows that  

for j>~r, 
a(2n, j) <~ a(2n, r) <~ f u+ 2-~'- l ]. 

Therefore, 
u+21 / I -1  a(2n,j)-a(n,j) <~ pr 

for j/> r. Since u ~>pr + 2l + 1, one checks that  the right-hand side above is/> 1 and, hence, 

the above inequality also holds for j < r. We obtain that 

u (  (2n)! "~_ n! (u+2111-1)log(2n) 
(2n-u),] V((n---u),) =~(a(2n'j)-a(n'j))<" prlogp 

j=l  

It suffices therefore to show that  

(u+21l I - l) log(2n) 
U p  r log p 

tog(2n) 
~< (p " -2 [ / l+  1) logp '  

and this inequality holds since ( u + 2 ] l ] - 1 ) / u  is a decreasing function and since in this 

case u>.pr- 21ll+ l. [] 

To prove Theorem 1, let n be sufficiently large and assume f(x) is reducible. Let 

k=k(n) denote the smallest degree of an irreducible factor of f(x). Necessarily, k~< �89 

We consider different arguments depending on the size of k. 

Case 1: n2/3<~k<~�89 We begin by making use of the prime number theorem and 

a result of Grosswald [7]. We consider a non-negative integer l as small as possible such 

that  p=n+l+l is prime. Since n is sufficiently large, we may take l~2n/logn. Then 

Theorem 4 on p. 111 of Grosswald [7] implies that  zn(x) cannot have an irreducible 

factor with degree in the interval (l,n-l); more specifically, the endpoints of the right- 

most edge of the Newton polygon for zn(x) with respect to p are (l,0) and (n, 1) so 

that  zn(x) has an irreducible factor of degree >~n-l and any remaining factor must have 
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degree <<.l<~2n/logn. From the point of view of Lemma 2, taking g(x)=zn(x), we get 

that  pibj for all jE{0,  1, . . . ,n- l - l}  and the right-most edge of the Newton polygon for 

9(x) with respect to p has slope 1~(n-l). Thus, we get that  f(x) cannot have a factor 

with degree in the interval [l+l,n-l-1]. Hence, since l<~2n/togn, f(x) cannot have a 

factor of degree k e (2n/log n, �89 Thus, we deduce that  k <. 2n/log n. 

Recall in this case that  k>~n 2/3 and n is large. We show that  there is some prime 

p>3k>n 2/3 that  divides n ( n - 1 ) . . .  ( n - k + l )  so that  

log(2n) 1 log(2n) 1 2 1 1 
p~logp + p - ~  < 3klog(n2/3) t- ~--~ < 3--k+ 3k - k" 

By Lemma 4, it will then follow that  f(x) cannot have a factor of degree k, giving the 

desired contradiction (for this case). To see that  such a prime exists, we observe that  

since n and, hence, k are large, 
4k 

7r(3k) < log-----k" 

We follow an argument of Erd6s [3] (also described by Tijdeman [10]). For each prime 

p~3k, we consider a number among n, n - 1 ,  ..., n-k+1 which is divisible by pe where 

e=e(p) is as large as possible. We dispose of all of these numbers, and let S denote the set 

of numbers that are left. Since 7r(3k)<~4k/logk, we are left with at least k-(4k/logk) 
1 numbers each of size ~ > n - k + l >  ~n. Thus, 

1-I (�89 
ruES 

For each prime p, let Np denote the exponent in the largest power ofp  dividing Yl,~es m. 

Then for p<~3k, 

so that  

Therefore, 

2n .~k 
H pNp <~k!<~k k<~ . 

\ l o g n ]  p<~ 3k 

H pNp >1 (�89 >/n-(4k/logk)(�88 
p>3k 

An easy calculation shows that  this last expression is > 1. Thus, 

H pNp > 1, 
p>3k 
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from which the existence of a prime p > 3k that divides n(n- 1)... ( n -  k + 1) follows. 

Case 2: ko<.k<n ~/3 with k0 a sufficiently large positive integer. For k0 so chosen 

and k>~ko, it easily follows that 

 (3k) <  ok. 

We follow the argument in Case 1 replacing 4k/logk by ~k .  Thus, we obtain here that 

H m ~> (1n)9k/a~ 
ruES 

and 

Hence, 

H pnp~<k!~<k k~< n2k/3.  

p~<3k 

( n ~kl3~ nk/5 I1  pN  >(�89 . (5) 
p>3k 

Note that since p> 3k in the product above, if p divides the product n(n-1)... (n-k+ 1), 

then p divides exactly one of n,n-1, . . . , n - k + l .  For p>3k and p i n ( n - l )  ... ( n - k + 1 ) ,  

we take r = r (p )>  0 and l= l(p)e {0, 1, ..., k -  1} such that conditions (i) and (ii) of Lemma 4 

are satisfied. Observe that r~>Np (with equality holding if Np~0). Hence, since we are 

assuming f(x) has a factor of degree k, Lemma 4 implies that for every prime p>3k such 

that pin(n-l)...  ( n - k + l ) ,  we have 

log(2n) 
pN. log p 

1 log(2n) 1 1 
t - - - ~ >  - - - -  t- > 

p -  1 pr(p) log p p -  1 k" 
(6) 

For each prime p>3k, we have 1/(p-1)~< 1/(3k). Therefore, we deduce from (6) that 

log(2n) 2 - - >  
pNp log p 3k' 

or, in other words, 
pN. < 3k log(2n) (7) 

2 log p 

Since p>3k>>.3ko and n>~2k>~2ko, we get that for k0 sufficiently large, if Np~0, then 

p < ~ k l o g n  and Np<  
log k + log log n -  log 7 

logp 

Therefore, 

nplogp<  (log k +log log n -log 7)  klogn, 
p>3k 3k<p<~ ~k log n 
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where in the last inequality we have used that lr(x)<~x/logx for x sufficiently large. 

On the other hand, from (5), 

Z Nplogp~> lk logn.  
p > 3 k  

This gives a contradiction, so f(x) has no factor of degree ke  [k0, n2/3). 

Case 3: 5~<k<ko. The number of primes ~2k is less than or equal to the number of 

even primes (i.e., 1) plus the number of odd numbers ~2k minus 2 (for the odd numbers 

1 and 9 which are not prime). Hence, l r (2k)~k-1 .  Using an argument as in Case 1, we 

get that one of the numbers n ,n -1 ,  . . . ,n -k+l ,  say n- l ,  can be written as a product 

mlm2 satisfying ml <~k!<~ko! and gcd(m2,1-Ip<~2kP)=l. We get that m2>~c~n for some 

constant cl (for example, cl=l/(2xko!)). Assuming f(x) has a factor of degree k, we 

get from Lemma 4 that for every prime power divisor p~ of m2, 

log(2n) 1 1 
t- > - .  

pr log p p -  1 k 

Since each such p is >/2k+l, we get that 

log(2n) 1 1 

pr log------p > ) 2k0" 

Thus, 
c2 log n 

logp 

for some constant c2. Then one gets that 

2c2 log n 2 log log n 
P<  ~ n  and r <  logp 

These lead to a contradiction since for n sufficiently large, 

log m 2  -~ Z r log p 4 Z 2 log log n log p 
log p 

pr Hm 2 p<2c2 log n / log  log n 

~< 5c2 log_____~n < log(cln) ~< log m2. 
log log n 

Thus, f(x) cannot have a factor of degree ke[5, k0). 

Case 4: l~<k~<4. For these values of k, we get that r(2k)--k. We repeat the ar- 

gument in Case 3 except now we consider the k + l  numbers n + l , n , n - 1 ,  . . . ,n -k+l .  
Among these there is an n- l=mlm2  with 

mx~12,  m2~  1 . ( n - l )  >1 in15, and gad(m2, ~-I p ) = l .  
" p ~ 2 k  
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Observe that  if pr is a prime power divisor of ms, then p />2k+l  so that either (i) and 

(ii) (if l~>0) or (i') and (ii') (if l = - l )  hold. Fhrthermore, if l = - I  and the maximum 

appearing on the left-hand side of (iii') is 1 / ( p -  2[l[ + 1) = 1 / ( p -  1), then (iii') also holds, 

implying f ( x )  does not have an irreducible factor of degree kE(1,2 ,3 ,4} and giving a 

contradiction. Hence, using Lemma 4 if l~>0 and Lemma 5 if l = - l ,  we get that  

log(2n) 1 1 
(pr _ 1) log p ~- p - 1  > k" 

Since p~>2k+l and k~<4, we deduce 

log(2n) 1 1 
(pr_ 1)logp > 2-k ~> 8" 

We then obtain 
p,.~<2(p~ 1 ) <  161og(2n)~<201og_. n 

log p log p 

The argument in Case 3 now easily follows through with cl replaced by ~ and c2 replaced 

by 20. 

Combining the cases, we get that for n sufficiently large, f ( x )  cannot have a factor 

of degree kE [1, �89 from which Theorem 1 follows. 
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