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In this paper, we investigate the question: to what extent does the spectrum of the 

Laplacian of a closed manifold M determine its geometry and topology? In dimension 2, 

one knows classically that the spectrum of M determines the topology of M. In lOPS], 

Osgood, Phillips, and Sarnak proved the following: 

THEOREM [OPS].  For M a closed surface, the spectrum of M determines the metric 

on M up to a family of metrics which is compact in the C c~ topology. 

The situation in dimensions >2 is more complicated. It is now well-known (see IS]) 

that the spectrum of M may fail to determine even the topology of M. Furthermore, 

the techniques of [OPS] make heavy use of the assumption of dimension 2 at a number 

of points, for instance in their use of the structure of conformal classes of metrics on M. 

In [BPP 1], we studied the questions of finiteness of topological type and compactness 

of the space of metrics in higher dimensions, under some auxiliary pointwise curvature 

assumptions. There, the main idea was to employ spectral information together with the 

curvature assumptions to bring one within the range of the Cheeger Finiteness Theorem 

and its geometric relatives, in order to recreate the topology and geometry of M. A crucial 

step was to bound the Sobolev isoperimetric constant 

area(H) 
Cs(M) = i~f [min(vol(A), vol(B))]l-1/n' 

where H runs over hypersurfaces of M which divide M into two pieces A and B. 

In [BPP2], we considered the problem of bounding the Cheeger constant h(M)  in 

terms of spectral data alone, without further curvature assumptions. Here, h(M)  is given 
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by the formula 
area(H) 

h( M ) = ~ min(vol(A), vol(B)) ' 

where H again runs over hypersurfaces which divide M into two parts A and B. There  

we showed: 

THEOREM [BPP2]. For n=2 or 3, there is a positive constant K(n) such that, if 

AI(M) > K(n) Ilmccll2 

then h(M) is bounded below in terms of spectral data. 

Since the Sobolev constant Cs(M) is defined in a manner similar to the Cheeger 

constant h(M), but exerts far greater control on the local geometry of M,  it would appear  

promising to see if one could improve the techniques of [BPP2] to find conditions under 

which one could bound Cs spectrally. 

In this paper, we carry out a variant of this idea. To state our main result, we first 

observe that  the curvature tensor of any Riemannian manifold has a pointwise orthogonal 

direct sum decomposition into three parts 

R(M) = S@Pdcc @W, 

where S, Ricc, and W are the scalar, traceless Ricci, and Weyl tensors respectively. For 

any dimension n, the first three heat invariants ao, at ,  a2 satisfy 

a0 = vol(M) 

a l  = C l / M  S 

where the constants cl, ..., c4 depend only on the dimension n, and are positive for n <  6, 

see [BGM]. 

Since the a~'s are spectral invariants for all i, it follows that  if we define ttRiccH2,red 

by the formula 

1 
c3 c3 L@0J' 

( f f 
vol(M) \ J M  ,] J C3 J M  
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then llRiccll2,red is a spectral invariant, and we have that 

Ilmccll ,,ed >/IIRiccll2. 
More generally, we may define the reduced Riemann tensor R(M)red by 

R(M)r,d = [ S -  (vol~M) fM S ) ' I ]  ~ c c c ~ W ,  

where 1 is the vector of length 1 in the scalar curvature component. In dimensions two 

and three, W=O and we may define the reduced Ricci tensor by the same expression 

with the summand for W absent. We define IIRiccl[q,red by 

= IR(M)redlq" Ilmccll ,red 
Note that 

IIRiccllq,rod IIRiccll2,red 
vol(M)l/q <~ ~ ,  

for q<2, as follows easily from HSlder's inequality. 

Note also that I]Riccll2,red is 0 when M has constant curvature, so that HRiccll2,r~d 

is a spectral measure of how far away M is from constant curvature. 

Our main result is then: 

THEOREM 0.1. For n=2 or 3 and any positive integer k, there are constants Q(n) 
and K(n, k), such that if 

> Q(n)vo (M s-) 
and 

Ak(M) > g(n ,  k)Ilmccll~,~d 

then the set of manifolds which carry metrics isospectral to M contains only finitely many 
diffeomorphism types, and the set of such metrics is compact in the C ~176 topology. 

It follows in particular that there are spectrally determined open sets about the 

manifolds of constant curvature for which one has compactness of isospectral sets of 

metrics: 

COROLLARY 0.1. Let M be a 3-manifold of constant curvature. Then there is a 

spectrally determined open set U in the space of all metrics on M,  such that if gEU, 
then the set of metrics isospectral to g is compact in the C ~ topology. 

The corollary follows from the theorem by choosing an eigenvalue )~k (M) sufficiently 

large so that 

Ak > Qv -'-77-~'' 'o,(lvl) (1) 
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the right-hand side being expressible in terms of a0 and al,  and setting U to be the 

neighborhood on which (1) continues to hold, and for which 

I]mcc]12,rod 
Ak > K(3,  k) ~ /v~ /~ i )  " 

M is in this neighborhood, because the constant curvature condition guarantees that  

IJRiccll ,,od =0. 
In the case n=2, the statement of Theorem 0.1 is contained in the Theorem of [OPS], 

which is true without any restriction on Ak, [[Ricc[[2,red, or vol(M). 

In order to prove Theorem O. 1, we will s tudy the (generalized) Sobolev isoperimetric 

constants 
C~(M) = i ~ f  area(H) 

[min(vol(A), vol(B))]l-1/P ' 

for n<~p<oc, where as before H runs over hypersurfaces which divide M into two parts 

A and B. Note that  the case p=n is the classical Sobolev isoperimetric constant, while 

p=co is the Cheeger constant. 

We will show: 

THEOREM 0.2. For all n and k, and forp>n,  q>�89 there are constants Q(n,q) 

and K(n,k,p,q) ,  such that, if 
fMs 

> Q voW(M) 

and 
[[Ricc[Iq,red 

)~k > K (vol(M))l/q , 

then C~(M) is bounded below in terms of spectral data and [[Riec[[q,red- 

If, in addition, q<.2 and 

[IRiccll2,~ea 
Ak > K(n,k ,p ,q)  ~ , 

then C~(M) is bounded in terms of spectral data alone. 

Theorem 0.2 gives qualitative expression to the idea that  as a manifold "stretches 

out",  its low eigenvalues must begin to accumulate below some critical value. In the case 

of pointwise bounds on the curvature, this idea is well-expressed by Cheng's Inequal- 

ity [Che], where the "stretching out" is measured by the diameter of M, and the critical 

value is � 8 8  where - ( n - 1 ) ~  is a lower bound for the Ricci curvature of M. 

The proof of Cheng's Theorem does not carry over to the case of L p bounds for any 

finite p, so in our case we must proceed differently. 
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The idea of the proof of Theorem 0.2 is to construct test functions built up out of 

the distance function to a surface H which realizes the minimum in the ratio defining the 

Sobolev constant. Using Gallot's L p version [Ga] of the Heintze-Karcher Theorem [HK], 

we will show that if the conditions of Theorem 0.2 are met, then one has sufficient control 

over the growth of tubes around H to ensure that if C~ were sufficiently close to 0, then 

one could construct k + l  functions with disjoint support whose Rayleigh quotient was 

less than )~k- This contradiction then establishes a lower bound for C~. 

In Section 4 below, we will then show how to pass from Theorem 0.2 to Theorem 0.1. 

The main point is to give a bootstrap argument which shows that a lower bound C~ and 

an upper bound for IIRiccllq for q> �89 together with spectral data, gives an L ~176 bound 

for Ricc and its covariant derivatives, from which Theorem 0.2 follows readily. 

Acknowledgements. The first author would like to thank the Mathematical Sciences 

Research Institute and SFB 170 in GSttingen for their generous hospitality. The first 

and second authors would also like to acknowledge with gratitude the support of the 

National Science Foundation through the Kentucky EPSCoR program. 

1. Volumes of  tu b es  

In this section, we begin by studying the volumes of tubes about a hypersurface mini- 

mizing the Sobolev constant C~(M). 
It is a standard consequence of geometric measure theory that there is a hypersurface 

H which realizes the minimum of C~. If we denote by ~ the component of M - H  of 

smallest volume, making an arbitrary choice if H divides M into two equal pieces, we 

then have 
area(H) 

C ~ -  [vol(~)]l_l/p . 

We have the following estimate for the mean curvature x(H) of H: 

LEMMA 1.1. x(H) is constant, with 

C p 
Ix(H)l ~< (1 - l/p) vo, ~-~, 1/p . l t ~ t )  

Proof. Let ft be a family of diffeomorphisms of M, with infinitesimal generator v. 

Suppose first that the two components of M - H  are of unequal volume. From the 

minimizing property of H, we see that 

d r area(ft(H)) ]lt=o=O" 
dt L [vol(ft(12))] 1-1/p 
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But 

d [" axea(.ft(H)) ,1 = 

dt [vol(A(f~))]l-~/,,J 
• (area'(A (H)) vol(A(a)) 1-1/ ' -  area(A (H))0 - l/p) vol(/~(n)) -1/" vol'(A (a))) 

so that 

. ,  , area(H) d vol(ft(fl))lt=0. =0. d (area(ft(H)))lt=o-(1-'/P) v ~  ) "-~ 

But 

darea(f,(H))l,=o = /H(x(H)N)'v 

and 

where N is the normal vector pointing outward from fl, so we conclude that 

S x(g )  (1 CP = - l/p)vol~)l/,, 
which establishes the lemma in the case where the two components are of unequal volume. 

In the case where the two components are of equal volume, we consider separately 

the cases where v points inwards on fl and outwards from ft. We must then use 

in the first case, and 

d (area(f,(H))~ >10 
dt \ vol(s ) 

dt \vol(M-A(~)))  
in the second case to derive the inequality. [7 

For each positive number R, let 

aR = {x: a t ( x ,  ~) ~< R}. 

f i r  is the tube about fl of radius R. We will now use the following estimate of Gallot [Ga] 

to estimate the growth of the volume of DR: 

THEOREM [Gal. Let ~ be. a domain in M, and H=v~, the boundary of n. Then 
for q> �89 and for R, e>~O, we have 

vol(n~+~)- vol(~) ~< (e"~q~- 1)[v<a.)-vol(a) + ~ area(H) 

-~ 1 _ r_ q 
(B(q)ot)2q/H~+(x)2 q 1 d x + ~ x +  _a ( ~ _  11+ drol l .  (2) 
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Here, ( mcc(X_,_x) 
r_(x)=sup 0, sup 

XeT| (X, X) ) '  

a is a constant which may be thought of as a "guess" for the curvature of the metric 

on M, ~}+ is sup(0, x),  where x is the mean curvature of H (we use slightly different 

conventions for mean curvature than [GAD, and 

1/2 [ . 1 \1/2--1/2q 
S(q)= (n - - l ) l - I /2qf - -~1  -} . 

\ q - s n /  

The case where H = f / i s  a point is also allowed, and here we may take ~}=0, see [Gal. 

We will use this case in Section 4 below. 

According to Lemma 1.1, we have 

- 1  ~+ <~ (1 IP)vol(a)l/p, 

so that  the third term in square brackets in (2) is 

1 [(1-1/p)C~]2q-larea(H ) 
< (B(q)oO2q [ vol(n) 1/p ] 

1 [(1-1/p)C~] 2q-1 
-- (B(q)a)2 q [ vol(a) l / ,  j C~ vol(~'~) 1-1/p 

-- (1 -- i /p)  2q-1 (C~)2q vol(n)l_2q/p" 
(B(q) )2q 

Thus, we may rewrite Gallot's formula as 

r 1 
vol(~'~RWe) -- vol(~R) < (eB(q)ae _ i) ]VOI(~'~R ) -- vol(~) -~- ~ C~ vol(~~ )1--1/p 

"~ (1-1/')2q-l(c~)2qvol(~'~)l-2q/p-~-/ (~2--1~ q drol l .  
(B(q)a) 2q J'R+. - r~a  \ a 1+ 

(3) 

Since we will be concerned that  the terms involving C~ do not blow up when vol(f/) 

gets small, we will need 

2q/p <. 1, 

that is, 
q ~ l  

5P" 

As a warm-up to Section 2 below, we will show: 
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LEMMA 1.2. Let p> 2q>n and suppose that there is a positive constant C such that 

vol([2)>C. Then CSp is bounded below in terms of C, A1, vol(M), and HRicc]lq. 

Proof. We will choose e>0, and define two test functions fl,e and f2,e as follows: 

1, 

fl,e (x) = 1 - (2/E) dist (x, ~), 

0, 

0, 

f2,e (x) = (2/e) dist (x, ~) - 1, 

1, 

xE[2, 

-1 e dist(z,  [2) ~< 2 , 
1~. dist(x, ~2)/> 2 ' 

dist(x, [2) ~< 2 , 
1 ~e ~< dist(x, ~)  ~< E, 

dist(x, ~) ~> e. 

Then fl,~ and f2,e have disjoint support, so that 

"~1 ~<ma~( flgr~f~'"l~ flgTady2"12"~ 

But 

f f~,~ ) vol(f~), 

f f22,~ i> vol(M)-vol(f2e), 

and 

f l~.h,4 ~ ~< ~(vol(~)-  vo1([2)). 

We now use the inequality (3) to estimate vol(~2~)-vol(~2): 

vol(~)-vol(~) ~< (e "(q)'~e- 1) 
1 p (1- l/p) 2q-1 • B_~C~vol([2)l_l/p~ (C~)~qvol([2)l_~/q~ 1 ( B( q)a )2q v~2q 

IImr 
( n -  1)q ] '  

where we have used the estimate 

r_(~) ~< --~lmcc(z)f, 

together with the estimate 

(r~-~- 1)+ ~ ~2" 

Let us denote by x0 the point where the function 

e x - 1 

g(x)= x2 
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takes its minimum on (0, oo), and let 

B(q)ae = xo. 

This defines e in terms of a,  and we have 

vol(fl~)-vol(fl)  ~< (e ~ ~  1) 
r 1 p vol(~)l_l/v~ (1- Up)2q -1 
l ~-7-:z, _ C s ( c~ ) "q v o l ( f l ) l - 2 q / P + -  X (B(q)a) 2q 

1 . llRi~cllg] 
Ot 2q ( ' /2 - -1)  q J 

(4) 

Choose a sufficiently large so that  

( e  ~ ~  - 1 ) .  IImr162 
C~ 2q (n -1 )q  - -  < ~oC < ~0 vo l (m 

Either (i) the estimate 

CtC~s vol(fl)~-l/p+C2(C~)2q vol(fl) '-2q/p/> ~ vol(fl) 

holds for positive constants C1 and C2 determined by (4), or else (ii) the opposite in- 
equahty holds. 

In case (i), we then have the weaker inequality 

C1C~(�89 vol(M)) 1-1/" +C2(C~)2a(�89 vol(M)) 1-2q/v ) ~C,  

using that  vol(fl) E �89 vol(M), which gives a lower bound for C~ in terms of vol(M) and C. 
In case (ii), we then have that  

v o l ( ~ )  < ~ vol(a). 

Thus in case (ii), 

vol(M),vol(f l~)  ~> 2 vol(fl) - 6 vol(fl) ) 4 vol(fl), 

using that  vol(f~) ~< �89 vol(M), and so 

f I grad fl,~l 2 4 vol(g~)-vol(f~) 
f f L  <~ ~ vol(a) 

and 
f l ~ I f 2 A  2 5 4 vo1(a~)-vol(a) 

JVL < 3~-~ vol(a) 
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On the other hand, by (4), 

4 vol(ne)-vol(f l )  
< 49(z0)B 2(q)a 2 e 2 vol(fl) 

[ C~ vol(~.~)_l/p_~ (1 - l / p )  2q-1 (C~)2q vol(~.~)_2q/p_~ 1 IIP~iccll q ] 
• [B(q)a (B(q)a)2q a2q vol(fl) (n-1)q J 

so that,  using vol(l))/> C, 

~1 ~< 45-.4g(xo)B2(q)a 2 

[ l~___CPC_l/p_ L (i--i/p) ~q-x (C~)2qc_2q/p_l - llmccllg] (5) 
x [B(q)a  s " B(q)a2q a2qC j" 

Now choose ~ so large that  

4 " "-~" ' llmccll~' < I~1 (6) 
g(xo)~ (q) a2q_~ (n- 1)qC 

Either the inequality 

5g(xo)B2(q)oe2[B~q)aC~C-1/Pq- (l-1/P)2q-l(c~)2qC-2q/p] ) l.~l (7) 
B(q)a 2q 

holds, implying a lower bound on C~ in terms of ~1, C, vol(M), and I[Riccllq, or the 

opposite inequality holds. In the latter case we use this inequality in (5) to obtain a 

contradiction, since we get an upper estimate for )~1 which is less than ),1. Hence (7) 

holds, so in case (ii), C~ is bounded below in terms of C, At, vol(M), and HRiccllq. 

Hence in either case (i) or case (ii), we have the desired lower bound for C~. [] 

2. Tes t  funct ions  

From the last section, it is apparent that  the heart of the problem in proving Theorem 0.2 

is that  vol(f~) may go to zero. 

Our idea in this section is to construct test functions whose support is on regions 

built up from level sets of the distance function to fl, in hopes of showing that  if either 

C~ or vol(f~) is too small, we get an estimate for some ~k which is too small. 

To that  end, let us fix positive numbers K and D, and define the sequences of 

numbers 

Ao, A1, ..., A2~+3 

and 

Bo,~ -~1~ ""7 "B2kq"3 
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by: 

and 

and 

A0 = Bo = vol(fl) 

Ai+ 1 = K [Bi + D], 

Bi+l = B i+Ai+ l  = (I+K)Bi+K'D. 

Solving the difference equations, it follows that  

Bi -- (l + g)i Bo+[(l + K) i-1]D 

We now set 

where P~ is such that  

and we set 

Ai : K(I + K)i-I[Bo+ D]. 

Bi = ~Ri 

vol(flR,) = B~, 

-~4 ~--- ~i --~i--1 : fiRi --f lR,-l"  

The important point here is that  in Gallot's formula, the numbers Pq do not enter 

in explicitly, but only through the volumes of the GR~'s. 

We now view Gallot's inequality as a lower bound on the width of ~ ,  that  is, on 

Ri - R / - 1 ,  in the following sense: if we set 

Bo = vol(fl) 

and pick 

then Gallot's theorem tells us that  

would satisfy 

e s(q)ae/> I + K  

if both C~ and vol(fl) were O, so that  an upper estimate for ei less than 

1 
B(q)oz log(l-l- K)  
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would contain an implicit bound for one of C~ or vol(~) away from 0. By Lemma 1,2, 

then, this would imply a lower bound for C~. 

We now construct k + l  test functions fi  as follows: 

1, x E A 2 i ,  

f / ( x ) =  1- (2 /6 i )d i s t ( x ,A~ i ) ,  for O<~ dist(x, A2i)<. �89 

0, elsewhere. 

The fi 's  thus have support contained in ~42i-1 Uc42ilJJ[2i+l, SO distinct f i  have disjoint 

support. 

In order for this to make sense, we must make sure that  we have not run out of 

manifold--that  is, we must have 

B2k+3 = (1 + K)2k+3Bo + [(1 q-K) 2k+3 - 1]D < vol(M). (s) 

Since B0=vol(fl) and D > f M ( r _ / a 2 - 1 ) q + - v o l ( f l ) ,  this will hold when vol(fl) is suffi- 

ciently small provided that  

and 

r - _ l  < 
( l+K)2k+3_  1 (9) 

Now let us compute the Rayleigh quotients of the ]i's: 

4 A 4 
M l grad(fi)]2 ---- ~i_l+ Ty - .A2 i+ l  -277" 

ai Ei+ 1 

M ]~ ~ Aui. 

It follows that  if r ( I / B ( q ) a ) l o g ( l + K ) ,  then 

I grad kl 

If we then have the condition 

4B2(q)a2 I ' K ~ ' "1 ' K "-1' 

4B2(q)a~ [(1 
[ log ( l+K)p  ~' + K ) + ( I + K ) - I ]  < Ak, (10) 

together with (9), then we have a contradiction unless either C~ or vol(f~) are bounded 

away from 0, since we have constructed k + l  test functions with disjoint support, whose 

Rayleigh quotients axe less than Ak. 

We now give the proof of: 
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LEMMA 2.1. Suppose that 2q>n and that there exist a positive integer k and positive 

vol(M) 
(1 +K) 2k+3-1 

numbers a, and K satisfying 

r-_lq L(o, 
and 

4B2(q)a 2 
[log(I+K)]2[(I+K)+(I+K)-II<~k" 

(11) 

(12) 

Then C~ is bounded below in terms of K, k, vol(M), A1, and fM(r_/a2--1)q+. 

Proof. We assume that there exist K > 0 and k > 0 with 

r - - 1  q (13) /M((~2 1+ < vol(M) 
( I + K )  2k+3-1 

and 
4 2 2 

, ~ 2  [(I+K)+(1 +g)  -~] < ~k. (14) 

We want to pick a number D>O satisfying 

)i r_ _1  -vo l (n )  < D, (15) 

(1+ K) 2~+a vol(12) + [(1+ K) 2k+a - 110 < v o l ( / ) .  (16) 

It will be useful to rewrite (16) as 

I vo l (M)-  (t+K)Uk+3 vol(•). (I7) 
D < ( l+K)2k+3_ 1 ( l+K)2k+3_ 1 

If it is not possible to pick such a positive D, then either the left-hand side of (15) 

is negative, implying the lower bound 

vol(12) t> r_ _ 1 , 

or the right-hand side of (17) is less than or equal to the left-hand side of (15), which 

gives us the inequality 

This last term is positive by assumption. So in either case, if we cannot find such a 

positive D, we have a lower bound for vol(~), and hence by Lemma 1.2 a lower bound 

for C~. 
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We will now assume that such a D exists and find a lower bound for C~. We 

construct k + l  test functions as described above, with Rayleigh quotients bounded by 

fM [ grM f+l 2 ~< ~ [ ( I + K ) + ( I + K ) - l l  . 

By the max-rain principle, at least one of the Rayleigh quotients must be greater than 

or equal to Ak- For this choice of i we have by (14) that 

e~ ~ 4 [ ( I+K)+( I+K)- I ]A~ -1 < 
log( l+K)  2 

B2(q)o~ 2 

with strict inequality in the second line. Thus, for this i, e B(q)~+ - I < K .  

From our remarks preceding the statement of the lemma, this then gives us a lower 

bound for C~, and the lemma is proved. [] 

3. P r o o f  o f  T h e o r e m  0.2 

It remains to play with (11) and (12) in such a way as to obtain usable results. The main 

point is that one may estimate 

in various ways, in order to apply Lemma 2.1. 

First, we will use the estimate 

/Rice_ I 
n - - 1  

to obtain 

fM(~..~_l):<~fM(~.i)q<.]M [Ricc_ [' (n-1)q~2q 

in (11). 

For convenience, we will set 

x = log(1 +K) .  

The inequality (11) then becomes 

~2q > [e(2~+3)._ 1] llRicc-ll~ 
( n -  1)q vol(M) ' 
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while (12) becomes 
Akx 2 

4B2(q)[ez+e-']" 

We will be able to choose a satisfying both (11) and (12) provided that 

(n- 1)(vol( M) )Uq " 
(18) 

We thus have: 

THEOREM 3.1. Suppose that there exist z and k such that 

/~k >8B2(q) cosh(z) [e(2k+3)Zl]l/q. IIRicc-IIq 
( n -  1)x 2 (vol(M))Uq" 

Then C~ is bounded below in terms of x, k, )q, A~, IlRicc_ [Iq, and vol(M). 

One application of Theorem 3.1 is when one has a bound for HRicc_llq for large q, 

for instance when one has pointwise lower bounds for Rice. In this way, one may retrieve 

the results of [BPP1] for Ricci curvature bounded from below. 

In order to prove Theorem 0.2, we will make use of a somewhat different estimate 

for 
r-- l q  " 

LEMMA 3.1. 

provided that 

\ O r  /A- ot2q ' 

1 
~ ~> ~:--/_ 1 ~ .  

Proof. Writing 
N 

Ricc = S $ R i c c @ W  

and 

we have that 

( h,s S= \ vol(M) ] + (S-vfo SM) ) , 

[ 1 fMS -1 -Ricc(X,<x,x>X) _ ( n -  1)a 2 ~< - S vol(M) (X, X) 

provided that 
fM S 

vol(M) ~< (n-1)a2" 
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It follows that 

We then have 

provided that 

\ a  /+ (n-1)qa 2q' 

IMs 
( n - 1 ) a 2 / >  vol(M) " 

Substituting into (11) and (12) gives the conditions 

o~ 2q > 
e (2k+3)~-1 [IRiccll~,rea 

( n -  1)q vol(M) 

and 

provided that 

Hence we have: 

a 2 < ,~ k x 2 
4B2(q)[e~+e-~] ' 

fM S 
(n-- 1)a 2 > vol(M----~" 

THEOREM 3.2. For any x > 0 ,  let k be large enough so that 

1 fM S .8B2(q)COS~2X). 
n - 1  vol(M) 

If, also, 

~ 2 ,  , Ilmc~llq,rod [e(2k+a)x-1] 1/q cosh(x) 
) ~ k > ~  ( q ) ( ~  n--1 " x 2 ' 

then C~(M) is bounded below in terms of k, x, ~k, vol(M), and I[Riccllq,rea. 

Setting 
1 B2(q)COsh(x) Q(n,q)= ~ , -~ 

and 
[e (2k+3)x-1] 1/q cosh(x) 

K(n, k, p, q) -- 8B 2 (q) n -  1 x 2 

we obtain the statement of Theorem 0.2. 

[] 
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4. The bootstrap 

In this section, we complete the proof of Theorem 0.1. We will show: 

1 THEOREM 4.1. Given p < 4  and q>~p, C > 0 ,  Ro, v, V, and Ao,A1,..., the set of 
n-manifolds M satisfying 

(a) 
(b) Ilmccll~<~Ro, 

(c) v<<. vol(M)<<. V, 
(d) ai(M)<.Ai for all i, 

is compact in the C ~176 topology. 

Note that  for the condition C~>~C>O to be non-vacuous, we must have p>~n. Thus 

this theorem as stated applies only for n = 2  or 3. We remark that  this theorem is valid 

for larger values of p, but  the proof becomes much more delicate, see [Cho]. We will only 

need the case 2 < p < 4 .  

Before we proceed with the proof, we will show how Theorem 4.1 allows us to 

complete Theorem 0.1. To begin the discussion, we define the Sobolev constants CS(p, q) 
to be the constants occurring in the Sobolev inequalities: 

Ilfllqp/(p-q) < CS(p, q)[llfllq+llVfllq] for q < p 

and 

Ilfll~ ~< cs(p,q)[llfllq+llVfllq] for q >p .  

In the case where p=n, these are the classical Sobolev inequalities, and the existence of 

such constants is standard, see for instance [Cha]. 

It will be important  to bound the numbers CS(p, q) from above in terms of the data  

given in Theorem 4.1. To that  end, we observe that  a bound from above for US(p, q) in 

terms of a lower bound for C~, an upper bound for vol(M), and a bound for IlrUcell~ for 

q> �89 proceeds in much the same way as the classical case, see [BPP1] for a discussion. 

The main point to add here is that  a bound on Ilmccllq for q> �89 allows us to find a 

number r such that  the ball B(z ,  r)  about any point x has volume less than half the 

volume of M, as one sees readily from Gallot's Theorem applied to H = { p t } ,  while a 

lower bound for C~ for p<c~  gives us a lower bound for vol (B(x, r ) ) ,  so that  there 

are a bounded number of disjoint balls B(r ,  x) in M. We may then use the parti t ion 

argument of [BPP1] to bound CS(p, q) for q=  1, and then extend this for all q, by standard 

arguments (see [BPP1]). 

The conditions of Theorem 4.1 now tell us that  we have uniform upper bounds for 

all the numbers CS(p, q). 

21-945204  Acta Mathematica 173. Imprim6 le 2 d~cembre 1994 
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and 

Suppose now that we have the bounds 

~k > K(n, k,p, q)IIRiccllq,red 
voI(M) 1/q 

of the assumption of Theorem 0.1, for q=2. Then we also have these inequalities for 

some q satisfying 3 <q<2,  since the right-hand side is continuous in q. 

It follows from Theorem 0.2 that we now have a bound for C~ for some p satisfying 

2 q < p < 4 .  

We now have bounds for all the terms in Theorem 4.1, because we still have a bound 

for IlRiccll2, and 2>~p. We may then use Theorem 4.1 to conclude compactness of the 

space of metrics, completing the proof of Theorem 0.1. 

In the proof of Theorem 4.1, we will make frequent use of the following well-known 

facts: 

LEMMA 4.1 [H61der inequalities]. (a) For 1 /p+l /q=l ,  

(b) If  a<p<b, then 

fig Ilfll llgll . 

a . ~  i.r.=-~ 
p b - - a  p b ~ @  

I l f l lp  ~ I l f l ta  - I l f t lb - �9 

We will use without further mention simple facts about (b), such as that i fa  increases 

while b and p remain fixed, then the exponent of flfllb decreases. 

To make the statements of what follows convenient, we will define the symbol "~" 

as follows: 

A -~ B if and only if A ~ C1 [(72 +B],  

where the constants C1 and 1'2 can be computed explicitly. 

We then have the following useful but totally elementary inequalities: 

(a) If A_~[~= 1 Bi] a, then A~supB~.  

(b) I fA-~A a for some a < l ,  then A~I .  

Finally, we will make use of Gilkey's Theorem on the leading terms in the heat expansion, 

which we will rewrite in the following way: 
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THEOREM 4.2 ([Gi], see [A]). For each j>.l,  

IlvJamll~ -_<_ aj+2 + ~  fM P(IRml, IV aml, ..., IW-1panl),  
P 

where Ran denotes the Riemann curvature tensor, P ranges over all monomials in 

Iaanl,..., IVr of weight 2(j+2), where the weight of IVkRral is k+2, and the weight 

of a product of such terms is the sum of the weights of the terms. 

In dimensions 2 and 3, we may use that W=0  to everywhere replace the Pdemann 

tensor Ran with the Pdcci curvature tensor Rice. 

We may rewrite the Sobolev inequalities in the following way: Suppose that 

IlYllp/~_a. Then 
IlYllp/<~-l) _~ IlVYllp/~ if ~ > 1 

and 

Ilfll~ ~ IlVfllp/~ if a < 1. 

Taking 1 a=~p, and setting np=P/( �89  if p>2 and =cx~ if p<2, we 

have that if I[fll2-<l then 

IlYlln, -<_ IlVfll2, 

and ff Ilflln~ ~ 1, then 

[Ifll~ ~llVflln~ for 2</9<4.  

We will separate the argument into the cases p<2 and 2<p<4. 

Case 1: p<2. Taking first the case p<2, and observing that IlRicc[12___l from the 

a2 term in the heat expansion, we have 

HRiccHoo ~ HVRiccH~ 

and 

llV Riccll2 _ llmccll:~/2, 

where the second statement is from Gilkey's Theorem. 

But 

Ilmccll~/2 <~ IIRiccll2 IlrUccll~ ~, 

SO 

and 

llmccll~ -"< 1 

IlVRicclJ2 ~ 1. 
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Now suppose inductively that  we have 

IIVJ~ccl[2 -~ 1 

and 

Then 

]lV~Riccl]oo ___ 1 for k < j .  

flWJmcclt~ -< flWJ+:'mccll~ ..< [o~+:~+ ~ f P] 1/', 
by Gilkey's Theorem. 

In the summation over P,  we can replace any term bounded i n L  ~ by a constant, and 

only [VkRiccl for k < j + l  appear, so we conclude that  only terms which are monomials 

of the form ]VJRicc[ m occur. 

From the weight condition, we have that  

r e ( j + 2 )  ~< 2 ( j+3) ,  

or in other words that  m~<2. 

But,  by H51der interpolation, we have that  

llVJmccll2 _~ 1, 

so the last term in the inequality is -< 1. 

Hence, the first and second terms are also _-< 1, and the inductive step is completed. 

We conclude that  

ifv~Pacclf~ _~ ] for an j. 

This concludes the case p<2 .  

Case 2: 2 < p < 4 .  In the case 2 < p < 4 ,  we have ilRicc[12_<l from the a2 term, and so 

llRiccll~, _ llWmccll2, 

and 

llV Riccll~ _~ llmccll] n 

from Gilkey's Theorem, as before. 

If q~>3, then we have that  

[Imccl[a -< ilmccll~ -< 1. 
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If q<3,  then we apply HSlder interpolation to get 

IIRicclla <~ Ilmccll~llRiccll~p 

where we can calculate b as follows: If q= �89 then 

b -  2p 3 -  �89 2 
p-2 2p/(p-2)-!p =-3" 

2 

Hence if q>�89 b<~,  and we have that  

Ilmccll.~ ~ IlVmccll= ~ IlmccllS.~ 2, 

so all of these terms are __ 1. 

Now we have 

Ilmccllo~ -< IlVmccll~ -< IIX7 ~ Riccll2 

( f, f, a4+ Pdccl4 + V Riecl2 IRicc 

sup(llmccll~, IlVmccH411mccll~/2). 

But for p<4 ,  we have 4<np,  and so the first term is ___1, and the second term can be 

written 

IlVmccll411mccll~/2 -~ IlVmccll4 ~ IlVmccll~llVmccll~, 
for some b< l ,  and we conclude that  

IIVmccll.. -~ IlVmccll~., 

and so all the above terms are _ 1. 

Now assume inductively that ,  for j > l ,  we have IIVkRiccllo~___l for all kKj, 
IIVJRiccll,~p~l, and IIVJ+lRiccll2-~l. Then 

IlVJmccllo~ ~_ IlVJ+~mccll~. ~ IlvJ+2mcc112, 

and 

IlVJ+2Riccll2 ~ (at+, + ~ f P(iVJ+lRiccl, IV' Paccl)) Xl/2. 

We now investigate which monomials P may occur. If P involves only one or two 

terms, then it is bounded, because IIVJRiccll2 and IIvJ+lRiccll2 are both _1.  
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If there are m terms, then each is of weight at least j + 2 ,  so the weight condition 

says that  

re(j+2) 2(j+4), 

which tells us that  m ~< 3 and j ~< 2. 

For j - -2,  we have the term 

J ~1/2 
/ 1~2aiccl 3 ) -~ H~721~ccll 3/2 . 

But for p<6,  3<rip, so this term is ~1. 

For j = l ,  we get only the term ( f  IVl~iccl~lV2Riccl) 1/2. But this is 

IlVmccll llV 'm.ccll / ', 

and IlVRiccll4___l since 4<rip for p<4.  

We conclude that  

IIV mccll,,,, IIV P,.iccll /':  IIV"mccll ,, 

for some b less than �89 and so all the terms in the inequality are _~ 1. 

This completes the inductive step, and we conclude that  I[VJRiccll~ is bounded for 

allj. 
We now complete the proof of Theorem 4.1 as in Section 4 of [BPP1]. 
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