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Spectral geometry in dimension 3

by
ROBERT BROOKS(*) PETER PERRY(?) and PETER PETERSEN V(®)
University of Southern California University of Kentucky University of California
Los Angeles, CA, U.S.A. Lexington, KY, U.S5.A. Los Angeles, CA, U.S.A.

In this paper, we investigate the question: to what extent does the spectrum of the
Laplacian of a closed manifold M determine its geometry and topology? In dimension 2,
one knows classically that the spectrum of M determines the topology of M. In [OPS],
Osgood, Phillips, and Sarnak proved the following:

THEOREM [OPS]. For M a closed surface, the spectrum of M determines the metric
on M up to a family of metrics which is compact in the C* topology.

The situation in dimensions >2 is more complicated. It is now well-known (see [S])
that the spectrum of M may fail to determine even the topology of M. Furthermore,
the techniques of [OPS] make heavy use of the assumption of dimension 2 at a number
of points, for instance in their use of the structure of conformal classes of metrics on M.

In [BPP1], we studied the questions of finiteness of topological type and compactness
of the space of metrics in higher dimensions, under some auxiliary pointwise curvature
assumptions. There, the main idea was to employ spectral information together with the
curvature assumptions to bring one within the range of the Cheeger Finiteness Theorem
and its geometric relatives, in order to recreate the topology and geometry of M. A crucial
step was to bound the Sobolev isoperimetric constant

area(H)

Cs(M) =i e ol A), vol B[/

where H runs over hypersurfaces of M which divide M into two pieces A and B.
In [BPP2], we considered the problem of bounding the Cheeger constant h(M) in
terms of spectral data alone, without further curvature assumptions. Here, h(M) is given
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by the formula

. area(H)
h(M) =it vol(A), vol(B))’

where H again runs over hypersurfaces which divide M into two parts A and B. There
we showed:

THEOREM [BPP2]. For n=2 or 3, there is a positive constant K (n) such that, if

IRiccll

Vvol(M)’

then h(M) is bounded below in terms of spectral data.

(M) > K(n)

Since the Sobolev constant Cs(M) is defined in a manner similar to the Cheeger
constant A{M), but exerts far greater control on the local geometry of M, it would appear
promising to see if one could improve the techniques of [BPP2] to find conditions under
which one could bound Cg spectrally.

In this paper, we carry out a variant of this idea. To state our main result, we first
observe that the curvature tensor of any Riemannian manifold has a pointwise orthogonal
direct sum decomposition into three parts

R(M)=S®RiccoW,

where S, R’ji\c’c, and W are the scalar, traceless Ricci, and Weyl tensors respectively. For
any dimension n, the first three heat invariants ay, a1, ag satisfy

ag = vol(M)

a1=c1/ S
M

a=cy f $+es / |Ricel|? +cq / W,
M M M

where the constants ¢, ..., c4 depend only on the dimension n, and are positive for n<6,
see [BGM].

Since the a;’s are spectral invariants for all 4, it follows that if we define ||Ricc|z, red
by the formula

[Rice|f g = [ IiGci+2 [( / sz) et ( /[ s)] +2 [ wp




SPECTRAL GEOMETRY IN DIMENSION 3 285

then ||Ricc||2,req is a spectral invariant, and we have that
lIRicel|z,rea > || Ricel2.

More generally, we may define the reduced Riemann tensor R(M),.q by

R(M)eeq = {s- (;ﬁﬂ—)f]ws)l]eﬁi‘&:em

where 1 is the vector of length 1 in the scalar curvature component. In dimensions two
and three, W=0 and we may define the reduced Ricci tensor by the same expression
with the summand for W absent. We define ||Riccl|g,red by

IRiccl g = [ 1R(M)ral
M

Note that

l|IRicc|lg,red < ||Rice|l2,red
vol(M)1/e = | fvol(M)
for g<2, as follows easily from Hélder’s inequality.
Note also that ||Ricc||2,req is 0 when M has constant curvature, so that ||Ricc||2 red
is a spectral measure of how far away M is from constant curvature.
Our main result is then:

THEOREM 0.1. For n=2 or 3 and any positive integer k, there are constants Q(n)
and K(n, k), such that if
JuS

vol( M)

Ap > Q(n)
and )
(M) > K (n, by IRiClzred

V/vol(M)
then the set of manifolds which carry metrics isospectral to M contains only finitely many
diffeomorphism types, and the set of such metrics is compact in the C™ topology.

It follows in particular that there are spectrally determined open sets about the
manifolds of constant curvature for which one has compactness of isospectral sets of
metrics:

COROLLARY 0.1. Let M be a 3-manifold of constant curvature. Then there is a
spectrally determined open set U in the space of all metrics on M, such that if geU,
then the set of metrics isospectral to g is compact in the C™ topology.

The corollary follows from the theorem by choosing an eigenvalue A, (M) sufficiently
large so that

JuS

Ak >Qvol(M)’ ()
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the right-hand side being expressible in terms of ap and a;, and setting U to be the
neighborhood on which (1) continues to hold, and for which

HR»iCC”2,red

Vvol(M)

M is in this neighborhood, because the constant curvature condition guarantees that
”RiCC“z,red =0.

In the case n=2, the statement of Theorem 0.1 is contained in the Theorem of [OPS],

Ae > K(3,k)

which is true without any restriction on Ak, ||Ricc||2,red, OF vol(M).
In order to prove Theorem 0.1, we will study the (generalized) Sobolev isoperimetric
constants

. area(H)
C5(M) = 1}1{f [min(vol(A), vol(B))]}-1/»’

for n<p< oo, where as before H runs over hypersurfaces which divide M into two parts
A and B. Note that the case p=n is the classical Sobolev isoperimetric constant, while

p=o0 is the Cheeger constant.
We will show:

THEOREM 0.2. For all n and k, and for p>n, q>%n, there are constants Q(n, q)
and K(n,k,p,q), such that, if

JuS

Ae> QT

and )
||Ricc|lg,red

(vol(M))1/a’
then CE(M) is bounded below in terms of spectral data and ||Ricc|q,red-
If, in addition, ¢<2 and

M>K

[|Riccl|2,red

/\k>K(nyk,P7‘I) VO](M) )

then C5(M) is bounded in terms of spectral data alone.

Theorem 0.2 gives qualitative expression to the idea that as a manifold “stretches
out”, its low eigenvalues must begin to accumulate below some critical value. In the case
of pointwise bounds on the curvature, this idea is well-expressed by Cheng’s Inequal-
ity [Che], where the “stretching out” is measured by the diameter of M, and the critical
value is 3(n—1)?sc+¢, where —(n—1)s is a lower bound for the Ricci curvature of M.
The proof of Cheng’s Theorem does not carry over to the case of L? bounds for any
finite p, so in our case we must proceed differently.
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The idea of the proof of Theorem 0.2 is to construct test functions built up out of
the distance function to a surface H which realizes the minimum in the ratio defining the
Sobolev constant. Using Gallot’s L? version [Ga] of the Heintze-Karcher Theorem [HK],
we will show that if the conditions of Theorem 0.2 are met, then one has sufficient control
over the growth of tubes around H to ensure that if C% were sufficiently close to 0, then
one could construct k+1 functions with disjoint support whose Rayleigh quotient was
less than Ax. This contradiction then establishes a lower bound for C%.

In Section 4 below, we will then show how to pass from Theorem 0.2 to Theorem 0.1.
The main point is to give a bootstrap argument which shows that a lower bound C% and
an upper bound for ||Ricc||, for ¢> %p, together with spectral data, gives an L* bound
for Ricc and its covariant derivatives, from which Theorem 0.2 follows readily.

Acknowledgements. The first author would like to thank the Mathematical Sciences
Research Institute and SFB 170 in Gottingen for their generous hospitality. The first
and second authors would also like to acknowledge with gratitude the support of the
National Science Foundation through the Kentucky EPSCoR program.

1. Volumes of tubes

In this section, we begin by studying the volumes of tubes about a hypersurface mini-
mizing the Sobolev constant C%(M).

It is a standard consequence of geometric measure theory that there is a hypersurface
H which realizes the minimum of C%. If we denote by Q the component of M —H of
smallest volume, making an arbitrary choice if H divides M into two equal pieces, we

then have
»_ area(H)

ST [vol(Q)2-1/P
We have the following estimate for the mean curvature s»(H) of H:

LEMMA 1.1. 3(H) is constant, with

)] < (1=1/p) o

Proof. Let f; be a family of diffeomorphisms of M, with infinitesimal generator v.
Suppose first that the two components of M —H are of unequal volume. From the
minimizing property of H, we see that

d[ area(f:(H)) ]

& |Vl )77 ||,

t=0
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But

d [ area(fy(H)) v 21/p1)
[[vol(ft(n))]l—up] [vol(£:()]

dt
x (area’(fo(H)) vol(£+(§2))*~ /% —area( f(H))(1-1/p) vol(£:(2))~V/? vol'(f(2)))

so that

=0.
=0

—a- 1/)a.rea(H) d

d
Et'(area‘(ft(H))) o Ol(f (Q)) dt

VOI(ft(Q))

But J
Ezarea(ft(H )

= / (»(H)N)-v
t=0 H

avls@) =[N,
dt =0 JH
where N is the normal vector pointing outward from (2, so we conclude that

H) = (1-1/p) g7

and

which establishes the lemma in the case where the two components are of unequal volume.
In the case where the two components are of equal volume, we consider separately
the cases where v points inwards on {2 and outwards from Q. We must then use

d [ area(f:(H))
*( Vol((50)) )20

in the first case, and
1( area(f;(H)) ) >0
dt \vol(M—f,()) /)~

in the second case to derive the inequality. O
For each positive number R, let
Qp = {z :dist(z, Q) < R}.
Qp is the tube about 2 of radius R. We will now use the following estimate of Gallot [Ga)
to estimate the growth of the volume of Qz:

THEOREM [Ga)]. Let Q be a domain in M, and H=089, the boundary of Q. Then
for ¢>1n and for R,e>0, we have

vol(QR+e) —vol(R) < (eB@ae 1) [vol(ﬂ Rr)—vol()+ ——— area(H)

B()

+(—B(q—1h)2—qffl7;¢+(z)2q‘ldx+‘/nn+‘_ﬂ (——1): dvol]. @
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Here,

r (:c)—sup(O sup —M)
- xer.n-{oy (X, X) )’

o is a constant which may be thought of as a “guess” for the curvature of the metric
on M, n; is sup(0, ), where s is the mean curvature of H (we use slightly different
conventions for mean curvature than [Ga)), and

1/2 1/2-1/2q
q—l) 1-1/2 (4*1 )
B(g)=[1==) (n-1 g 97~ .
(@) (q ( ) q_%n

The case where H=() is a point is also allowed, and here we may take n=0, see {Ga).
We will use this case in Section 4 below.
According to Lemma 1.1, we have

Cs

<(1—- —_—
n+s (1 l/p) VOI(Q)I/F”

so that the third term in square brackets in (2) is

1 [(1—1/p)o§]2q“lmaw)

< (B(g)a)1 | vol(Q)1/p

! (1-1/p)C% 2¢—~1 o
= (3(4)0)21 [ VOl(Q)l/ps] Cg VOl(Q)l 1/
_(-1/p)* i "
_W(Cs)z vol(f2)1-24/p,

Thus, we may rewrite Gallot’s formula as

vol(Rp+e) —vol(Rr) < (eB@2e —1) [vol(QR) —vol(Q)+ E(%;E C% vol(Q)1 /P
@-1/py*1

q
+ CP)2 vol(Q 1—2‘1/P+/ (r:—l) dvol].
Blgaya (O5) 7ol AP v §

®3)

Since we will be concerned that the terms involving C% do not blow up when vol(£2)
gets small, we will need

2g/p<1,

that is,
q< 3p.

As a warm-up to Section 2 below, we will show:
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LEMMA 1.2. Let p>2g>n and suppose that there is a positive constant C such that
vol(R)>C. Then C’,f is bounded below in terms of C, Ay, vol(M), and ||Ricc||,.

Proof. We will choose £>0, and define two test functions f; . and fz. as follows:

1, €N,
fre(z) =14 1-(2/e)dist(z, ), dist(z, )< je,
0, dist(z,2) > %s;
0, dist(z, Q) < 1e,
fae(z)={ (2/e)dist(z,Q)-1, Je<dist(z,Q) <,
1, dist(z,Q) 2.

Then f1, and f2 . have disjoint support, so that

But

/ 72, > vol(),

/ 2. > vol(M) —vol(f2,),
and

4
/ |grad f; o> < Ef(vol(ﬂe)—vol(ﬂ)).
We now use the inequality (3) to estimate vol(§2c)—vol(£2):
vol(£2,) —vol(Q2) < (eB(@s —1)

- 2q9—1
C? vol(Q)l—l/P+ (_uﬁ_(cg)zq vol(Q)1—2p/q+

1 umccug]
(B(g)a)* ’

x [_1__ 1
B(q)a e (n_-]_)q

where we have used the estimate

r_(z) < —[Ricc(a),

r- T
8] + Q

Let us denote by o the point where the function

together with the estimate

ef—1

r2

g(z)=
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takes its minimum on (0, c0), and let
B(g)ae =xo.

This defines ¢ in terms of «, and we have

vol(Q:)—vol(Q) < (e*° —1)

- 29-1 Ricel? 4
CgVOI(Q)I_I/’)*’%(C@%Vol(9)1_2q/p+;12;-,(ln_il)lg . )

1
x —_—
[B(Q)a
Choose « sufficiently large so that

(e —1) |[Ricelg
a2 (n-1)7

< 50 < 55 vol ().
Either (i) the estimate
C1CEvol(Q)'1 =P +Cy(C5)% vol () 2477 > L vol(92)

holds for positive constants C; and C, determined by (4), or else (ii) the opposite in-
equality holds.
In case (i), we then have the weaker inequality

C1C%(3 VOl(M))l-l/p+C'2(C§)2q (3 vol(M))1—2Q/p >iC,

using that vol(€2) < 1 vol(M), which gives a lower bound for C% in terms of vol(M) and C.
In case (ii), we then have that

vol(£2,) < & vol(1).
Thus in case (ii),
vol(M)—vol(,) >2 vol(€2) - £ vol(Q2) > £ vol(92),
using that vol()< 1 vol(M), and so

[lgrad ficl? _ 4 vol(Q)—vol(®)

[ —é vol(Q?)

and
Jlgradfocl> 5 4 vol(Qe)—vol(Q)
[f3. T4 Vol (@)
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On the other hand, by (4),

%Xﬂ%}@%«n < 4g($0)B2(q)az

2¢—1
vol(Q)~1/P+ (—1(—3%%)?(0,’;)24 vol(Q)~2a/P 4

Ch 1 iRiccf|g
[B( Yo e vol(n)'(n-ne]

so that, using vol(Q2) >C,

M1 < §-49(z0) B (g)?

1 -1/p (1_1/1’)2‘1—1 P\2q7—2q/p M (5)
[B( a §C +_B(q)a2q —(Ce)HCTHP+— > |-
Now choose a so large that
lIRiccl|g
49(330)32(9);7,,_—2(—7:1"),1—0 <i\. (6)
Either the inequality
~1/p, (1=1/p)*¢7! -

5 B? (o, 204 1/p+£____ CPY2aC—2/r| > 1y 7
o(e0)B(g)e? | s B (CY) oo

holds, implying a lower bound on C% in terms of X;, C, vol(M), and [[Ricc||,, or the
opposite inequality holds. In the latter case we use this inequality in (5) to obtain a
contradiction, since we get an upper estimate for \; which is less than \;. Hence (7)
holds, so in case (ii), C% is bounded below in terms of C, A1, vol(M), and ||Ricc|lq.
Hence in either case (i) or case (ii), we have the desired lower bound for C%. O

2. Test functions

From the last section, it is apparent that the heart of the problem in proving Theorem 0.2
is that vol(2) may go to zero.

Our idea in this section is to construct test functions whose support is on regions
built up from level sets of the distance function to €, in hopes of showing that if either
C% or vol(f) is too small, we get an estimate for some )\; which is too small.

To that end, let us fix positive numbers K and D, and define the sequences of
numbers

Ao, Ay, ..., A2ky3

and
By, By, ..., Bagss
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by:
A() = B() = VOl(Q)

and

Ait1=K|[B;+D],
Biy1=B;+Aiy1=(1+K)B;+K-D.

Solving the difference equations, it follows that

B;=(1+K)'By+[(1+K)'-1)D

and
Ai=K(1+K)""![Bo+D].
We now set
B; =g,
where R; is such that
VOl(QRi) = B-,;,

and we set
Ai=B;—B;-1=0g,~Opg,_,.

The important point here is that in Gallot’s formula, the numbers R; do not enter
in explicitly, but only through the volumes of the Qg,’s.

We now view Gallot’s inequality as a lower bound on the width of A;, that is, on
R;—R;_,, in the following sense: if we set

By =vol()

D> /M (;—;—1)1—‘,01(9),

then Gallot’s theorem tells us that

and pick

e=Ri—Ri

would satisfy
eBlaac >1+K

if both C% and vol(£2) were 0, so that an upper estimate for ¢; less than

1
E(q—)a log(1+K)
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would contain an implicit bound for one of C% or vol(£2) away from 0. By Lemma 1.2,
then, this would imply a lower bound for C%.
We now construct k+1 test functions f; as follows:

1, z € Az,
fi(z)={ 1-(2/e;)dist(z, Az;), for 0<dist(z, Az;) < %si,
0, elsewhere.

The f;’s thus have support contained in Az;_; UAz;UA;11, so distinct f; have disjoint
support.

In order for this to make sense, we must make sure that we have not run out of
manifold—that is, we must have

Boiis = (1+K)*+3By+[(14+ K)**3-1]D <vol(M). (8)

Since Bo=vol(Q2) and D> [, (r_/a*—-1)% —vol(f), this will hold when vol((?) is suffi-

ciently small provided that
r— ¥ vol(M)
=1 —_—r 9
[ (&), <aime ©

Now let us compute the Rayleigh quotients of the f;'s:

4 4
/ | grad(f;))* = —5Azic1+ Az
M €i €it1
and

/ f2 2 A
M
It follows that if €;>(1/B(q)a)log(1+ K), then

Julegrad £il® _ 4B%(g)o’
Jufl 7 llog(1+K)P?

If we then have the condition

[(A+K)+(1+K)™ 1.

4B%*(gq)o?

m[(l+K)+(l+K)"l]<,\k, (10)

together with (9), then we have a contradiction unless either C% or vol(2) are bounded
away from 0, since we have constructed k+1 test functions with disjoint support, whose
Rayleigh quotients are less than A.

We now give the proof of:
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LEMMA 2.1. Suppose that 2q>n and that there erist a positive integer k and positive
numbers o, and K satisfying

r— .\ vol(M)
/M(55~1)+<mm (11)
and B
T LR+ <M )

Then C% is bounded below in terms of K, k, vol(M), Ay, and [, (r—/o?—1)%.

Proof. We assume that there exist K >0 and k>0 with

q
L&), < 09
. 4B%(g)o? _
W[(1+K)+(1+K) 1< A (14)
‘We want to pick a number D >0 satisfying
r_ q
/M (Ei——l)+—~vol(ﬂ) <D, (15)
(14 K33 vol(Q) +[(14+ K) 3 1] D < vol(M). (16)

It will be useful to rewrite {16) as

b (Q+K)%+3_1

vol(M)— vol(Q?). (17)

1
ST+ R)®P 1

If it is not possible to pick such a positive D, then either the left-hand side of (15)
is negative, implying the lower bound

vol(2) > /M (g:z —1>q+,

or the right-hand side of (17) is less than or equal to the left-hand side of (15), which
gives us the ineguality

g
vol(§2) > vol( M) — (14 K)2k+3 / (%—1)+.

This last term is positive by assumption. So in either case, if we cannot find such a

positive D, we have a lower bound for vol(f2), and hence by Lemma 1.2 a lower bound

for C%.
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We will now assume that such a D exists and find a lower bound for C§. We
construct k+1 test functions as described above, with Rayleigh quotients bounded by

fM Igradfi|2
Ju f?

By the max-min principle, at least one of the Rayleigh quotients must be greater than
or equal to \x. For this choice of ¢ we have by (14) that

4

<

[(1+K)+(1+K)™ 1.

log(1+K)?

el SAU+HE)+(1+K) IV < s

with strict inequality in the second line. Thus, for this 3, eBldaes 1<K,
From our remarks preceding the statement of the lemma, this then gives us a lower
bound for C%, and the lemma is proved. a

3. Proof of Theorem 0.2

It remains to play with (11) and (12) in such a way as to obtain usable results. The main

L),

in various ways, in order to apply Lemma 2.1.

point is that one may estimate

First, we will use the estimate

r_SIRjCC_I
n—1
to obtain
r_ 1" r_ q< [Ricc_ |9
2 Y s \3)S ) m1)a
M\ . Ju\a M (n—1)%a
in (11).

For convenience, we will set
z=log(1+K).

The inequality (11) then becomes

||Rice_{|Z

2¢q (2k+3)x __
ol >le N e Tavel(aD)’
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while (12) becomes
arc
4B?%(g)lez+e~?]

We will be able to choose « satisfying both (11) and (12) provided that

Ae >4B%(q) [EE_;Te%] [‘3(2,‘:"_:‘)):r -lll/q (n— ]I.I)R(‘l;,c:l&ll;))uq : (18)

We thus have:
THEOREM 3.1. Suppose that there exist ¢ and k such that
h(z) [|Ricc_||
B2(g). SOME) (2k+3)z _qj1/q, _ITUCCllg
A >8B(q)- s le W Sl /s

Then C% is bounded below in terms of z, k, Ay, A, ||Ricc_|lq, and vol(M).

One application of Theorem 3.1 is when one has a bound for ||Ricc_ ||, for large g,
for instance when one has pointwise lower bounds for Ricc. In this way, one may retrieve

the results of [BPP1] for Ricci curvature bounded from below.
In order to prove Theorem 0.2, we will make use of a somewhat different estimate

for e
L),
M\Q +

LEMMA 3.1. . q
Z‘;_l Y < "R'lcc"q,red
M a2 = a2‘1 ’
+
provided that
s 1| S
“ n—1|vol(M)|

Proof. Writing
Ricc= §@RiccoW

and
_( JuS JuS
5= (vo%M))*(S "vo%M))’
we have that
—Rice(X, X) ) [0S Rice(X, X)
S et <-[s- ot -EE S

provided that
J S 2

—M—_| <(n—-1)al.

vol(M) |~ (n=be
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It follows that

1 .
| -0 < = Ricel

r. -1 Y < ”R-iccug,red
m\a? ), (n-1)1a%’

We then have

provided that

Substituting into (11) and (12) gives the conditions

e+9 1 [Ricc]? g
(n—1)2 vol(M)

and
2 Ak$2

o< 4B2(q)[e*+e~=)’

provided that

JuS

(n-1)e® > vol(M)°

Hence we have:

THEOREM 3.2. For any >0, let k be large enough so that

cosh(z)

1 S
A > ——- L -SBz(q) o~

> n—1 vol(M)

If, also,
|Ricc||qrea [e2FF3)=—1]1/9 _cosh(2)
(vol(M))1/a n—1 2

then C%(M) is bounded below in terms of k, , Ak, vol(M), and ||Ricc||g,red-

Ak > 8B? (q)

Setting

Qng)= 5 B0

and
e(k+3)2 _111/4 cosh(x)

K(n,k,p,q) =8B(q)" — )

we obtain the statement of Theorem 0.2.
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4. The bootstrap
In this section, we complete the proof of Theorem 0.1. We will show:

THEOREM 4.1. Given p<4 and q>%p, C>0, Ry, v, V, and Ag, Ay, ..., the set of
n-manifolds M satisfying

(a) C52C,

(b) IRicclly < Ro,

(c) v<vol( M)LKV,

(d) a;(M)<A; for all i,
is compact in the C* topology.

Note that for the condition C%>C >0 to be non-vacuous, we must have p>n. Thus
this theorem as stated applies only for n=2 or 3. We remark that this theorem is valid
for larger values of p, but the proof becomes much more delicate, see [Cho]. We will only
need the case 2<p<4.

Before we proceed with the proof, we will show how Theorem 4.1 allows us to
complete Theorem 0.1. To begin the discussion, we define the Sobolev constants C5(p, q)
to be the constants occurring in the Sobolev inequalities:

1 flep/ o0y SC* (@, Dl Fllg +IVSNlg]  for g<p

and
I fllo SC¥(, QI FNlg+ 1V fllg] for g>p.

In the case where p=n, these are the classical Sobolev inequalities, and the existence of
such constants is standard, see for instance [Cha].

It will be important to bound the numbers C5(p, q) from above in terms of the data
given in Theorem 4.1. To that end, we observe that a bound from above for C5(p, q) in
terms of a lower bound for C%, an upper bound for vol(M), and a bound for |[Riccljg for
q> %n proceeds in much the same way as the classical case, see [BPP1] for a discussion.
The main point to add here is that a bound on ||Ricc||q for g>3n allows us to find a
number r such that the ball B(z,r) about any point = has volume less than half the
volume of M, as one sees readily from Gallot’s Theorem applied to H={pt}, while a
lower bound for C% for p<oo gives us a lower bound for vol(B(z,r)), so that there
are a bounded number of disjoint balls B(r,z) in M. We may then use the partition
argument of [BPP1] to bound C5(p, g) for g=1, and then extend this for all g, by standard
arguments (see [BPP1]).

The conditions of Theorem 4.1 now tell us that we have uniform upper bounds for
all the numbers C5(p, q).

21-945204 Acta Mathematica 173. Imprimé le 2 décembre 1994
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Suppose now that we have the bounds

JuS

Ak > Q(ny q) VOl(M)

and ]
|Ricc||g,red

|
Ax > K(n,k,p, q)
( vol(M)*/9
of the assumption of Theorem 0.1, for g=2. Then we also have these inequalities for
some ¢ satisfying %<q<2, since the right-hand side is continuous in q.
It follows from Theorem 0.2 that we now have a bound for C% for some p satisfying

29<p<4.

We now have bounds for all the terms in Theorem 4.1, because we still have a bound
for ||Ricc||z, and 2>1p. We may then use Theorem 4.1 to conclude compactness of the
space of metrics, completing the proof of Theorem 0.1.

In the proof of Theorem 4.1, we will make frequent use of the following well-known
facts:

LEMMA 4.1 [Hélder inequalities]. (a) For 1/p+1/q=1,

/ fa<iflipligll-

(b) If a<p<b, then
. p-—a

TS Ll T

We will use without further mention simple facts about (b), such as that if a increases

while b and p remain fixed, then the exponent of || f]|, decreases.
To make the statements of what follows convenient, we will define the symbol “<”
as follows:

A=<B ifandonly if A<C[Ca+B,

where the constants C; and C; can be computed explicitly.
We then have the following useful but totally elementary inequalities:
(2) If AX[Y"F | Bi]®, then A=<sup B?.
(b) If A<A* for some a<1, then A<1.
Finally, we will make use of Gilkey’s Theorem on the leading terms in the heat expansion,

which we will rewrite in the following way:
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THEOREM 4.2 ([Gi], see [A]). For each j21,

IV/Ralf <as40+ [ P(Ru, IV Ral, .. 79 Ral),
P

where Rm denotes the Riemann curvature tensor, P ranges over all monomials in
|Rml, ..., |VI~1Rm| of weight 2(j+2), where the weight of |V*Rm| is k+2, and the weight
of a product of such terms is the sum of the weights of the terms.

In dimensions 2 and 3, we may use that W=0 to everywhere replace the Riemann
tensor Rm with the Ricci curvature tensor Rice.

We may rewrite the Sobolev inequalities in the following way: Suppose that
| £llp/a=<1. Then

"f"p/(a—l) = "Vf“p/a ifa>1

and
Iflloo XV fllp/a if @<1.

Taking a=3p, and setting n,=p/(1p—1)=2p/(p—2) if p>2 and =co if p<2, we
have that if || f||2<1 then
I flln, 2NV £ll2,

and if || flln, X1, then
Ifllo 2NV Flla, for2<p<4.

We will separate the argument into the cases p<2 and 2<p<4.
Case 1: p<2. Taking first the case p<2, and observing that ||Riccljz<1 from the
az term in the heat expansion, we have
[IRicc]lo < ||V Riccllz
and
1V Ricell> < |[Riccfl3/?,

where the second statement is from Gilkey’s Theorem.
But
IRicll3’? < [ Ricclal[Riccll24?,

S0
||Ricelloo <1

and
IV Riceljz < 1.
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Now suppose inductively that we have
|V Ricel|z < 1
and
[V*Rice|loo <1 for k <.
Then

1/2
| V7 Ricel|oo < | V7T Ricc]|2 < [aj+3+Z/P] ,
P

by Gilkey’s Theorem.

In the summation over P, we can replace any term bounded in L* by a constant, and
only |V*Ricc| for k<j+1 appear, so we conclude that only terms which are monomials
of the form |V’ Ricc|™ occur.

From the weight condition, we have that
m(j+2) <2(5+3),

or in other words that m<2.
But, by Holder interpolation, we have that

VI Ricell2 21,

so the last term in the inequality is <1.
Hence, the first and second terms are also <1, and the inductive step is completed.
We conclude that
[V7Ricc|joo <1 for all 3.

This concludes the case p<2.
Case 2: 2<p<4. In the case 2<p<4, we have ||Ricc|lz<1 from the a; term, and so

[IRicclin, < ||V Ricc]lz,

and
IV Ricella < |[Rice|3/

from Gilkey’s Theorem, as before.
If ¢>3, then we have that

IRicells X [|Riccllg < 1.
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If ¢<3, then we apply Hoélder interpolation to get
|[Ricc|ls < [|Ricel|§ |Ricellr,
where we can calculate b as follows: If q=%p, then

po 2P 375P
p—2 2p/(p—2)—3p

2
3
Hence if ¢> —; p, b< %, and we have that

|Ricelln, < ||V Rice||2 < [[Ricc|[32/%,

so all of these terms are <1.
Now we have

[Rice]|oo < |V Ricel|n, <[|V2Ricc]s
1/2
= <a4+/|Ricc|4+/|Vchc|2|Ricc|)
. 2 . . 1/2
= sup(||Riccl|}, |V Ricclja||Riccll5").

But for p<4, we have 4<n,, and so the first term is <1, and the second term can be
written

IV Ricella||Riccl|3/® < [V Rice|la < |V Ricc||3]|V Ricel|},
for some b<1, and we conclude that
IV Ricclln, < ||V Ricellf,,

and so all the above terms are <1.
Now assume inductively that, for j>1, we have |V*Riccljoo=<1 for all k<j,
IV/Ricc||n, %1, and ||V/*'Ricc|;<1. Then

|VIRice||oo < ||V Ricc||n, = |V T2Ricc|)2,
P

and

1/2
1972 Ricll % (aj04+ % [ PV Rice|, [97Ricc) )
P

We now investigate which monomials P may occur. If P involves only one or two
terms, then it is bounded, because ||V?Ricc||s and ||Vi*1Ricc|, are both <1.
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If there are m terms, then each is of weight at least j+2, so the weight condition
says that

m(j+2) < 2(j+4),

which tells us that m<3 and j<2.
For j=2, we have the term

1/2
( / |V2R.icc|3) = [V2Ricc|2/2.

But for p<6, 3<n,, so this term is <1.
For j=1, we get only the term ([ |V Ricc|?|VZRicc|)!/2. But this is

< |V Riccl||| VRice|)y?,

and ||V Ricc||4 <1 since 4<n, for p<4.
We conclude that

[V?Ricc||a, < ||[VRicc]l;’* < || VRiccll%,

for some b less than %, and so all the terms in the inequality are <1.

This completes the inductive step, and we conclude that ||V7Ricc||oo is bounded for
all j.

We now complete the proof of Theorem 4.1 as in Section 4 of [BPP1].
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