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1. Introduction 

Consider hyperbolic n-space H n represented as the Poincar6 disk model 

H " ~ D "  = (x ea"l  Ilxl} < 1 )  
with the Riemannian  metric 

ds e = - -  
4 

z/dx /  where (1 |=1 I=1 

The geodesics in H ~ are the circles orthogonal  to the "sphere at  infinity" 

~H" = {x~n"l  llxll = I }  = s  ~-I. 

An n-simplex in H n with vertices v0, ..., v ,  6 Hn U ~H ~ is the dosed  subset of Hn bounded 

by  the n + I spheres which contain all the vertices except one and which are orthogonal  to  

S "-1. k simplex is called ideal if all the vertices arc on the sphere at  infinity. I t  is easy to 

see tha t  the volume of a hyperbolic n-simplex is finite also ff some of the vertices are on the 

sphere at  infinity. A simplex is called regular if any  permuta t ion  of its vertices can be in- 

duced by  an  isometry of H n. This makes sense also for ideal simplices since any  i sometry  

of H n can be extended continuously to HnU OH n. There is, up  to isometry, only one ideal 

regular n-simplex in H ~. 

The main  result of the  present paper is the following theorem which was conjectured 

by  Thurs ton ([6], section 6.1). 

T~]~OREM 1. I n  hyperbolic n-space, /or n >~2, a simplex is o / ~ a x i m a l  volume i[ and 

only if  it is ideal and regular. 

Since any  hyperbolic n-simplex is contained in an ideal one it suffices, when proving 

Theorem 1, to consider ideal simplices. We shall use the nota t ion ~[n] f o r  an arb i t rary  ideal 

n-simplex in H n, while %[n] always denotes a regular ~[n]. 
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For n = 2 any  3[2] is regular and has area equal to z,  so in this case the theorem is 

trivially true. 

For n =3  one has Lobatcheffsky's volume formula, [1]. For the form of it given below 

see e.g. Mflnor [3]. In  any  3[3] opposite dihedral angles are equal, and if ~, fl, y are the three 

dihedral angles at  one vertex then ~ +fl + y  =~z, and the volume is given by 

v ( ~ [ 3 ] )  = h(~) +A(fl) +A(r) 
where 

= - jo~ log (2 sin u) A(~) du .  

As shown in [3] this formula implies Theorem 1 for n = 3. 

The motivation for the present s tudy is a very elegant proof, due to Gromov, of 

Mostow's rigidity theorem, [5], for oriented closed hyperbolic 3-manifolds. The theorem 

states that  for n >~3 two oriented, closed, hyperbolic n-manifolds which are homotopy 

equivalent are automatically isometric. I t  is clear that  Gromov's  proof (as presented in 

Thurston's  lecture notes [6], section 6.3) works also for n > 3  once one knows tha t  ideal 

simplices of maximal volume in H n are automatically regular. 

For the convenience of the reader we give here a very brief outline of Gromov's  

argument.  

Let  [: M - > N  be a homotopy equivalence between closed, oriented hyperbolic n-mani- 

folds with n ~> 3. To prove tha t  M and N are isometric one notes tha t  they are orbit spaces 

F ~ H  n and O ~ H  n, respectively, for discrete isometry groups F and O on hyperbolic 

n-space H n, Also, [ induces an isomorphism ], :  F-~O and it lifts to a map [: H'~---+H '~ which 

is equivariant with respect to [,:  F-~O. The first step now consists in showing tha t  [ 

"induces" a continuous map ]~: S ~ - I - > S  "-1 on the sphere at  infinity;/oo is also equivariant 

with respect to [ , .  In  the second step one utilizes Gromov's  norm to prove tha t  ]w has the 

following property: 

(1.1) Whenever v0, vl ..... v n E S  n-~ span an ideal hyperbolic simplex of maximal volume 

then so do ]~176176176 ..... p~ 

At  this point Theorem 1 enters. I t  is used simply to translate (1.1) into 

(1.2) Whenever v0, v I ..... v . e S  "-1 span a regular, ideal, hyperbolic simplex, then so do 

l~176174  . . . . .  ]~~ 

The fourth step then consists in proving that  any  continuous m a p / ~ :  S ~ - X ~ S  '~-I satisfying 

(1.2) is the "restriction" to S "-1 of a unique isometry g of H = (when n>~3). Since this r is 

still equivariant with respect t o / , :  F-~O it induces the desired isometry M ~ N .  
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The proof of Theorem 1 avoids explicit computation of the volumes V(z0[n]). Never- 

theless the methods involved can be used to give an asymptotic estimate of V(v0[n]) for 

n-~ oo. We found that  

lim V(T~ Ve 
.-~o V(aoEn]) 

where a0[n ] is a regular euclidean n-simplex with vertices on the unit sphere. This asymp- 

totic formula has been known to Milnor for some time [4], but since his proof is less direct 

than ours, we find it worthwhile to present our proof here (cf. section 4). 

2. Recol lect ions  about  hyperbol ic  n-space  

Besides the Poincar~ disk model of H n we shall use two other models, namely the pro- 

jective model and the half space model. The projective model can be obtained from the 

Poineard disk model by use of the map 

2 p I1 11<1. 
l + l l x l l  

Note that  p ( H  n) = D n and that p can be extended continuously to H n (J 8H ~ by putting 

p(x) = x  for all x E S  n-1. The induced metric on p ( H  n) is 

ds 2 = (1 - -  r2) - 1  ~ (dxi) 2 + (1 - r~) -~ ~ x~xjdxfdxl ,  

and the associated volume form is 

d V  = (1 -r2)-(~+l)/2dxl ... dx~. 

The advantage of the projective model is that  geodesics become straight lines in the euclid- 

ean geometry on D n. Hence, if z[n] is an ideal hyperbolic n-simplex with vertices v0 ..... vn 

on S n-1 then p(z[n]) is simply the euclidean n-simplex with the same vertices. Therefore, 

the volume of Tin] is given by the formula 

V(r[n]) = f~c,E,l) (1 - ?)-(,+1)/~ dr. (2.1) 

Let % ..... e~ be the standard basis in R ~. The half space model of H ~ can be obtained from 

the Poincar~ disk model by use of the map 

1 
II - e.I] (2x , . . . . .  2x._1, a -pIxll ), Jl 'JI < L 
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Note that  h(H n) is the half space {xeRnlxn>0}.  Moreover, h can be extended to the 

sphere at  infinity by  using the same formula except for x = e~ where one puts h(%)= ~ .  

']:hen h(OH ~) =R~-IU { ~ }  with R ~ - I =  {x e Rnlx~ =0}. The induced m e t r i c  on h(H ~) is 

ds ~ = z~  2 ~ (dxi) ~, 
i 

and the associated volume form is 

d V  = x~ndxl ... dx~. 

The geodesics in h(H '~) are half circles and half lines orthogonal to R n-1. 

Let  v[n] be an ideal simplex with vertices v 0 ..... v n. I t  is no loss of generality to assume 

tha t  v 0 = %, and hence h(v0) = ~ .  The isometrics of h(H ~) fixing ~ on the boundary form 

the group generated by (a) translations parallel to R ~-1, (b) rotations leaving the xn-axis 

pointwise fixed, and (c) multiplications by positive scalars. Hence, by  replacing Tin] by  an 

isometric n-simplex one can achieve tha t  h(v0)= ~ and h(v~)ESn-2___R ~-1 ( i=1,  2 ..... n). 

Let  s(T[n]) be the euclidean (n-1) -s implex  in R n-1 spanned by h(vl) . . . . .  h(vn). Then 

h ( ~ [ n ] ) - { ~ }  consists of those points of e(T[n])• [0, ~ [  which are outside the unit disk 

in R n. Thus, putting ~ =(x~ +.. .  +x~_l) �89 and dp =dx 1 ... dxn_l, one gets 

V(T[n]) = d') dP 
(2.2) 

1 f~ (1-  ~)-r 
n - -  1 (Ttn]) 

Let us finally note, tha t  T[n] is regular if and only if e(T[n]) is euclidean regular. 

3. Proof of Theorem 1 
The proof of Theorem 1 relies on an interplay between the formulas (2.1) and (2.2). 

The fact tha t  (2.1) expresses V(T[n]) as an integral over an n-dimensional euchdean simplex 

while (2.2) expresses V(T[n]) as an integral over all (n-- 1)-dimensional euclidean simplex 

makes it possible to compare volumes of ideal simplices in H ~+1 with volumes of ideal 

simpliees in H n, and finally to prove the main theorem by  induction on n. 

We star t  by  giving an estimate for the growth of V(%[n]) which will be used in the 

proof but which is also of interest in itself. Recall tha t  T0[n] denotes a regular ideal n-simplex 

in H". 

PROPOSITIO~ 2. For all n>~2 one has 

n - - 1  V ( T o [ n + l ] ) < I  

n ~ < V('~o[n]) n" 
(3.1) 
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Remark. The upper bound was noted by Thurston ([6], section 6.1). 

Proo/. Let ~r0[n ] be any  regular euclidean n-simplex with vertices on S "-1. We shall 

prove the following three formulas 

f ,  - r2) -(n+l)j2 dr = (1 V(To[n]) (3.2) 
oEn] 

fo (1 =nV('~o[n+ lJ) (3.3) r2)-n/2 dr 
o[n] 

f ,  (1 - r2) -(n 1)/2dr = n - 1  V(z0[n]) �9 (3.4) 
0Cn] n 

Clearly these three formulas imply tha t  

n - - 1  
- -  V(~o[n]) ~< nV(To[n + 1]) < V(To[n]) 

n 

which is equivalent to (3.1). 

Since all ideal, regular n-simplices in H ~ are isometric we can assume tha t  p(Zo[n]) is 

euclidean regular. Hence (2.1) implies (3.2). Next  (2.2) implies (3.3) because regulari ty of 

To[n + 1] assures regulari ty of the euclidean n-simplex e(To[n + 1]). I t  remains to prove (3.4). 

We shall apply Gauss' divergence formula 

f,,otn div V(r)dr= f~,~t,~ V. ndS (3.5) 

to the vector field 

V(r) = (1-r2)-(n-l ' /2r,  {}rll <1.  

Here, of course, n is the outward pointing normal to the boundary  ~a0[n ]. An easy compu- 

tat ion shows tha t  

div Y(r) = (1 -r2)  -(n-1)/2 + (n - 1) (1 _#)-(~+1)/2. 
For simplicity pu t  

= f~0c~J (1 - r 2) ~ dr. ~.(a) (3.6) 

Then the left hand side of (3.5) becomes 
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To compute the right hand side of (3.5) we note tha t  ~ao[n] consists of (n+  1) regular 

(n-1)-simplices ~ao[n], i=0 ,  1, ..., n. On 0iao[n ] one has 

1 - r U = q ~ - ~  2, r ~ w o [ n ]  

r . n  = 1/n 

where ~n=(1-n -~)  �89 is the radius of the circumscribed (n-2)-sphere  for ~ao[n], and 

denotes the distance from the center of ~a0[n] to the point r E~ao[n ]. Therefore the right 

hand side of (3.5) becomes 

n oa~[n] 

Since ~oa0[n] is isometric to ff~. ao[n- 1] this integral transforms into 

Thus we have proved 

= - ~ -  ~n-~ �9 (3.7) 

By (3.2) and (3.3) ~v~((n+l)/2)= V(~o[n]) and q~n_l((n-1)/2)=(n-1)V(~0[n]). Hence 

~n n 

which proves (3.4). 

LEMMA 3. Let/:  ]0, 1]-~R be continuous and concave. Let c be the center o/mass o/an 

arbitrary euclidean n-simplex a[n] with vertices on S n-i, and put c = Hell. Then 

V(q[n]) -1 f,f~/(1-r~)dr<~ V(a0[n]) -1 fo~ 

whenever both o/ these improper integrals converge. Moreover, if [ is strictly concave then 
equality holds i] and only i] a[n] is regular. 

Proo/. Let the left and right hand side of the inequality be A and B respectively. Let  

vo, v~ ..... v, be the vertices of a[n]. We have the standard n-simplex 

A[n] = {(to, tl . . . . .  tn)lt,~>0, Y t , = l }  ~_ R n§ 
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Under the homeomorphism (to, tl, ..., tn) - ~  tiv~ of A[n] with a[n] the measure V(a[n]-l)dr 
on a[n] transforms into a measure # on A[n] which is just the "Lebesgue measure" nor- 

realized to have/u(A[n]) = 1. Hence 

A = lath1/(1 -- l[ ~, t,v, II ~) d~, 

Since/z is invariant under the transformation t~-->t~(~> for any permutation :~ of 0, 1 ..... n 

we also have 

A=f: /(1-ll~t~.)vtll3)d/~, for any ze. 
[n:l i 

If E denotes the formation of mean values over all such ~, then 

The concavity of / then implies that  

A < f~ /(E(1 -I1~ t.<,,v, ll3))a/~. (3.8) 
In] i 

The mean value involved here can easily be computed from the following formulas 

i ~q=J t 

1 1 
E(t..>t.(~)) n ( n + l )  k~.t tktz~n(nt" ,~;.(1-~t~),l) , i :Cj 

y. (v,, v,) --[I Z v, II 3 -  Z II v, II 3 = (~ + 1) 3 ~3_ (~ + 1). 
t . 1  t t 

Here, of course, (., �9 ) is the euclidean inner product. One gets 

r l~ + 1 - y t~)) 

If  a[n] is regular then equality holds in (3.9). Therefore, if one applies (3.9) to a0[n] and 

to g(x)=/((1-c2)x)  one gets 

B= ~t.~l (n +___ 1 (l _c3) (l _ ~ t~)) d~. (3.10) 
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Here  we have  used t h a t  the  center of mass  for a0[n ] is 0. This finishes the  proof of A ~< B. 

I f  equal i ty  holds in L e m m a  3 then  we also have  equah ty  in (3.8). In  case of str ict  

concav i ty  this is possible only when 

II ~ t=.)v, II ~ = II Z t,v,II ~ 

for  all (to, t 1 ..... t~) ~ A[n] and all pe rmuta t ions  ~z. Let t ing  t o = t 1 =-~, t, = 0 for i > 1 it follows 

t h a t  

I lv l+v=l l  = l l v , + v ,  II for  all i:#]. 

Since I I v , - v # '  = 4 - I I v ,  +~11 ~ we see that 

I I ~ - v~ l l  = I1~,-~,11 for all i4=j, 

and t h a t  guarantees  the  euclidean regular i ty  of a[n]. 

End o/ proo/ o/ Theorem 1. Assume induct ively  t h a t  the  theorem holds for some n ~> 3, 

and  consider an a rb i t r a ry  v[n + 1]. P u t  

/(t) =t -~ /~-Knt  -(~+1)/2, O < t < l  

where Kn=nV(vo[n+l])/V@o[n]). An e lementa ry  computa t ion  shows t h a t  f is s tr ict ly 

concave on ]0, 1] if and  only if Ks >~ n(n +2)/(n + 1) (n + 3). On the  other  hand  Proposi t ion 

2 guarantees  t h a t  K ~ ( n - 1 ) / n  which exceeds n ( n § 2 4 7 2 4 7  for  n~>3. L e m m a  3 

can, therefore,  be applied to / and the  euclidean n-s implex a[n] =e@[n § 1]) (ef. section 2). 

Using also (2.2) (for n + 1) and (2.1) and  letting ~[n] =p-l(a[n]) one gets 

n V(~[n + 1]) - K n V(~[n]) • fo  /((1 - e ~) (1 - r2)) dr 

= (1 - c~)-~/~nV('fo[n + 1]) - Kn(1 - c2)-(~+t)~2V(vo[n]) 

< (1 - c~) -~J% VO:o[n + 1]) - K~ V(~o[n])) 

~ 0 .  

(3.11) 

B y  the induct ive hypothesis  V(T[n]) <~ V@0[n]) so (3.11) implies 

n V(.[n + 1]) < K~  V('~o[n]) = n V(vo[n + 1]) (3.12) 

which shows t h a t  V@0[n + 1]) is maximal .  

I f  equal i ty  holds in (3.12) then  also in (3.11). B y  L e m m a  3 this implies t h a t  e(~[n + 1]) 

is euclidean regular.  Bu t  then  T[n + 1] is hyperbol ical ly  regular.  
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4. An asymptotic formula tor V(~0[n]) 

From section 1 we have 

V(v0[2]) = ~ = 3.14159.. .  

ff V(~013]) = 3 - log (2 sin 0) dO = 1.01494 . . . .  

We mention,  wi thout  giving details, t ha t  it is possible to compute  V(%[4]) using the gene- 

ralized Gauss formula (el. Klein [1], p. 205). We found 

10~ i :~2 
V(ro[4]) = ~ -  aresin 5 - 3 = 0.26889 .... 

I t  seems to be very  difficult to  obtain simple expressions for V(~0[n]) when n >~ 5. However ,  

we have the following asymptot ic  formula for V('~o[n]) (recall t ha t  o'o[n ] is a regular euclidean 

n-simplex with vertices on Sn-1). 

T~]~oR]~M 4. 

lim V('c~ Ve. (4.1) 
n--~ V(ao[n]) 

The proof of Theorem 4 relies on an investigation of the functions 

~,(a)  = f ,  (1 - r2)-~dr, n ~ 1, 2 . . . . .  
o[n] 

When  n ~ 2 qn(a) is defined for zr ~ (n + 1)/2 (in fact  qn(zt)< oo if and only if ~ < n but  we 

shall not  need this). Moreover Fn is monotonical ly  increasing, and being an integral of a 

logarithmically convex function Fn is itself logarithmically convex, i.e. ~ l o g  qn(~) is a 

convex function. 

L ~ M A 5 .  
n + l  

q , ( - 1 ) / q , ( 0 )  = n + 2, n>~l  (4.2) 

Tn ~n n ' 

Proo/ .  Formula  (4.3) is an immediate  consequence of (3.2) and (3.4). To prove (4.2) 

consider a regular euclidean simplex g0[n] with vertices v0, vl, ..., v,, on the  unit  sphere. 
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Regular i ty  implies t ha t  the inner product  (v~, vs) equals - 1 i n  for i # ] .  Le t  dtt be the nor- 

malized "Lebesgue measure"  on A[n] = {(t 0, t~ . . . . .  t,) I t~ ~> 0, ~ t, = 1 } _  R ~+1. Arguing as in 

the proof of Lemma 3 we get 

q%( - 1)/~.(0) = V(%[n]) -1 f~oc,~ (1 - r ~) dr 

=f~ (1-  II~t,v, lr)d~, 
[ha d 

=f,  (1-Yt~'llv, ll=-Z t, ts(v,,Vs))dtt 
fn] t i4=J 

[hi t n i ~= j  / 

_n+lfan t.j (1-- ~ t~)d t t ' ,  

Since/t(A[n]) =1  and since ~zr~t~d# is independent  of i=O, I, ..., n we get 

fa (1-Et~)d f t=l - (n+l)  f~ t~dtt" 
[hi # [nl 

The map  (t o . . . .  , t.) -+ (t 1, t.) is an affine isomorphism of A[n] onto {t E R'i t~ ~> 0, ~ = ,  t~ -~ 1 } 

which t ransforms d# into the measure n! dt 1 ... dt~. 
I - [ ence~  

-n!f:(f,,~o.:~=:a<l_,dtl""dt'-')t~dt" 

f ~  (1 -- t.)n-lt2ndt,~ 1 
= n !  (n - 1)------! 

2 
(n+ 1)(n+ 2)" 

And thus 

qjn(_l)lq~n(o)=n+l ( l_ (n+l )  fAtn]t~d#) n + l  
n = n + 2 "  

Proo] o] Theorem 4. Le t  n >~2. Using the  logarithmic convexi ty  of q~n one gets 

( F-'>,2< 1)12)  + 1)12)F-1>,  
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Since qn(0) = V(a0[n]) and  qn((n - 1)/2) = ((n - 1)/n)V(vo[n]) (by (3.4)) we get, by  apply ing  

L e m m a  5, t h a t  
lrb "~- 2~ (n-1)12 ~vb__ 1 V(To[n])  ~ ( ~Vb ~(n-1)/2 

Since 
(n'+'2x~ (n-1)m ( n ~(n-1)/2 

n-~lim \n~-l]  =lim~_~oo \n----l] = Ve 

this proves  Theorem 4. 

Remark. Using the  fact  t h a t  the  edgelength of %[n] is (2(1 + l /n)) lj2 the  vo lume of 

g0[n] can easily be computed  to  be 

V ( ~ 0 [ n ] )  = n--Y-. 

which is a sympto t i ca l ly  equal to ~nn/n! ]/-e for n-~ oo. Hence,  b y  Theorem 4 

V(To[n]) ,., ~ e. 
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