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1. Introduction

Consider hyperbolic n-space H" represented as the Poincaré disk model

H'~D" = {x ER”] ”x“ <1}
with the Riemannian metric
4
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The geodesics in H™ are the circles orthogonal to the “sphere at infinity”
oH" = {x€R"|||x]| =1} =8""".

An n-stmplex in H" with vertices vy, ..., v, €H"U 0H" is the closed subset of H" bounded
by the n+1 spheres which contain all the vertices except one and which are orthogonal to
S™~1. A simplex is called ideal if all the vertices are on the sphere at infinity. It is easy to
see that the volume of a hyperbolic n-simplex is finite also if some of the vertices are on the
sphere at infinity. A simplex is called regular if any permutation of its vertices can be in-
duced by an isometry of H™ This makes sense also for ideal simplices since any isometry
of H" can be extended continuously to H*U oH". There is, up to isometry, only one ideal
regular n-simplex in H".

The main result of the present paper is the following theorem which was conjectured
by Thurston ([6], section 6.1).

THEOREM 1. In hyperbolic n-space, for n=2, a simplex is of maximal volume if and
only if it is ideal and regular.

Since any hyperbolic n-simplex is contained in an ideal one it suffices, when proving
Theorem 1, to consider ideal simplices. We shall use the notation z[»] for an arbitrary ideal

n-simplex in A", while 7,[n] always denotes a regular z[n].
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For n=2 any 7[2] is regular and has area equal to 7, so in this case the theorem is
trivially true.

For =3 one has Lobatcheffsky’s volume formula, [1). For the form of it given below
see e.g. Milnor [3]. In any 7[3] opposite dihedral angles are equal, and if «, 8, ¥ are the three
dihedral angles at one vertex then o +f-+y =, and the volume is given by

V(z[3]) = A(e) + A(B) + Aly)

where
Afo)= — f: log (2 sin u)du.
Ag shown in [3] this formula implies Theorem 1 for #=3.

The motivation for the present study is a very elegant proof, due to Gromov, of
Mostow’s rigidity theorem, [5], for oriented closed hyperbolic 3-manifolds. The theorem
states that for »>>3 two oriented, closed, hyperbolic n-manifolds which are homotopy
equivalent are automatically isometric. It is clear that Gromov’s proof (as presented in
Thurston’s lecture notes [6], section 6.3) works also for »>3 once one knows that ideal
simplices of maximal volume in H™ are automatically regular.

For the convenience of the reader we give here a very brief outline of Gromov’s
argument,

Let f: M— N be a homotopy equivalence between closed, oriented hyperbolic n-mani-
folds with » 3. To prove that M and N are isometric one notes that they are orbit spaces
I'NH" and O\ H", respectively, for discrete isometry groups I' and ® on hyperbolic
n-space H". Also, f induces an isomorphism f,: I'~0 and it lifts to a map f: H"~> H" which
is equivariant with respect to f,: I'>©. The first step now consists in showing that f
“induces’ a continuous map f°: 8" '—> 8" on the sphere at infinity; f© is also equivariant
with respect to f,. In the second step one utilizes Gromov’s norm to prove that f* has the

following property:

(1.1 Whenever vy, vy, ..., v, €8" " span an ideal hyperbolic simplex of maximal volume
then so do f*(vy), f2(v,), ..., f2(V,).

At this point Theorem 1 enters. It is used simply to translate (1.1) into

(1.2) Whenever v, ¥y, ..., v,€8"" span a regular, ideal, hyperbolic simplex, then so do
12(Vo)s 12(Ve), ooes J(Va).

The fourth step then consists in proving that any continuous map f©: 8”*— 8" satisfying
(1.2) is the “restriction” to 8"! of a unique isometry g of H (when n>3). Since this g is
still equivariant with respect to f,: I'~>© it induces the desired isometry M~ N.
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The proof of Theorem 1 avoids explicit computation of the volumes V(ty[%]). Never-
theless the methods involved can be used to give an asymptotic estimate of V(z,[»]) for
n—oc, We found that

Vwlnl) _ /-

lim o)~

where ¢g[n] is a regular euclidean n-simplex with vertices on the unit sphere. This asymp-
totic formula has been known to Milnor for some time [4], but since his proof is less direct

than ours, we find it worthwhile to present our proof here (cf. section 4).

2. Recollections about hyperbolic n-space

Besides the Poincaré disk model of H” we shall use two other models, namely the pro-
jective model and the half space model. The projective model can be obtained from the

Poincaré disk model by use of the map

p:x sz, IIx]j<1.

L2
1+|x]

Note that p(H")=D" and that p can be extended continuously to H"U@éH" by putting
p(x)=x for all x€8" 1. The induced metric on p(H") is

ds®=(1—r%)71 > (do)* + (1 — 1)) 7% > a,,dw, da;,
i i3

1

and the associated volume form is
av =1 -2~ Dizdy, . da,.

The advantage of the projective model is that geodesics become straight lines in the euclid-
ean geometry on D" Hence, if T[n] is an ideal hyperbolic n-simplex with vertices vy, ..., v,
on 8™ then p(t[n]) is simply the euclidean n-simplex with the same vertices. Therefore,

the volume of 7[n] is given by the formula

V(z[n]) = J (1 —¢2)=®D2 gy 2.1)

2(zlnD

Let e,, ..., ¢, be the standard basis in R". The half space model of H" can be obtained from
the Poincaré disk model by use of the map

1
h:x H“—x:—e—nz (2x1, 2.%'2, vees 23711—1; 1 —”X”z), ”X”< 1.
n .
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Note that A(H") is the half space {x€R"|x,>0}. Moreover, & can be extended to the
sphere at infinity by using the same formula except for x =e, where one puts k(e,)=cc.
Then h(@H") =R""1U {>} with R" ' = {x ER"|x, =0}. The induced metric on h(H") is

ds® = z;2 2 (da;)?,

and the associated volume form is

adV =x;"dey ... dx,.

The geodesics in h(H") are half circles and half lines orthogonal to R™1,

Let T[] be an ideal simplex with vertices vy, ..., V,.. It is no loss of generality to assume
that v,=e,, and hence k(v,) =oc. The isometries of A(H") fixing oo on the boundary form
the group generated by (a) translations parallel to R, (b) rotations leaving the x,-axis
pointwise fixed, and (c¢) multiplications by positive scalars. Hence, by replacing 7[n] by an
isometric n-simplex one can achieve that h(vy)=oo and A(v,)ES"?cR** (=1, 2, ..., n).
Let g(z[n]) be the euclidean (n—1)-simplex in R*' spanned by A(V,), ..., A(v,). Then
h(zr[n]) —{oo} consists of those points of e(r{n]) x [0, o[ which are outside the unit disk
in R". Thus, putting ¢ =(«} +... +a5_4)* and dp=dw, ... dx,_,, one gets

V(t[n]) = f (J x™" dx) dp
e(rn]) \J Q—g* 2

1
— 1-— 2)—(n—1)/2d .
n—1 Jeam ( ¢ e

2.2)

Let us finally note, that z[n] is regular if and only if e(z[n]) is euclidean regular.

3. Proof of Theorem 1

The proof of Theorem 1 relies on an interplay between the formulas (2.1) and (2.2).
The fact that (2.1) expresses V(z{n]) as an integral over an n-dimensional euclidean simplex
while {2.2) expresses V(t[n]) as an integral over an (n —1)-dimensional euclidean simplex
makes it possible to compare volumes of ideal simplices in H""' with volumes of ideal
simplices in H”, and finally to prove the main theorem by induction on «.

We start by giving an estimate for the growth of V{(z,[»]) which will be used in the
proof but which is also of interest in itself. Recall that t,{n] denotes a regular ideal n-simplex
in H”.

Prorosition 2. For all n>2 one has

n—1 - V(te[n+1])
nt V(to[n])

L (3.1)
n



SIMPLICES OF MAXIMAL VOLUME IN HYPERBOLIC 7-SPACE 5

Remark. The upper bound was noted by Thurston ([6], section 6.1).

Proof. Let ay[n] be any regular euclidean n-simplex with vertices on S"*. We shall

prove the following three formulas

f (1 -3~ D2 dp = V(r,[n]) (3.2)
oofn}
J (1 =72 dr=nV(r,[n+1]) (8.3)
ooln]
f (11— V2dr= n-l V(zy[n]). (3.4)
opln] "

Clearly these three formulas imply that
n—1
—— V(mlnl) < nV(7g[n +1]) < V(zo[n])

which is equivalent to (3.1).

Since all ideal, regular n-simplices in H™ are isometric we can assume that p(ty[n]) is
euclidean regular. Hence (2.1) implies (3.2). Next (2.2) implies (3.3) because regularity of
To[n + 1] assures regularity of the euclidean n-simplex e(ty[= + 1]). It remains to prove (3.4).

We shall apply Gauss’ divergence formula

f div V(r) drzf V:-ndS (3.5)
aeln} 06,(n]
to the vector field

V(r) = (L—r2)=-0r2p, || <1.

Here, of course, n is the outward pointing normal to the boundary do,[#]. An easy compu-
tation shows that
div V(r) = (1 —r2)=("=D/2 4 (g — 1) (1 —2)~(rs1072,

For simplicity put

Qo) =J (1 —r3)"*dr. (3.6)
aolnl

Then the left hand side of (3.5) becomes

oo("5 )+ =19 (5.
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To compute the right hand side of (3.5) we note that fo,in] consists of (n+1) regular
(n—1)-simplices 8;04[n], =0, 1, ..., n. On 9,04[n] one has

1-72=ph—p% TEB04n]

rn=1/n

where p, =(1-—n-2)t is the radius of the circumscribed (n—2)-sphere for 9,0,[n], and o
denotes the distance from the center of &;0,{n] to the point r€3;04[n]. Therefore the right
hand side of (3.5) becomes

PEL gy emvngs,
n dooulnl

Since 0,0,(n] is isometric to g,- o [n —1] this integral transforms into

+1 +1 +1 n—1
% (0% — g2r®)~ - DiZgn-1 gy G, (1 — o)~ D2 gy % P ( ) i
n aoln—1) n goln—11 7 2

Thus we have proved
n—1 n+1y n+1 n—1

By (3.2) and (3.3) @,((n+1)/2)=V(7,[n]) and @, ;((n —1)/2)=(n—1) V(7,[n]). Hence

n—1\ n-—1
which proves (3.4).

Lemma 3. Let f: 10, 11> R be continuous and concave. Let ¢ be the center of mass of an

arbitrary euclidean n-simplex o[n) with vertices on 8", and put c=|e||. Then

V(en])™ f f1 =) dr < V(og[n])™* f (1 —¢*) (1 —+%))dr
alnl

ooln]

whenever both of these improper integrals converge. Moreover, if | is strictly concave then
equality holds if and only if o[n] is regular.

Proof. Let the left and right hand side of the inequality be 4 and B respectively. Let

Vg5 V15 --s V, be the vertices of o[n]. We have the standard n-simplex

A[’n] = {(-‘50, t1s ooes tn)ih?O, Z ti=1} < R
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Under the homeomorphism (¢, ¢y, ..., t,) = ¢, v, of Aln] with g[»] the measure V(o[n]-1)dr
on ofn] transforms into a measure g on A[n] which is just the “Lebesgue measure’” nor-

malized to have u{A[n])=1. Hence
A=f fA-lZ v du
Alnl 1

Since y is invariant under the transformation ¢;-,, for any permutation z ¢£ 0,1, ..., n

we also have

= J‘M ]f(l - ”Ztﬂ(i)v1“2) du, for any 7.
If Z denotes the formation of mean values over all such 7, then
A=E (f - t,,(,)vin)d,u) .
A i
The concavity of f then implies that
A< [ a3 tuowl) (38)
Aln) i

The mean value involved here can easily be computed from the following formulas
2 ey Vil = iZj Eaciy by (¥, V) + ; t;
i +

th=

1 1 .
nln+1) & n(n+1)(l"‘* ), %]

E(tnaytasy) =

igj (Vi VJ)*“‘“{ZVi“z‘Z ”Vi”2= (n+1)°—(n+1).

Here, of course, (-, -) is the euclidean inner product. One gets

n+1

Angmf(—h 1~c3)(1 - zt,) (3.9)

n

If o[n] is regular then equality holds in (3.9). Therefore, if one applies (3.9) to gy[n] and
to g(x) =f{{1 —c?)x) one gets

sz f(y—b—ﬂ(l*c (1—2t2) (3.10)
Afn)
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Here we have used that the center of mass for g [n] is 0. This finishes the proof of 4 <B.
If equality holds in Lemma 3 then we also have equality in (3.8). In case of strict

concavity this is possible only when
I3t vill2 =112 tevil|

for all (t, #, ..., £,) €A[n] and all permutations z. Letting £, =¢, =1, t,=0 for ¢>1 it follows

that
[V 4+ Vsl = {[vi+v,|| forall i=ky.

Since |[v; —v,{|2=4—||v,+V,]|2 we see that
Hve— Vol = [lvi—v,|| for all i<,
and that guarantees the euclidean regularity of o[n].

End of proof of Theorem 1. Assume inductively that the theorem holds for some 7 >3,

and consider an arbitrary t[n+1]. Put
ft) = =2 — K, =02 g<e<1

where K,=nV(z,[n+1])/V(z,[n]). An elementary computation shows that f is strictly
concave on 10, 1] if and only if K, >#r(n+2)/(r +1)(%+3). On the other hand Proposition
2 guarantees that A, > (n—1)/n which exceeds n(n+2)/(r+1)(n+3) for n>3. Lemma 3
can, therefore, be applied to f and the euclidean n-simplex o[n]=e(z[n+1]) (cf. section 2).
Using also (2.2) (for n+1) and (2.1) and letting 7{n]=p"%(c[n]) one gets

wV(zn+1]) ~ K, V{z[n]) < f (A=) (1~ r®))dr

aeln]

= (L) T (1) = Ko=) )

11)
<A =)V (wln+ 11) — K, V(go[n])
=0.
By the inductive hypothesis V(z[n]) < V(r,[»]) s0 (3;11) implies
nV(tln+1]) < K, V(ry(n]) =nV{ryln+1]) (3.12)

which shows that V(ty[n+1]) ¢s maximal.
If eguality holds in (3.12) then also in (3.11). By Lemma 3 this implies that s(v[n +1])
is euclidean regular. But then 7[n +1] is hyperbolically regular.
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4. An asymptotic formula for V(ty[n])

From section 1 we have

V(To[2]) =7 = 3.14159 ...

718
V([3)) =3 f ~log (2 sin 0) d0 = 1.01494 ... .
0

We mention, without giving details, that it is possible to compute V(7,[4]) using the gene-
ralized Gauss formula (cf. Klein [1], p. 205). We found

nZ

1
V(z,[4]) = ~g—ﬂ arcsin % —3 = 0.26889 ....
It seems to be very difficult to obtain simple expressions for V(z,[n]) when » >5. However,
we have the following asymptotic formula for V(ty[n]) (recall that o,[n] is a regular euclidean

n-simplex with vertices on 8"°%).

THEOREM 4.

. V(zn]) -
11’1_3.10 m =Ve. (4.1)

The proof of Theorem 4 relies on an investigation of the functions
tpn(ac)=f (1—r¥)~dr, n=1,2,....
ooln]

When 722 @,(«) is defined for a<(n+1)/2 (in fact @,(x)< oo if and only if « <n but we
shall not need this). Moreover ¢, is monotonically increasing, and being an integral of a
logarithmically convex function ¢, is itself logarithmically convex, i.e. x—log @,(«) is a

convex function.

LeEMMA 5.
_ntl
T n+2

n—1 ntl)y n-—1
Pn (_2_) /(Pn (T) =T nz2. (4.3)

Proof. Formula (4.3) is an immediate consequence of (3.2) and (3.4). To prove (4.2)

@ul — 1)/ @a(0) n>1 (4.2)

consider a regular euclidean simplex ¢y[n] with vertices vy, vy, ..., V,, on the unit sphere.
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Regularity implies that the inner product (v,, v;) equals —1/xn for ¢4=. Let du be the nor-
malized ‘‘Lebesgue measure’” on A{n]={(ty, t;, ..., t,)|6,>0, > t,=1}=R™*!. Arguing as in
the proof of Lemma 3 we get

Pul —1)/@a(0) = V(Go[n])’lf (1—r%)dr

ooln]

[ a-izaninde
Afn] i

i

[ a=Saivip- 3t v du
o A7} i ikd

1
=j (1—>jt%+ -2 t,-t,) du
Alnl i Wixj
n+1

= 1- > t)du.
" Am( lZi) “

Since w(A[n])=1 and since {,p,t?du is independent of i =0, 1, ..., n we get

f (l—zt?)dy=1—(n+1)f tadu.
Aln) i

Aln]

The map (fg, «.y £,) > (ty, ..., £,,) is an affine isomorphism of A[n] onto {t ER™|¢,>0, > ¢, <1}

which transforms dy into the measure n!dt, ... dt,.

Hence,
f tﬁd,u——-n!f L tidt, ... dt,
Amm) 50, T 4<l
1
==n!f (f 1 dtl...dtn_l)t,%dtn
[ 20, ¥ 41-4,
=1
v 1,2
=7L'J\0 m(l—tn) tndt.n
- 2%
(n+1)(n+2)
And thus

t2d ) =
s ) T2
Proof of Theorem 4. Let n>2. Using the logarithmic convexity of ¢, one gets

( @a(0) )<n~1>/2 _ ((pn(("‘ 1)/2)) < (%((n + 1)/2))(1:—1)/2'
p(=D/ "L @0 Pul(n=1)2)

ol Dla0) =" (1= 1) | L
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Since ¢,(0) = V{(o,[n]) and @,((n—1)/2)=((n—1)/n)V(z[r]) (by (3.4)) we get, by applying
Lemma 5, that

(n+2)‘"‘”’2<n-1 V(ro[n])<( n )”“”’2‘

n+1 n V(gfn])  \n—1

Since

9\ (n-1)/2 (n~1y/2 B
lim (@j‘—) =lim (—@—) =Ve

nesco \N 1 n->00

this proves Theorem 4.

Remark. Using the fact that the edgelength of a,[n] is (2(1+1/n))"? the volume of
gy[n] can easily be computed to be

Viogan="2 (142)"

! n

which is asymptotically equal to Vn/n!Ve for - o0 . Hence, by Theorem 4

V(zen]) ~ n—? e.
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