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O. In troduct ion  

The aim of this paper is to prove an n-dimensional generalization of a theorem of 

R. Nevanlinna. This theorem says tha t  a meromorphic function of bounded characteristic 

in the unit disc {z: ]z] <1} has (finite) nontangential limits in almost every point of the 

circumference {z: I zl =1}, A function ] is of bounded characteristic if 

(1) 

and 

f~ log + ]/(re~)[dq~ = 0(1) (0~< r <  1) 

(2) 5(1-1b~l)<oo 
t 

where the bs's are the poles of ] (counted with multiplicity), log + stands for the max imum 

of log and zero. 

As a matter of fact, Nevanlinna showed that functions of bounded characteristic can 

be represented as the quotient of two bounded holomorphic functions: /=g/h. Now, Fatou's 

theorem tells us that g and h have nontangential limits a.c. on the circumference; hence 

the theorem of INevanlinna. To be quite rigorous, it should be added that, by a theorem of 

F. and M. I~iesz, the boundary values of h are a.e. different from zero. 

In several variables Fatou's theorem generalizes straightforwardly, not only to func- 

tions in the unit ball, but to functions defined in domains with smooth boundary. The 

point is tha t  this theorem holds for bounded harmonic functions too, and there is much 

less difference between harmonic functions in (] and in (In (n > 1), then between analytic 

functions in (~ and in C =. 
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2 L. LEMPERT 

The situation turns out to be more complicated if meromorphic functions of bounded 

characteristic are considered. These are defined by the conditions 

(3) 

and 

(4) 

where: 

f~ log+[/(z)ld~(z)=O(1) (O<e<%) 

fp ~ ( z ,  ~ D ) d l ~ ( z )  < ~o  , 

1. D is a bounded domain in C ~ with C 2 boundary, / is a meromorphic function 

defined on it; 

2. ~(z, ~D) denotes the distance of a point zEC ~ to ~D; 

3. D~={zeD: ~(z, ~D)>e}. For small e>0 ,  ~De is C1; 

4. d ~  is the (2n-1)-dimensional surface element; 

5. P is the set of poles o f / ;  

6. d/z is the (2n-2)-dimensional surface element with the modification that  it counts 

poles of higher order with multiplicity. 

The set of these functions will be denoted by B =B(D).  

Fortunately, in general, such functions can not be represented as the quotient of two 

bounded holomorphic functions, see W. Rudin [5]. Thus, if one wants to investigate the 

boundary behaviour of a function ] E B, the one-variable method will be of no use. In  

[7] E. M. Stein found one way to settle the problem for the class 2Vc B, i.e. for holomorphie 

functions subject to the condition (3). He used (pluri-)subharmonic majorants and maximal 

functions to prove the existence of nontangential limits in a.e. point of ~D. I t  seems, 

however, that  the case of meromorphic functions can not be settled with his ideas. 

(Although, by a result of H. Skoda (see [6]) on certain pseudoconvex domains every 

/E B is the quotient of two functions from N. This solves the problem in special cases.) 

As stated above, bounded holomorphic functions in several variables present nothing 

new compared with the one-variable case. This is true only as long as nontangential 

convergence is concerned. A. Kor~nyi has discovered the phenomenon that  in more than 

one dimension boundary points can be approached even parabolieally from certain direc- 

tions, and the bounded holomorphic function still has limits under such an approach in 

a.e. boundary point (see Kors [2]). This sort of approach was termed "admissible" in 

[2]. For the exact definition see Chapter 6. The original result (for balls and bounded 

functions) has been extended to more general domains and larger classes of functions by 
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several authors, finally by E. M. Stein in [7] to domains with C ~ boundary and functions 

of class N. 

The main result of this paper is the proof of the admissible convergence in a.e. 

boundary point for functions of class B. En route we shall prove the Blaschke condition 

for the zeros of such a function. The Blaschke condition has been proved for the class N 

on special domains by several authors, see e . g . P . S .  Chee [1] and P. Malliavin [3]. 

However, for the class B it was not to be found in the literature. Therefore, we shall give 

the proof here. We would like to express our thanks to the referee for showing us the short 

proof to be given in Chapter 2. 

1. Outline of the proof of the main theorem 

Before going into the thick of the proof, it may be useful to give some motivations. 

This will be done in the one variable case. Thus, let now D be the unit disc {z: Iz] <1}, 

and consider a holomorphic function on it. We may even suppose that  this function 

/ *  0 is bounded. The claim is that  

(5) to almost no point o/ the circum/erence ~D can the zeros o/ /accumulate nontangentially. 

That is, the set of those ~6~D where the zeros of [ can accumulate nontangentially, is of 

zero measure on D. 

This follows easily from the theorems of Fatou and of F. and M. Riesz. Indeed, 

suppose that  the zeros accumulate nontangentially to a $ E ~D. There are two possibilities. 

Either / has no nontangential limit in ~, or the nontangential limit is zero. Both can 

happen only if ~ is in a certain set of zero measure, and we are done. 

There is an other way to deduce (5), this time from the Blaschke condition 

(1-1a l) < 
/c 

where al, a~ .. . .  denote the zeros of /. To see this, choose a fixed angle 0 6 (0, ~r/2) and 

consider the set Eo of those ~6aD where the zeros can accumulate "0-angularly" or in a 

"0-Stolz-angle". This means that  $ is an accumulation point of zeros ak satisfying the 

inequality l arg (1 -ak/~)[ <0. For every k, construct now an arc Ak c ~D with middlepoint 

ak]Jak] and of length J Ak ] = 3(1 -- ] akl ) tg 0. I t  is easy to see that  every ~ 6 E0 is contained 

in infinitely many Ak's. Since 

IA ] =  3(1-idol) tg 0 < oo, 
1 1 
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an application of the Borel-Cantelli lemma shows tha t  Ea is of zero measure. But  this, in 

turn, implies (5). 

Thus we observe tha t  both statements 

(6) / has nontangential limits in a.e. point o /aD 

and 

(v) the ~ero8 a~ o/1 ~tisly ~ (1-Ja~l)<oo 

(separately) imply (5). Would it be too daring to guess tha t  the implication ( 5 ) ~  (6) 

also holds? Because then it would be possible to deduce Fatou 's  theorem (or Nevanlinna's 

theorem) from the Blaschke condition (7) according to the pat tern  (7) ~ (5) ~ (6). 

Of course, such a guess would be too daring. For even the total  lack of zeros does not 

give us any control whatsoever on the boundary behaviour of a function. 

But  suppose we substitute (5) by the more general s tatement 

(5') /or every wEC, to almost no point o] aD can the roots o/ the equation /(z)=w 

accumulate nontangentiaUy. 

Does (5') imply (6)? 

This is a bet ter  question. In  fact, it is so good tha t  we were unable to answer it. 

Instead, we could prove the weaker (5 ' )+ (8) ~ (6) implication, where (8) stands for the 

statement 

(8) / has radial limit8 in a.e. point of ~D. 

Weak it may  be, but this implication is the key  in our approach. Here is our scheme (now 

for a smooth domain D ~ C  n and a meromorphic function of bounded characteristic / 

defined on it): 

Z. First we prove the ]31aschke condition, i.e. (4), with P replaced by the set 

Nw={Z: /(z)=w}, weC fixed. 

I I .  Then we shall show tha t  the Blaschke condition implies (5'). 

I I I .  We shall proceed by  showing tha t  in a.e. point of aD there is a direction along 

which / tends to a limit. 

IV. Finally, it will be deduced from II .  and I I I .  tha t  / has nontangential limits a.e. 

on aD. 

Once this accomplished, the whole story will have to be repeated with "nontangential"  

everywhere replaced by "admissible". 
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Finally, some words about the notations and terminology. We shah need too many  

letters to use them consistently. Nevertheless, here are some notations which will be 

preserved throughout the paper, z and ~ (and Z,  2 etc.) will be points of (P ( n > l ) ,  

mostly a boundary point of a fixed domain D ~  C n. The complex coordinates of z will be 

zl, ..., Zn; z r162  z' will denote the point (z2 ..... zn). Thus z=(z  1, z'). Similar con- 

ventions hold for ~, Z etc. [z[ = ( ~ [ z j [ ~ ) i ;  if A and B are subsets of (P, then 

(9) d(A, B) = i n f  {l -zl:  eA, Z e B } .  

(~(z, A)=(3({z}, A). grad means real gradient, (, } means real, <<, >} means complex scalar 

product. Thus <(z, w>> = ~ zjz~j; (z,  w> = Re ((z,  w>>. Parallel and orthogonal will be used 

in the real sense, unless otherwise stated. # stands for the (2n-2)-dimensional  Hausdorff 

measure. By "zero set of a meromorphic function" we shall understand something more 

than  the mere collection of those points where the function vanishes. Namely we shall 

count multiple zeros with corresponding multiplicity. This regards integration on and 

area of zero sets. For instance 

The same convention holds for the set of poles. Closure of a set will be denoted by  a bar. 

Finally, K1, K 2 . . . .  will denote positive "constants".  In  every case it will be explained 

to what extent  they are constant. The notation 0(1) will also be used. 

2. The Blaschke condition 

Let D c  C ~ be a bounded domain with C z boundary ~D. Denote by A(z) the distance 

~(z, ~D) of z to ~D; let 

D e = { z e D :  A(z)>s}, 

Denote by v(z) the exterior unit normal vector to ~DA(~) in z. For zE1) near enough 

to ~D this makes sense, since then ~DA(z) will be of class C 1, Moreover, if s0 is small, the 

mapping 

~D • [0, e0]~ ($, e)~+$-ev(~) e /3 \D~.  

is a Cl-diffeomorphism. For the sake of simplicity we shall suppose tha t  So = 1. Then 

~D~ is C 1 for 0<s~<l .  Let  d ~  denote the surface element on ~Ds, dg2o=d~. 
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THEOREM 1. With the above notation8 and assumptions concerning D, suppose that 

/~0 is a meromorphie /unction o/ bounded characteristic on D, i.e. 

(log+I/(z)[d~,(z)=O(1) (0<e~< 1) (10) 
de D8 

and 

( l l )  fl, A(z) alia(z) < ~ , 

where P is the set o/poles o/ /. Let N={zED: /(z) =0}. Then 

Proo/. The proof is based on Green's formula for subharmonic functions. Let  ~0 and 

al be the nonnegative measures associated to the zero set and pole set of / in D, so tha t  

we have in the sense of distribution theory in D 

A l o g  I/I = ~ 0 - ~ .  

Let  V s be a subharmonie function in D such tha t  AV~=aj for j = 0 ,  1, and let H be the 

harmonic function in D defined by  

H = l o g  ]/] - Vo+ V~. 

Let be respectively Gs and P~ the Green function and the Poisson kernel associated to the 

open set D e and a fixed point z ~ E D, which is neither pole nor zero of f. 

Then Green's formula gives 

(13) foD P~ V,d~= fD O~d~, + V,(zO), 

fOD~ P~ Hd~ = H(z~ 

Therefore we obtain 

(14) f~D P~ logl/Idf2~= fD G~dzo-- fD G~da1+ logl/(z~ I. 

But G8 increases to Go, and for all e > 0  we have 

(15) f a~d(~l<f~Gaql--Kl<OO 
$ 
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(using the definition of class B). On the other hand 

(16) fo~ P, log[/ldf~o <<. f~, P, log+ l/ld~, <<. K~ f oo log+ l/ld~, 

because 0D is of class C z. Then the estimates (14), (15) and (16) imply 

lim c~, 

which is equivalent to (12). 

3. Boundary behaviour of the zero set 

In  this chapter we shah use the notations and assumptions of Theorem 1. 

De/inition. ~ESD is a nontangential (or angular) accumulation point of a set S c  D 

if there is a cone Ca(t) with vertex ~, axis -v($),  and aperture a<zt  so that  $ is an 

accumulation point of S f~ C~(~). 

L~MMA 1. The nontangential accumulation points o/ N = { z C D :  ](z)=0} constitute a 

set o/ zero measure on ~D. 

COROLLARY. The same holds i / N is replaced by Nw = { z E D : / ( z ) = w ) (wEC), or by P.  

Proof o/the corollary. If ](z) is o f  bounded characteristic, so i s / ( z ) - w  and 1/](z) (this 

latter in view of Theorem 1 and its proof). 

For the proof of the lemma we shall need the following result, first proved by P. 

Lelong and H. Rutishauser (see L. I. Ronkin [5] p. 370): 

PROFOSlTIO~r 1. I / a / u n c t i o n  is meromorphic in a ball o/radius r in C n and vanishes 

at the centre of the ball, then the (2n-2)-dimensional area o/ its zero set is at least 

o)2n_~r 2n-~ (where ok is the volume o/ the unit ball in the Euclidean k-space). In  other words, 

the area o~ the zero set is min imal /or  linear/unctions. 

Proo/ o / L emma  1. The measure of a set X on 0D ((2n-1)-dimensional Hausdorff 

measure) will be denoted by ~2(X). For  $eOD, C~($) will mean the cone described in the 

above definition. 

I t  will clearly be sufficient to prove tha t  given an a E (0, g), the set 
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is of zero measure. Fix zr from now on in this proof all constants Kv, K s ... .  m a y  depend 

beside D and / also on ~. 

Consider two points t e ~ D  and zED. I f  zEC~(~) is near enough to ~, then $ will be 

contained in the ball B(z) of radius K7A(z ) around z. Introduce the sets 

Bk = (J {B(z): zEN, 2-k+x>A(z)~>2-k}. 

By the preceding remark, points of E will be contained in Bk for infinitely m a n y  

k E N. We are going to show tha t  

(17) ~ ~(B~ n ~D) < ~ ;  
k ~ l  

once this established, the Borel-Cantelli lemma will guarantee tha t  E is indeed of measure 

zero. 

Choose a k >~ 2. Around points of the set 

N ~ = { z e N ;  2 -k+~ >A(z) >t2 -k} 

construct balls B'(z) of radius 2 -k-1 and select a maximal disjoint system of these balls: 

B'(zl), B'(z 2) .. . . .  I f  these selected balls are replaced by  twice as big concentric balls, 

the resulting system will cover the whole N k. Therefore if they are replaced by  K s times 

as big concentric balls, these enlarged balls will cover B~ (provided tha t  K s is suffi- 

ciently large). Hence 

(18) 

Obviously 

~(B~N ~D) <~ K 9 ~ g2(B'(z j) f3 OD). 
J 

~2(B'(z j) A ~D) <~ Kio2 -k(2~-1). 

On the other hand, by Proposition 1 above 

#(N N B'(zJ)) >~ Kl12 -~(~'~-~). 

Therefore 

K10 2 -'~ ~< K12 f ~(B'(z j) N eD) < ~ ,u(N N B'(zJ)) �9 A(z) dtt(z). 
All  

Since the B'(zJ):s are disjoint, (18) yields 
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s 4 3K 0 K12 fN A(z) d/~(z); 
k = 2  

and this, as we have already seen, proves the  lemma. 

4. L imi t  from one  direct ion 

Our plan is to exhibit directions in a.e. ~E~D along which our ] has a limit. This 

will be done in the  mos t  natura l  way. We shall restrict f to  parallel complex lines and then  

we shall show t h a t  almost  all of these restrictions are of bounded characteristic. Once 

this done, the  corresponding one variable theorem will prove our claim. 

Again we shall use the  notat ions and assumptions of Theorem 1. 

L ]~M~A 2. Let Z E C ~. Then almost every complex line passing through Z is not tangent 

to ~D. 

Proof. The whole set-up will be considered in CP~ ra ther  than  in C n. Then it can be 

assumed tha t  Z is the ideal point  (1:0:  ... :0)ECP~, so t h a t  the  non-ideal complex lines 

th rough  Z are characterized by  a system of equations 

(19) z j ~ c j  (~=2 ..... n). 

(z 1 .. . . .  z~ are the coordinate functions in Cnc CP~.) 

Define a C2-function h: C~N ~D-~C n-1 by  

h ( ~ l  . . . . .  $~)  = ( ~  . . . . .  $~) .  

I f  the  line (19) is tangent  to ~D in ~EC~N~D, then ~ is a critical point  of h. Therefore 

(c2 ..... c~) is a critical value of h, so tha t  by  Sard 's  lemma the points (c2, ..., c~) for which 

(19) is tangent  to ~D consti tute a set of zero measure. Since almost  every line is non-ideal, 

the claim follows. 

LEMmA 3. In  a.e. ~E~D there is a direction along which / tends to a finite limit. 

Proof. I t  will be sufficient to  show tha t  every Z E~D has a neighbourhood U such 

tha t  the s ta tement  of the lemma holds for a.e. ~E U ;1 ~D. Thus, pick out  a point  Z EgD. 

For  the sake of simplicity let it be the origin. By  the  preceding lemma, there is a complex 

line through 0 which is not  t angent  to ~D. We shall assume tha t  this line is the  z 1 axis. 
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There is a positive ~ such that  the complex lines 

{z: ~j = cj ( i = 2  . . . . .  ~)} 

are not tangent to ~D if ]c ] ~<~. We are going to show that  for almost every small z' (] z' I <~) 

the function 

g(t) =/(t,  z') 

is of bounded characteristic on Dz,={t: (t, z')eD}cC. 
Observe that  the boundary F~, of Dr, is C 2 and (~(t, F~,)/A(t, z') is bounded. By virtue 

of Fubini's theorem, the Blaschke-condition for the poles of / then implies for a.e. z' 

(20) 5 ~(t, rz,) < ~ .  
g(t)=0 

We still have to exhibit curves along which log + ]g(t)] is small in the mean. To 

this end, let 

Fz j, = {tEC: (t, z')e0nx/j}. 

I f  [z'[ ~<s and ] is big enough, F~, is a C2-curve, which tends to F~, (in the Ca-topology) as 
j---)- ~ ,  

Notice that  

(21) f~,.<efr~log+[/(t,z'),[dt]dz~dy~...dxndy~< foD, log+]/(z)]d~,j(z)<K1 a. 

Choose a large positive number M. From (21) it follows that  for a fixed ] the set 

S'= { z': lz'] ~ ~' Jrz,~ ' l~ ]/(t' z')] ]dtl > M} 

is of ((2n-2)-dimensional) measure less than Kla/M. Therefore the measure of the set 

<~ e, _ ,  log + z')l ~< only finitely many ]eN U n Sj 
JFz, 

is likewise at most K~a/M. Since M was arbitrary, we conclude that  for a.e. z', Iz'l <.e, 
there is a sequence ] l< . . .< ]e< . . .  such that  

(22) J'(~kl~ + ]g(t)] ]dt l-O(1) (k~  ~ ) .  
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Now, although D z, is not necessarily simply connected, it can be shown that  if (20) 

and (22) hold, g(t) is the quotient of two bounded holomorphie functions. Therefore it has 

nontangential limits in a.e. point of Fz,, whence Lemma 3 follows. 

5. Nontangential limits 

We shall use the notations of Chapter 3. 

Definition. A function g, defined on D, has nontangential limit in a boundary point 

~E~D if for every ~ ( 0 < x < ~ )  g(z) tends to a finite limit as z tends to ~ in C~($)fl D. 

THEORXM 2. Under the assumptions o/Theorem 1, ] has nontangential limits in almost 
every boundary point o] D. 

Proo]. Let {wl, w 2 .... } be a countable dense subset of C. Consider a point ~EaD 

which is not an angular accumulation point of any hr~p and for which there is a direction 

v such that  the finite limit 

lim [(~ + ~v) 
e-~+0 

exists. By the corollary to Lemma 1 and by Lemma 3, almost every point of ~D is such. 

We are going to show that  ] has a nontangential limit in ~. 

Suppose this were not true. Then there would be an ~ < ~  and a sequence 

such that  

{zJ:i=l,2 .... }cO~(C)nD, zJ-~r (1~oo) 

lira I(zJ)=B4=A = lim 1(~+ ev). 
J.--~ ~ e--~+0 

Here B is allowed to be co. For the sake of simplicity we shall assume ~ =0  and 

v=(1,  0 ..... 0). Choose a fl with ~<fl<er,  and let 

G = {= eel(0):  I=1 <2}.  

If  fl was near enough to ~r, then (1, 0, ..., 0) EG. For sufficiently large ]" the functions 

[j(Z) =[(ZlzJ[) are defined on G and do not assume the distinct values wl, w2, w3 there. 

Thus they constitute a normal family, and we can select a subsequence ]Jk which is 

uniformly convergent on compact subsets of G. The limit function g is not identically o% 

since g(1, 0, 0 .... , 0 ) = A .  On the other hand g . A ,  because the set {zJ/lzq: j = l ,  2 .... } is 

relatively compact in G and 

/j(z~/lzq) ~ B :4::A. 
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Therefore the meromorphic function g is not constant, whence its range is open. 

In  particular, this range contains a w~. By a theorem of Hurwitz, the functions /Jk also 

assume the value w~ in G if ?'k is large enough. Hence / assumes w~ in C~(0) however near 

to the vertex, a contradiction. This proves our theorem. 

6. Admissible approach 

I f  ~ is a positive number and q is a nondegenerate real quadratic form on It2~-2 ~ C ~-~, 

we define a domain 

B~,q = {zeta:  a] I m  zl] < ]Re z~], q(z')<Re z~} 

and call it a standard parabolic cone. I f  q is positive definite, B~.q certainly has a para- 

bolic character; for general q it looks rather hyperbolic--nevertheless, the same name 

will be used in all cases. Domains congruent to standard parabolic cones will be called 

parabolic cones. Here "congruent" means C-linear (not just ]t-linear) congruency. 

Returning to the notations of Theorem 1, choose a ~E~D. Fix a motion of C n which 

transforms the origin to ~ and the ray {(t, 0 ..... 0): t~>0} to the ray {~-tv(~): t>~0}. The 

image of B~.q under this transformation will be denoted by  Ea.q(~). Of course E~.q(~) 

depends on the transformation tha t  brought 0 to $. Therefore we shall select for every 

one such transformation and these transformations will be kept fixed throughout the 

rest of this paper. Then it will be unambiguous to speak about E~.q(~). A parabolic 

cone E~, q(~) will be called inscribed, if ~ has a neighbourhood U such tha t  U n Ea. q(~) c D; 

it will be called thoroughly inscribed if there is an ~' <~,  q' <q  such tha t  E~. q,~ E~,q is 

inscribed: Here q'<q means tha t  q-q'  is positive definite. 

De/:nit:on. / has an admissible limit in ~EaD if for every thoroughly inscribed para- 

bolic c o n e  E a , q ( ~ )  , ](z) tends to a finite limit as z goes to ~ in Ea.q(~). 

1)el:nit:on. ~C~D is an admissible accumulation point of a set S c D  if there is a 

thoroughly inscribed E~, q(~) such tha t  ~ is an accumulation point of the set S N Ea, q($). 

Thus, in the definition of admissible limit (resp. accumulation) the thoroughly in- 

scribed parabolic cones play the same role as the cones played in the definition of angular 

limit (resp. accumulation). 

In  [7] E. M. Stein gave a similar definition of admissible convergence. However, 

instead of thoroughly inscribed parabolic cones Ea.q(~) he uses domains of type 

Ap(~') = (zED: l ( ( z -~ ' ,  v(~'))) ] < (1 +fl)~(z), lz-~ ' [  2 < fl6~(z)), 
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where 8 > 0 and 8c(z) is the minimum of the distances of z to ~D and of z to the tangent 

plane in ~. I.e. o,(z) = m i n  {A(z), {{z-~,  v($)>l}. 

I f  D is convex, the two definitions are equivalent, for every Ap(~) is contained in 

some thoroughly inscribed Ea.q(~) and vice versa (at least near to ~). However, for a 

general D only the first half of the above s ta tement  is true. Thus our admissible domains 

are larger than  the domains AZ(~); therefore if in a point the admissible limit exist 

according to our definition, then it exists also in the sense of [7]. 

We shall briefly sketch why every AZ(~) is contained in some E~.q(~). To this end we 

shall suppose tha t  ~=0 ,  ~ ( ~ ) = ( - 1 ,  0 ..... 0) and E~.q(O)=B~.q. Let 

{z: Re zl = Q0 (Im zl, z')} 

be the osculating quadrie of aD at O, qo(z') =Q0(0, z'). H Q <Q0 is another quadratic form, 

then 

C o = {z: Re zl> Q (Im z 1, z')} 

contains D (at least a par t  of D near to 0); furthermore, it is easy to see tha t  Ba.q is 

thoroughly inscribed if and only if q >%. 

Suppose now tha t  zEAp(O), i.e. 

{~l<(I+8)~o(=), {~{~<8~o(~), 

where 60(z)=min {A(z), IRe z~l }. From this it follows at  once tha t  

(2~) I Im ~11/( 1 +8)  < I Re ~11. 

On the other hand 

A(z) <~ 5(z, ~CQ),., Re zl-- Q (Im zl, z'), 

as zED goes to 0. Hence for zEAB(0 ) near to the origin we have 

{z] ~ < 8A(z) < 2 8  (Re zl-- Q (Im z1, z')), 

whence Q (Ira zi, z') + [~'1~/(~8) < R e  zl. In view of Q (Ira ~1, z') =Q(0, ~') +o(1) I Re ~ l  as 
z~O, it follows tha t  

(1 + o(1))(Q(0, z') + I~' I ~/(28)) < Re z~. 

Choosing Q<Qo very near to Qo, the left-hand side here will be > q(z')>%(z'); thus 

q(z') < Re z r This latter inequality together with {23) implies Ap(0)c  Ba. q with ~ = (1 +8) -1. 

Q.E.D. 
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At  the same time, as we have already remarked, Ba, q is not necessarily contained in 

some Ap(0). For suppose tha t  with the previous notations q0 is indefinite. Choose a q > %  

also indefinite, and let w' be such tha t  q(w')<0. Then 

B~,~n {z: Re z~ = 0}~ (0, w'). 

However, for any fl > 0 

AB(0) N {z: Re z~ = 0} = {0}. 

This proves tha t  no Ap(0) can contain B~.q (not even the par t  of Ba. q near to 0). 

In  establishing the existence of an admissible limit a.e. on aD, the bulk of the work 

will be the investigation of the boundary behaviour of the zero set. We shall prove that  

the admissible accumulation points of the zeros constitute a set of zero measure on ~D. 

For the proof we shall need an eccentric version of Proposition 1. In  this version we shall 

consider a function meromorphic on a domain which is small in one direction and alongated 

in other directions; and the function will be known to vanish at  some point and not to 

vanish at  certain other points. In  the next chapter we shall estimate the area of the zero 

set of such a function (see Lemma 6). 

7. Quantitative properties ot analytic sets 

Our starting point will be the following result of I .  L. Ronkin (see [4], p. 371). 

Let  g be analytic in the unit  ball of C ~. Suppose g(0)~=0, and introduce the counting 

functions 

N(r)-- ( 2 ~ - - -  2)~2.-~ j ~:o(~=o. H<~ \LI z i~-n- ~ l  r~_ ~ d#(z), 

1 r 
- -  ~ log~]  

Nl(r) ~ 27~ (t:~(t,o.....o)=o, Itl<r} 

for 0~ r~< l .  (In the notation of [4], No(r ) and N~(r, ~) with u=(1 ,  0 ..... 0).) According to 

[4], for every (~ > 1 
(~2n 

(24) NI(I/~) < KI,  (52 _ 1)n_ 1 l~7(1), 

with a constant K~a > 0  depending only on n. 

A sequence of easy consequences follows. 

LEMMA 4. I / g  is holomorphic in the unit ball o] @n and vanishes here in a point z ~ then 

(25) #{z: g(z)=0} > Kzs (1 -  [z~ )~-', 

with K15 > 0  depending only on n. 
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Proo/. We m a y  suppose t ha t  z ~ is the  zero nearest  to  the origin and also tha t  

z ~ = (] z~ 0 . . . . .  0). If  [z ~ ] ~< �89 then  (25) follows immediate ly  from Proposi t ion 1. Other- 

wise (24) can be applied with (~=2/(1 + [z~ 

(l--lz~ r = o} (]zl2-2'~-l)d~(z)=glT"N(1) 

/> K~8(1 - ] zO I)n-iN~ ( ~  l) 

Kls (1 - I  z~ log 1 +, Iz~ I >.K15( 1 - - i Z 0 i ) n "  
>~-~ 21z0 I 

Remark. If  g is holomorphic in the ball B = {z r I z - z X ] <  R} instead of the uni t  

ball, and vanishes in z ~ r B then  it  follows tha t  

#{z: g(z) = 0} > K15Rn-Xa(zO, aB) ~-1. 

LXM•A 5. Let h be holomorphic in the domain 

G={zeCn: IzJl<l ( ]=1  .. . . .  n), R e Z l > 0 } .  

Suppose that h(a, 0, ..., 0 ) = 0  with some a, 0 < a < � 8 9  but h has no zero in {z: Re zl>~104a}. 

Then 

#{z: h(z) = 0} > K19, 

where K19 > 0 depends only on n. 

Proo/. If  a is not  ve ry  small, say a >~ 10 -9, then  the claim follows from Proposit ion 1. 

Suppose therefore t ha t  a < 10 -9, and consider the  ball 

1 < 1 

I t  intersects the  hyperplane {z: Re  z 1 = 10ha} in a ball of radius 

V10aa (1~5  a -  104a )<1 ;  

in particular,  this intersection is contained in G. More generally, {z fi B: Re  z 1 -~< 104a} = G. 

Choose now two domains B1, B~ such t ha t  B 1 U B 2 = B and 

{z: z6B,  Re zl~<104a} = B I =  G, 

{z: z6B,  Re z 1 ~> 104a} c B2, 
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and h does not vanish on B~ N B~. I t  is possible to find B~, B 2 with these properties, because 

h is nowhere zero on the set {zEB: Rezl=lO4a}.  

B = B 1 tJ B~ is a convex domain, so tha t  the multiplicative Cousin problem with 

the data h21(z)=h(z ) (zEB1N B~) can be solved. There are nonvanishing hfs  on Bj such 

tha t  h~l =h2/h 1 on B 1 fl B~. Then 

{hl(z ). h(z) zEB 1 

g(z)= h2(z) zeB~ 

is holomorphic on B and its zero set is contained in tha t  of h. By  the remark following 

the previous lemma, 

/~ {z: h(z) = 0} ~>/~ {z: g(z) = 0} > -K15(10~a)-(n-1)an-1 = K1.. 

The final result of this chapter is 

L w ~ A  6. Let wEC n, ~, a unit vector in C n, O<b,c, 2b<~c; 

A = {zecn: I ( (z -w,  <b, Iz-wi  <c}. 

Let g be a meromorphic /unction on A vanishing at w. Denote by Ng that connected component 

o/ the zero set o/ g which contains w. I /  

(26) ~gN (zEA:  ( z - w ,  v) = ~b} = 0 

then 
/~(lV,) > 1;2o c ~ - ~  

with Keo > 0 depending only on n. 

Proo/. I t  will be convenient to assume tha t  ~=(1 ,0 ,  ...,0) and w=lO-2b. Then 

( ( z - w ,  r ~  =z  1 -10-2b.  Since A is convex, the multiplicative Cousin problem is solvable 

on it. From this we infer two facts. First, g can be represented as the quotient of two 

locally coprime holomorphic functions; therefore it will be enough to prove the lemma 

for a holomorphic g. Similarly, it can also be assumed tha t  the zero set of g is connected, 

and thus coincides with Ng. Then for any zero z of g we have Re z l<b(~+10-2) .  

Consider the domain 

T = {zeCn: Izl <c/2, 0 < I m  z l < R e  zl}. 

We claim tha t  there is a ~ holomorphic on T such tha t  {z e T: ~(z)=0} =Ng n T. 

Indeed, 
{z e T: Re z 1 - 1 0  -3 b 4 w b} c A, 
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and g does not vanish on the set 

( ze  T: Re z ~ -  lO-2b= ~b }; 

so that  (again solving a Cousin-II problem on T) it is possible to construct a ~ with the 

required properties. 

Next  we define a biholomorphic mapping z - ~  from T given by  

~1 = lOz~/c2, ~k = lOnzk/c (/c=2 .... , n). 

Let h($)=~(z). Then h will be defined on a superset of 

a={$ec~: I~jl<l (?'=1 ..... n), R e ~ l > 0  ). 

Putt ing a=lO-ab2/c ~, h(a, O, ..., 0)=0,  but  h(~) does not vanish if Re $1~>104a. Fur- 

thermore 

[d~l l  = 201z, I ldz l l /e  ~ < lOnldz~llc 
I<t 'kl = S O n l d z k l / c  . . . . .  . ) .  

Applying Lemma 5 we obtain the desired result: 

/t(Ng) >~/t({zE T: ~(z)=0}) ~> \l--O--n] #({~EG: h(~) =0}) > K2o c~-~. 

8. Admissible behaviour oI the zero set 

In this chapter we shall return to our domain D and the function ] on it. We shall 

adopt the notations and assumptions of Theorem 1 and Chapter 6. 

LEMMA 7. The set o] admissible accumulation points o] 1V constitute a set o] zero 

measure on ~D. 

In the course of the proof domains of type 

A(z; b, c) = (weC~: I ( ( w - z ,  v(z)) ) l<  b, ] w - z l  < c} 

will play an important role (z E D ~ D 1 ,  0 < b, 0 < c). They will be called admissible halls. 

First we shall record two properties of these "balls". 

L~MMA 8. I /  b, c > 0  are chosen so that b/c 2 is big enough then the/ollowing holds: 

(a) I /  A(z)~A(z') and 

(27) A(z; bA(z), cA(z)~)A A(z'; bA(z'), cA(z') t) ~= O 

2 -  792901 Acta mathematica 144. Imprim618 13 Juin 1980 
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the~ 
A(z; 4bA(z), 4cA(z)~) ~ A(z'; bA(z'), cA(z')~). 

(b) I] A(z)~A(z') and (27) holds then 

A(z; 100hA(z), 100cA(z)~) ~ A(z'; 100bA(z'), 100cA(z')~). 

Proo]. We shall prove only (b), since (a) can be treated in a similar maimer. Thus let 

w eA(z; bA(z), cA(z)~) n A(z'; bA(z'), cA(z')~), 

and suppose that  

ZEA(z'; lOObA(z'), 100cA(z')~). 

Then 

(28) [ z - Z [  < [ z - w [  + [w-z ' [  + [ z ' - Z ]  <c~(z)++cA(z')~ + 100~(z')+ <100cA(z) ~. 

Furthermore [ z-- z' [ < 2cA(z)�89 hence 

]~(z)-~(z') I < Ko.I~A(z)~, 

where K~I depends only on D. Therefore 

]((z-z, ~(z))) ] < ] ( (Z-w,  ~(z))} ] + ] ( (w-z ,  ~(~))) ] 
< [ ( ( Z - w ,  ~(z')}) [ + [ ( ( Z - w ,  v(z') -v(z)}} [ + bA(z) 

~< ] ( ( Z - z ' ,  v(z')}} [ + [((w-z ' ,  v(z')}) [ + lOOK2~c~A(z) +bA(z) 

~< {(101 �9 ] + 1) b + 100K~c 2} A(z) < 100bA(z) 

if b/c ~ is big enough. This latter and (28) prove (b) of the lemma. 

Proo/ o] Lemma 7. Choose positive numbers ~h, ~2, ~a, ~ ,  all of them less than 1, 

and for every ~ E~D pick out thoroughly inscribed parabolic cones Ea.q(~) (here a and q 

may depend on ~) such that  

1. a and the moduli of the eigenvalues of q lie between ~1 and 1/~; 

2. Denoting by U(~, ~a) the ~s neighbourhood of ~, we should have U(~, ~a)n 

E~..q.~ D with s  and q'(z')=q(z')-2~14[z'[ ~. 
These conditions mean that  the parabolic cones Ea.q(~) are "uniformly" thoroughly 

inscribed. The lemma would follow if we could prove that  for any choice of ~/x ..... ~h, the 

set 

0 = {~EaD: ~ ~E~.~ n fir} 



B O U N D A R Y  B E H A V I O U R  OF MEROMORPHIC F U N C T I O N S  OF SEVERAX. V A R I A B L E S  19 

is of zero measure on ~D. Fix therefore ~1 ..... ~14, and the parabohc cones E~,q($) with 

them. From now or~ in this proof all constants K2~ .... may depend beside D and ~ on 

~ ..... ~ as well. We shall show that  0 is indeed of measure zero. 

Step 1. We claim that  there are constants K~2 and K23 with the following property: 

If zED is near to ~E~D and zEE:.q(~), then 

EA(z; K~2A(z), K~aA(z)+ ). 

To prove this, we may suppose that  ~ =0  and v($)= ( - 1 ,  0, ..., 0), furthermore, that  

E~.q(~)=B~.q. Let  Q(ImZl, Z' ) be such a quadratic form that  Q(O,z')=q(z')-Tla[z'l 2, 
and putting 

CQ = {z: Re zl> Q (Im zl, z')}, 

we have CQ N U(O, ~3) ~ D. Then for z as in the claim, 

A(z)/> b(z, ~CQ) ~ Re zx -Q (Ira z~, z') > (1 +o(1)) Re z~-Q(O, z') >w~lr 12/2, 

as z-+0. Thus [z'12<2A(z)/~4, if 

IRe zl[ <K~hA(z). 

Consequently 

z is near to O. Hence 

(29) = < K : 6 Z x ( z ) + ,  

IQ(O, z')] <K2aA(z), and 

whence Iv(z)-v(~)] < K27A(z) �89 and 

(30) I<<~-z,v(z)>>l <~ I<<z,v(z)-v(~)>}l + f<(z, v(~)>>l <K26K~TA(z)+K~hA(Z). 

(29) and (30) prove our claim. 

Choose therefore K~,  K2a accordingly. I t  can even be assumed that  K22/K~a is so 

large that  Lemma 8 holds with b=106K22, c=106K23 (and therefore with any b=~K~, 
c=~K2a if 0<$<10e) .  Let  

A(z) = A(z; K~2A(z ), K2aA(z)~), 

and 

$A(z)  = A(z;  SK22A(z), SK23A(z)�89 
where ~ > 0. 

By what has just been proved, 

(31) |  N 0 {A(z) (I ~D: zeN~Da}. 
8>0 
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We shall show tha t  the right hand side in (31) is of zero measure on ~D. To this end, 

let dk be a sequence of positive numbers, d 1 < 1, dk+ 1 < 10-1d~. Define 

Vk = 13 {A(z): zEN, dk+l <A(z ) <dk}, 

w~ = 0 {A(z): ze.~, A(z) =d~}. 

Then the right hand side of (31) is 

l imsup  VkN~D= N 13 V k ~ D .  
k-->oo m - 1  k > m  

(32) 

I f  we could prove tha t  

(33) ~ ~(Vk N ~D) < oo 
k = l  

then, by  the Borel-Cantelli lemma it would follow tha t  (32) is of zero measure. Next  we 

shall prove tha t  

(34) 

and then tha t  

(35) 

if dk-> 0 very rapidly. 

~(V~ N ~D)< K2s ~ ~2(Wk N ~D) ~ K29, 
k = l  k = l  

oo 

~(w~ n ~D) < ~ ,  
k = l  

Step 2. (Proof of (34).) Fix a large /c and let 

= {A(z): z e~ ,  d~+l <A(z) <d~}. 

We shall select a maximal disjoint subsystem T={A(zl), A(z2), ...} of S in the 

following way. Let  A(zl)ES be such tha t  A(z 1) is maximal,  A(ze)ES be such the 

A(z 1) N A(z2)=O and again A(z 2) is as large as it can be, and so on. I f  z 1, z 2 ..... z j-1 are 

already chosen, let A(z ~) CS be disjoint from all A(z ~) (i <]), and A(z j) be maximal among 

the possible candidates. In  this way a finite sequence {#: j EJ} is obtained. By maxi- 

mality, for any A(z) C S there is a ] E J such Chat A(z) N A(z')~=(~. Therefore by Lemma 10. 

so tha t  

Vk~ U{4A(zJ): j E J ) ,  

(36) ~( Vk N ~D) <~ Kao ~ ~(A(z j) ~ ~D). 
j e J  
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To estimate the right hand side, we shall connect it via Lemma 6 with ~ A(z)d#(z), 

the integration being taken over {z E N: dk+~ <A(z)~<dk}. 

Let 

A'(zJ) = A(z j, L(z~)/2, ~A(z~) ~) 

where 0 < 7 < 1  is chosen so tha t  (~(A'(zJ), OD)>A(zJ)/4. Thus 7 depends only on D. 

Clearly A'(zJ)cA(z~). I f  condition (26) of Lemma 6 is met  with A=A'(zJ), ~,=-v(zJ), 
w=z ~, g=/, then by  this lemma 

(37) fA A(z)d/~(z)>~ �88 j) N N)>K81A(z~)~>K32~(A(z ~) N~D). 
'(ZI)NN 

(The fact tha t  z j may  be an indeterminate point instead of being a zero does not affect 

the validity of the lemma.) 

This is exactly the type of estimate we need. However, there is no reason to believe 

tha t  the said condition is met  for all ?'EJ. Therefore we shall select certain admissible 

balls A'(z j) for which we shall know tha t  Lemma 6 can be applied. 

Take first a z j such tha t  A(zJ)~<]dk. I t  is easy to see tha t  Lemma 6 can be applied 

in A'(z j) (always with A=A'(zJ), ~=-v(zJ), w=z j, g=/) unless there is a zE.NNA'(z j) 
such tha t  A(z)=~A(zJ). Indeed, if there is no such a z, the connected component of 

N N A'(z j) containing z j will be a subset of {zEA'(zJ): A(z)<~A(zt)}, thus will be disjoint 

from {z: ( z - z  j, -v(zJ)}=�89 (at least for dk small enough). Suppose therefore tha t  

there is such a z and see what  this assumption implies. 

Of course A(z)~dk, so tha t  A(z)ES; however A(z) and A(z j) are not disjoint, thus 

A(z) was left out from the maximal  disjoint system T. This could happen only because 

there was an hEJ such tha t  A(zh)>~A(z)=~A(z j) and 

By Lemma 8 

in particular 

Again by Lemma 8 

(38) 

A(z h) N A(z) ~ 0 .  

4A(z h) ~ A(z)~z, 

4A(z h) N 4A(z j) ~ O. 

400A(z h) D 400A(zS). 

Take now a z j with dk>A(zJ)>~dk. Again, condition (26) of Lemma 6 is met  in 

A'(z ~) unless there is a zENN A'(z j) such tha t  A(z) =dk. Suppose that ,  on the contrary, 
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there is such a z. Then A (z ~)/1 A (z) ~=~, thus A (z) ~ T. Therefore there is an i E J such tha t  

A(z ~) =d~ and A(z ~) (I A ( z )~O.  Hence 

4A (z~) ~ A (z) 9 z E A (z~), 

thus 

400/1(z ~) N 400A(#) :~ O. 

By Lemma 8 

(39) 1600A(z ~) ~ 400A(zJ). 

Motivated by all these, call an index j E J  irrelevant if A(z ~) <d~ and either there is 

an h EJ  such that  A(z j) <A(z h) and (38) holds or there is an iE J  such that  A(z ~) =dk and 

(39) holds. Otherwise j will be called relevant; their set will be denoted Jo. 

Relevant indices are important to us by two reasons. First, by what has just been 

demonstrated, for a relevant index ~ such that  A(z j) <dk, Lemma 6 can be applied to 

yield (37). Secondly, for any j E J  there is a relevant i E J  o such that  (39) holds. 

Therefore 

Vk N ~D c a {~D fl 1600A(z~): i eJo} 

= U{~DN 1600A(zJ): ?'EJ 0, A(z J) <dz}U U{aDN 1600A(z~): i E J  o, A(z ~) =dk}. 

The sets A(z ~) being disjoint, the second union is of measure less than K~s~(W k N ~D). 

1%r the members of the first union (37) holds; considering that  the sets A'(#)  are disjoint 

as well, we obtain 

( U {~D N 1600_4 (z~): i e Jo, A (z ~) < dk}) 

fA A(z)dt~(z)<K~ I:~ A(z)a#(z). ~<Ka8 ~ A(zJ)~ ~< K34 ~ '(~')nN n.D \D 
JeJo, A(zi)<dk l~Jo J~ d~,+~ d~_~ 

All added up 

~(V~ n ~D) ~< K~ ~(Wk n ~D) + K~ f~ ~ . A(z) d#(z), 

which, on account of the Blaschke condition, implies (34). 

Step 3. Let now the sequence d~ be defined by 

log d~+ 1 = 7d~ ~ log d~. 

(~ was the constant figuring in the definition of A'(z).) 



B O U N D A R Y  B E H A V I O U R  OF MEROI~ORPHIC F U N C T I O N S  OF s E V E R A L  V A R I A B L E S  23 

Fix again k, and for d~<A(z)~<d~_l define 

$-~(z)=A(z;K22~A(z), K23~A(z)1/21~ ) , 

,~' (z) = A (z; A(z)/2, ? A(z)~/2 l~ ) . 

I t  is easy to check that  an analoguous result to Lemma 8 holds: if 0<~<106 and 

~A(z) ~ ~X(z') # ~ ,  then 

(a) 4 ~ ( z )  ~ ~zI(z') if h(z)/> A(z'); 
(b) 100~.4(z)~ 100~(z')  if A(z) ~>~A(z'). 

Putting ~(z)= l~(z), we have 

W~ -- U {~(z): ze_~, A(z) = d~}. 
Let furthermore 

x~ = U {A(z): ze_~, A(z)= d~_~}. 

These formulae may seem to imply Xk+ 1 = Wk but this is not the case. I t  should 

namely be remembered that  the definition of A(z) depends on k. 

I t  is easy to see that  ~ ~(Xk f3 8D) < ~ .  Indeed, denoting by B(z) the ball of radius 

(K2~ + K~/?)A(z) around z, 

Xk~  Yk = {B(z): zeR,  A(z) =dk-1}, 

and in the proof of Lemma 1 it has already been shown that  ~ ~(Y~ f3 ~D) < oo. Thus in 

order to prove (35) it will be sufficient to prove 

oo co 

(40) E ~(Wk fl 8D) <. Ks5 E ~(X~ N 8D) + Kst. 
k=2 k=2 

Step 4. (Proof of (40).) (Along the same lines as the proof of (34).) For fixed k let 

= {~(z)! z e N ,  d~-<<A(z) <dk-1}. 

Select a maximal disjoint subfamily T={~(zs): ]eJ} of ~ as in Step 2, i.e. if ~(z *) is 

already chosen for i<], let A(z ~) be disjoint from all ~(z ~) (i<j) ,  and if there are several 

candidates, choose one with maximal A(zJ). 

Again, call an index ~" e J irrelevant if there is an h E J such that  A(z ~) > A(z j) and 

400~(z h) ~ 400zI(zJ) 
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or there is an iEJ  such tha t  A(z~)=dk_l and 

(41) 1600X(z ') = 400d(d). 

The relevant indices constitute the set J0; for every ]EJ there is a relevant i such tha t  

(41) holds. Furthermore,  if iEJ  o and A(z ~) <de, then Lemma 6 can be applied with the 

cast A =-4'(z~), v=-v(z~), w=z ~, g=/  to yield 

? A(d) . . . . .  , / l o g  A(z~)] ~-1 

Thus 

gEJ~ 

<~ Kas~(X k NOD) + Ka9 ~ f2(A(z') NeD) 
~Jo,  A(zi)<dk 1 

<~ Kssf2(X~ N OD) + K ~  ~, J. f T~ ,(z,) n N A(z)dy(z) 

Kas~(Xk n ~D) + Kao ~ A(z) dg(z). 
.JNN Ddk + l \Ddk  _ 2 

In  view of the Blaschke condition this implies (40). The proof of Lemma 7 is complete. 

9. Admissible limit 

Again, we shall use the notations of Theorem 1 :and Chapter 6. 

T ~ E o ~ ] ~  3. Under the assumptions oJ Theorem 1, [ has a (]inite) admissible limit in 

almost every point o/OD. 

Proo[. Of course,, Lemma 7 remains true if N is replaced by Nw={zED:/(z)=w}, 

where w is any complex number. Choose a countable dense set of complex numbers 

{wl, w 2 ... .  }, and consider a point ~EOD which is not an admissible accumulation point of 

any Nw~, and where / has a nontangential limit. Almost all points of OD are such. We are 

going to show tha t  in ~ the admissible limit exists. 

Suppose tha t  there is no admissible limit. Then there are two thoroughly inscribed 

parabolic cones Ea.q(~) and E~,.q;(~) such tha t  ~ > ~ ' ,  q>q', and a sequence {z(~)}c E~.q(~), 

z(k)-~, such that  

lim/(z(~)) = L 4  L'  = lim / ( $ -  ev(~)). 
k--> oO e..-~.+ O 

L may  eventually be infinite. 
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F o r  the  sake of s impl ic i ty  we shall  assume t h a t  ~ = 0 ,  ~ ( ~ ) = ( - 1 ,  0 . . . . .  0), E~.q(~)= 

B~.q, E~,.~,(~)-B~.~.. Choose a ~ > 0  so t h a t  pu t t i ng  

Z(k)= I.(~)l_u .(k)l_ z~)/ak) \~1 l~bk~ ~2 [~k~ " ' '~  

we have  ]Z (~) ] =1 .  Then  ak-+0 as /c->oo. Define 

s  = A(z~  . . . .  , z~ )  = / ( a ~ z .  a~Z~ . . . .  , a~Z~).  

Observe t h a t  the  t r ans fo rma t ion  

(Z  1, Z2 . . . . .  Z n ) t - - N ( a 2 Z l ,  akZ 2 . . . . .  akZn) 

leaves s t a n d a r d  parabol ic  cones invar ian t .  Thus,  for large k, /k(Z) will be def ined  for  

Z E B~, q, ;~ G, where G is the  bal l  of rad ius  2 a round  the  origin. Moreover,  aga in  for /c  large,  

/k will no t  assume the  d is t inc t  values  wl, we, w3 on B~, q, N G. So {/k} is a no rma l  f ami ly  and  

there  is a subsequence/k~ converging to a l imi t  funct ion  g un i formly  on compac t  subsets  

of B~,. q, N G. 

[Now 
g(1, 0 . . . . .  0) = l im/ (a~ ,  0 . . . .  , O)= L' ,  

k-->0 

bu t  g is no t  cons tant ,  since the  set {Z(k):/c~N} is r e la t ive ly  compac t  in B~.q.N G, and  

/ k ( Z k ) ~ L ~ z L  '. Therefore  the  range  of g is open, and  so i t  conta ins  some w~. B y  Hurwi t z ' s  

t heorem /~ mus t  assume w. if /c is large enough; in o ther  words,  / mus t  assume wp in 

B~.. q., however  near  to  ~ = 0. This con t rad ic t s  the  assumpt ion  t h a t  ~ was not  an  admiss ib le  

accumula t ion  po in t  of the  set N~p, and  this  con t rad ic t ion  proves  the  theorem.  
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