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§1. Introduction

Let X be a given set and C a collection of subsets of X which are chosen according to
some random procedure. For each positive integer m, let N, equal the number of subsets
necessary to cover Xm times. We study in this paper the distribution and expectation of the
random variables N,. We refer to this study as the random covering problem.

To make the problem precise, we define the random procedure for choosing subsets of C.
Let P be a given probability measure on the space C. Let Q=C x ... x C x ... be endowed
with the product measure P x ... x P x .... Qis the sample space corresponding to the process
of choosing independently subsets of C according to the probability law P. We assume
that the N,’s are measurable functions on Q. This assumption is readily verified in all
ensuing examples.

The random covering problem has been studied in the following instances. If X
consists of a finite number of points and C is the collection of singletons, then we have the
classical occupancy problem (see [5, chapter 4] which discusses the case where the elements
in C have equal probability). If X is the circle of unit circumference covered by arcs of
length «(0 <e <1) thrown uniformly and independently on X, then the distribution of N,
has been calculated by Stevens [10]. If X is the d-dimensional sphere (d > 2) covered by
spherical caps of equal size, the centers of these caps being ehosen uniformly and inde-
pendently, then no exact formula for the distribution of N, is known (a notable exception
occurs if the caps are hemispheres; see [7, 13]). The 2-dimensional case has an interesting
application in virology and has been studied in [8] by certain approximation techniques and

simulation methods.
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Since exact formulas are difficult to obtain, it is natural to inquire whether one can
deseribe the asymptotic behavior of the distribution and expectation of the N,’s as the
size of the caps goes to 0. This is indeed the case, and we direct ourselves in this paper to
this aspect of the random covering problem. We deal in fact with the following generaliza-
tion. Let X be a C* connected compact d-dimensional Riemannian manifold, normalized
so that its volume equals 1. (We say that a Riemannian manifold is of class C% k>1,
if it is & O* manifold and the components g,, of the metric tensor are of class C*-1 in any
admissible coordinate system. The C* requirement is made to insure the validity of Theorems
2.3, 2.4 of section 2). For any two points p, € X, we define the Riemannian distance
8(p, q) to be the g.l.b. of the lengths of all piecewise C! curves joining p to ¢. It can be
shown that é(p, ¢) is a distance function on X rendering it into a metric space [12, p. 219].

For any p€X and r>0, let B(p, r)={q|d(p,q)<r}. B(p,r) is called the open
ball of radius r centered at p. Let C=C,, >0, consist of all open balls of X of radius .
The balls of C, are in 1-1 correspondence with their centers, so that C, may be identified
with X. The Riemannian volume is a probability measure on X, which we designate both
by v and dp. The probability measure P assigned to C, is assumed to be the measure »
on X via the above identification. Thus, the balls of C, are chosen uniformly and inde-
pendently from X.

We relabel the random variables N, as N,,,.. Let a = (w%2/I'((d/2) +1)) r¢; observe that
o is the volume of the d-dimensional Euclidean ball of radius r [3, p. 125]. Define X,,

by:
N, = (1/a) (log (1/x) +(d +m —1) log log (1/x) + (X, /). We shall prove
THEOREM 1.1. For each m>0, 3 r,>0 and C >0, v, and C depending only on m, such
P X, ,>z)<Ce ™8, x20, r<n, (1.1)
PX,,<x)<Ce®, x<0, r<ry. (1.2)
THEOREM 1.2. Let E(N,,,) be the expectation of N,,. Then

1
E(Nm)=i(logi+ (d+m—1)log log&-i- 0(1)) ag r—0, (1.3)

The point to Theorem 1.1 is that it provides estimates for the tails of the distribution
of X,, which are uniform in r. As shown in section 6, Theorem 1.2 is an immediate con-
sequence of these uniform estimates. In view of Theorem 1.1, it seems natural to conjecture

that there exists a limit law for X,,, as r—0. This is indeed the case if X is the circle, in
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which case the limit distribution can be identified [6] (see also [4] for a discrete analog
of this result). In general, though, the existence and identification of the limit distribution
remains an open problem and our methods do not seem powerful enough to settle it.

The proofs of inequalities (1.1), (1.2) are given respectively in sections 4 and 5. The
method used for (1.1) is that of discretization. Namely, we replace X by a finite set § of
points sufficiently dense in X and compare the probability of covering Xm times with
that of covering Sm times. The discretization procedure does not seem strong enough to
yield (1.2), and we use a different method based on moment estimates discussed in [9].
In section 2 we prove some geometrical results and in section 3 we obtain a probability
estimate for the classical occupancy problem. These results are subsequently used to derive
inequalities (1.1), (1.2). We employ the latter in section 6 to prove Theorem 1.2 and to
generalize a result of Steutel [11] concerning the asymptotic behavior of E(N,,), when X
is the circle. We also obtain in section 6 results similar to Theorems 1.1, 1.2 for the family
C, consisting of all open balls of given volume v. It is shown that the results for C, follow

readily from those for C,.

§2. Geometrical prerequisites

We prove in this section various results concerning the distance function d(p, ¢)
and the volumes of the balls B(p, 7). These results will be used in section 4.5 to derive
Theorem 1.1. The proofs of some of the theorems are lengthy, especially that of Theorem
2.4, and the reader is advised to take the theorems on faith upon a first reading. We assume

throughout that X is connected.

THEOREM 2.1. Let X be a C* d-dimensional compact Riemannian manifold. For each
positive integer n,  a set S, of n points of X such that sup,ex (p, S,) <Cofn V%, 8(p, S,)
denoting the distance between p and S, and Cy> 0 being a constant independent of n.

Proof. We cover X by a finite number of coordinate patches (¢,, C), ..., (¢,, C) where
each ¢, is a homeomorphism from the d-dimensional cube C: 0<z!, ..., 2% <1 onto a closed
subset ¢,(C) of X. Let g, ,(z)dz'dz* be the line element for the coordinate patch (¢,, C)
(we are using the standard summation convention concerning upper and lower indices).
For each ¢, 1 <i<s, 3 M,>0 such that

d
g,.,k(x)f’:f"éM,,Zl(éj)z,xEC and £',...,&% arbitrary. (2.1)

For z,y €0, let p=¢,(x),q = $.(¥),6.(x,y) = Euclidean distance between xand y,d(p,q) =
Riemannian distance between p and ¢. (2.1) implies readily that §(p, q) < VM, b,(x, y).
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Assume n=s and let m=[(n/s)1/%], [a] denoting the gretest integer <a. Let L be the
set of m? points (i,/m, ..., tg/m), 0<4y, ..., 4y, <m — 1. Then§,(x,L) < Vdm, 6,(z,L) being the
Euclidean distance between x and L. Ui.,¢,(L) consists of k& points, k<m?. Add to
Ui_1¢(L) an arbitrary set of (n—k) points and call the resulting set §,. Any point
p€X is contained in some ¢,(C). Since (n/s)/? <2m for n > s, we obtain sup,. x §(p, S,) <c/nl/?,
n>s, where c=2s"?)/d Max; i)/ M;. For 1<n<s, choose S, to be an arbitrary set of n

points and set ¢, =nY? sup,ex 6(p, S,). Theorem 2.1 then follows by letting C,=Max (c,

Cyy ooy C5q)

THEOREM 2.2, Let X be a C' d-dimensional Riemannian manifold. For each positive
integer n, 3 a set S, of n points of X such that
Min §(p, ¢) = C,/n*'*,

D.geS
p+q

C,>0 being a constant independent of n.

Proof. Let (¢, O) be a coordinate patch on X, C being the cube: 0<z!, ..., 2?<1 and
let g,,dz'dz! be the corresponding line element. Choose M >0 so that

d
gy EE =M Y (&Y, 2€C and &',...,&% arbitrary. (2.2)
1

Let m=[n!%]+1 and L the set of m? points (¢,/(m +1), ..., tgf(m+1)), 1 <iy, ..., 35 <m.
Then (i) é,(z, y) =1/(m+1) for z, y€L and z=y, (ii) d,(z, C)=1/(m +1) for €L and &C
the boundary of C. Let S, consist of = distinet points of ¢(L). Suppose p = ¢(x),q¢ =H(¥)ES,,
p=q. Let I" be any piecewise C! curve in X joining p to g and iI") its length. If I'< $(L),
then (2.2) and (i) imply UT)>VM/(m +1). If T'd ¢(L), then I meets $(8C) and (2.2), (ii)
imply ()= Vﬂ/(m +1). It follows that &(p,q)= VM/(m +1) >1}l/jll n-1e for p, q€S,,
p+q, and Theorem 2.2 is proven with the choice C, =<}l/ﬂ

In the sequel w,, v(p, r) denote respectively n%/%/I"(d/2 +1), »(B(p, r)). The following

lemma will be required in the proof of Theorem 2.3.

LeMMA 2.1. Let Q{a) and nxn symmelric matriz valued function of class C*, k>0,
on the m-dimensional open set A. Suppose that the associated quadratic form &'G{a)& is positive
definite in & for a€A. Then 3T (a) of class C* such that T'(a)G(a) T(a)=E, a€ A (E denotes
the identity matriz and T’ the transpose of T).

Proof. For n=1, G{a) is a positive number and we choose T'(a) =1/ VG(a). Suppose the
lemma holds for ». We show that it holds for n+1. Let G(a)=[g{a}], 1 <¢,j<n+1.
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Since &'G(a)é is positive definite, gy,(a)>0 for a€4. Let 771=l/g;1: (814 (g10/910) 82+ ... +
(Grns1)/90)E™HY), ni=E8,2<i<n+1. Let n=(n2 ..,n™*). Then &'G(a)é=ni+nH(a)y
where H{a) is a symmetric matrix of class C* on 4. Setting 7, =0, we find that »'H(a)y
is positive definite in 7, a € 4. Hence I # x n matrix S(a) of class C* such that S'(a) H(a) S(a) =
E,ac€A. Let pt=(', n=8(a){, where {=(% ..., Y, and let 7=(Z, ..., {*1). Then
&=T(a)r, where T(a)€EC* on A. We have t'[T"(a)G(a) T(a)]t =&G(a)é=1"E7, for a€A
and all 7, so that 7"(a)G(a)T(a)=FE, a€A.

THEOREM 2.3. Let X be a C* d-dimensional compact Riemannian manifold. 3 numbers
e, R>0 such that
|o(p, r) —w,r?| <Cr?*!, p€X and r<R, (2.3)

i.e. for small radius, the volume of a ball in X is almost that of a Euclidean ball of the same

radius, (2.3) giving a uniform bound for the difference.

Remarks. (1) Theorem 2.3 is a special case of Theorem 2.4. The proof of the latter is
however more complicated and introduces extraneous notions. We therefore first present

! may be

a proof of Theorem 2.3. (2) Examination of the proof reveals that the term rt*
replaced by r?'%, if X is assumed to be of class C% The above estimate suffices however

for our purposes.

Proof of Theorem 2.3. Let I, J be the respective cubes, —1<ux!, ..., 2*<1, —2<al, ..,
2?<2. We choose a finite number of coordinate patches (¢,, J), ..., (¢, J) such that ¢,(I),
<oy ¢(I) cover X. Let g, (x)dz' da’ be the line element for the coordinate patch (¢, J).
The g,,'s are C? functions on J, and the Christoffel symbols

8gry  Ogsx 8grk)
i — Ld BCAC NG PLIN R4
ka(x) ég (8&:" ox' 8x’

({g") is the inverse matrix to (¢,,)) are C? functions on J. Let x(a, £, £) be the solution

to the differential equations

2,4

‘%{; + () %x; 5l§= 0 (2.4)
satisfying the initial conditions z(0) =a, (dz/dt) (0} =&; thus z(a, &, t) is the geodesic emanat-
ing from a with initial velocity &. Let |z =Max (||, ..., |2?]). It follows from standard
theorems in differential equations ([2], chapter 1) that 3g, =0 such that x(a, §,t)€J
and is C? for |a| <3, |&]| <1, |t| =2¢,. x(a, &/, &t) satisfies (2.4) with initial conditions
2(0)=a, dz/dt =§, so that x(a, &, t)€J and is C2 for |a| <}, |€] <e,, |t] <2.
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Set, x(a, §) =x(a, &, 1) for |a| <}, |&| <e,. Then z(a, 0)=a and x(a, £)€C? for |a| <3},
|&] <e,. Let ¢, be the vector with components 4}, 1 <1, j<d. We have

ox dx dx
5—51 (a,0)= at (a,¢;,t1) I t=0~ at {a,et) l t=0 = &;- (2.5)

Le. 22!/0&'(a, 0) =4}, 1<, j<d. The Jacobian j(a, &) =8(z?, ..., 2%)/8(£, ..., £9) €C' and
j(@, 0)=1 for |a| <%, || <e;. Hence 3 0<sg,<¢, such that j(a, £)>0 for a€l, |&| <e,.
Thus z(a, £)is 1 -1 on |§| <g, provided a € I, and £ serves as a local coordinate at ¢,(a).

The length of the geodesic x=x(a, £, t), 0<t<1, equals VW. For a€l, |&| <e,,
it is known that this length =4J(p, g) where p=4¢,(a), g=¢,(x(a, &)), [12, p. 310]. Let R, =
Ming, )65,V g5(@)E%. If a€l, r<R, then g,(a)f'¥'<r’=|&|<e, It follows that
gy(a)&'& <r? ig the description of the ball B(g,(a), r) in the & coordinates. Let G(z)=
[9,(2)), h(a, &) =Vdet G(x(a, £)) j(a, £). We have

v(¢y(a), ) =f

9@ EtEt<rs

h(a,&Ydé, a€l and r<R. (2.6)

By Lemma 2.1 3 T(a) of class C? on J, such that T"(a)G(a) T(a)=E. Let £=T(a)y.
(In section 5 5 will be referred to as a local normal coordinate at ¢,(a)). |det T(a)| =
1/Vdet G(a)=1/h(a, 0) and 2.6) becomes

v(py(a),r)= f kla,n)dn, a€l and r<R, (2.7)
ignsr

where k(a, n) =h(a, T(@)n)/h(a, 0), |n]2= Siy (). ka, m)€C? for |a| <4, |ln]| < By, and

k(a, 0)=1. It follows that 3 0 < R; < R,, C; >0 such that

|k(@, ) 1) <CiJnll, a€l and |y <E;. 28)

Let C}=d/(d+1)w,C;. (2.7), (2.8) yield

lo(1(a), r) — war®| =| (k(a, n)— 1) d| <01f lnll dn = Cir®, (2.9)

linli<r nnlisr

a€l and r<R,.

Similarly, we prove (2.9) for ¢, 1<i<s, replacing C;, R; respectively by Ci, R..
Since ¢,(I), ..., ¢,(I) cover X, we have proven (2.8) with the choice C =Max (C4, ..., C3),
R=Min (Ry, ..., R).

We establish several lemmas which will be required in the proof of Theorem 2.4.

In Lemma 2.2, v denotes Euclidean volume.
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LeEMMA 2.2. Let A, B be two d-dimensional Euclidean balls of radius r>0. Assume that

the distance ¢ between the centers satisfies 0 <e<2r. Then

/2
v(A—B)= 2wd_1f (2 — 22 V2 gy, (2.10)
0
%;rd-le<v(A—B)<wd_lrd-ls, (2.11)

Proof. We may assume that A, B are centered respectively at 0 and p=(¢, 0, ..., 0).
Let S=ANBN{x|x,>e/2}=AN {x|x,>¢/2}. AN B is symmetric with respect to the
hyperplane x; =¢/2, so that v(4 N B) =2v(8). Hence

v(A—B) =v(4)—v(A N B) =v(4)-20(S) =v{zx|z€4, |x,|<e} (2.12)

€

£/2
Since v{x|x€A,|x1| < -2}= de_lf (r*— 2®)“@ P2 dg, we have proven (2.10).
0

From (2.10), we get
(4 — B) S wy_ "1 (2.13)

which is the right inequality of (2.11). We now prove the left inequality of (2.11). For
0<2x<e<V3r, rt—x2>r2/4, so that (2.10) gives

o4 —B)> g%f;,‘rd Ie. (2.14)
For V3 r<e<2r,
»(A—B)> ;Za—f,"-;,‘ 7 (V3r) > %} rile, (2.15)

Thus in either case v(4 — B) > (wq_1/2%) 7" 'e.

The following lemma is a global version of the Implicit function theorem.

LeMMA 2.3. Let A be a d-dimensional open set. Let a, v, fla, n) be d-dimensional vectors,
fla, n)ECKk=>1) for a€A, ||| <r (r>0). Suppose that the Jacobian |(of'|en’)(a, n)| =0,
a€A and ||| <r. For any open set A, with compact closure contained in A, 3 6(A,) >0 such
that x=f(a,n) has a unique solution n=g(a, x) whenever a€A, and |z —f(a, 0)} <o(4,).
Furthermore g(a, x) €C* for a € 4,, ||z — f(a, 0)|| <8(4,).

Proof. Let p€A. Since |(&f'/en')(a,n)|+0, a€A and ||n|| <r, we conclude from the
Implicit function theorem that 36,>0 such that z=f(a,n) has a unique solution =
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g(a, z), provided |la—p||, ||z —{(p, 0)|| <65, g(a, x) being C* for these values of a, z. Choose
0<4,<b, so that ||la—p| <8, =||f(a, 0) —f(p, 0)|| <d,/2. Then ||a—p|| <6, ||z —f(a, 0)] <
0,12 = |la~p| <8, |x—f(p,0)|| <8, It follows that x=f(a,n) has precisely one solution
n=g(a, x), provided |la—p|| <d}, [|#={(a, 0)] <5,/2, and that g(a, z) €C* for these values
of a, z.

By the Heine-Borel theorem, 4, is covered by a finite number of balls B(p,, d5.), ...,
B(ps, dp,). Let 6(4¢)=Min [}6p,, ..., Ip,]. Then 5 =g(a, z) is the unique solution x = f(a, 7)),
whenever a € 4,, ||z —f(a, 0)]] <6(4,) and g(a, x) €C* for a € 4, ||z —f(a, 0)|| <d(4,).

LeMMA 24. Let z, f(z) be d-dimensional vectors, f(z) being C* and |of' (02’ (x)] =0 on
|ll <7, r>0. Let m =Infy, -, ||f(z) —fO)|| >0. Then image of the ball B(O,r), under the
mapping y=f(x), contains the ball B(f(0), m).

Proof. Assume, without loss of generality, that f(0)=0. Let § be the image of B(0, r)
under the mapping y=f(x). We prove the following proposition D. If €S and ||b}| <m,
then B(b, (m—||b][)/2)< S. Let y € B(b, (m —||b]|)/2) and set g(x)=[\f(x) —yl|{2. g(x) is C* for
lzl| <r. Now b=f(c), where |jc||<r. Thus g(c)=||b—yl*> < ((m — ||b|})/2)®. For |x||=r,
llg@)]} = (m —||b]] = ||b—»l2> ((m —||b]|)/2)®. We conclude that g(z) attains its minimum
on ||z|| <r at some interior point p, ||p|| <r. Hence (dg/0z')(p) =0, 1 <j<d. We have
d a/l

(p) == 121 82:’

%

o () (f(P) —9") = 0. (2.18)

Since |of'/ox’(p)| 0, we conclude from 2.16) that y'=fi(p), 1<i<d. Le. y=f(p)€S,
thus proving P.

Since 0€S, P asserts that B(0, m/2)< 8. Suppose that B,=B(0, m(1 —(2 %)< S
for some positive integer k. Let y € By, 1. Then z=(2%*" —2) /(2" ~1) € B,. (m —||z||)/2 >
m2 'V, |ly—z|| =ly][/(2+ — 1) <m2~%*V. Hence ||y —2| < (m —||z||)/2, and we conclude
from P that y€S. Thus B,,;<S, and by induction B, 8, 1<k < oo, It follows that
B(0, m)=U%.1 B,< 8.

THEOREM 2.4. Let X be a C% d-dimensional compact manifold. Let v(p,q,r)=
v[B(g, r)— B(p, r)]. Let v (p, q, r) be the volume of the difference of two Euclidean balls of
radius r, the Euclidean distance between their centers equalling 8(p, q¢). 3 numbers C, B>0
such that

[v(p, g, 1) —v(p, . )| < Or'd(p, q),8(p,q)<2r and r<R. (2.17)

Remark. Dividing 2.16) by v,(p, g, 7) and using the left inequality of 2.11), we obtain
lim,, v(p, g, 7)/v.(p, ¢, r) =1 uniformly in all pairs p, g satisfying 0 <d(p, ) <2r.
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Proof. We imitate the terminology and reasoning used to prove Theorem 2.3. Thus
we choose coordinate patches (¢, J), ..., (§s, J) such that ¢,(1), ..., ¢s(I) cover X. For
the coordinate patch (¢,,J), 3¢>0 such that xz(a, &) is a C? function whose Jacobian
|o2!/o&’| >0 for |a| <}, |é] <e.Then AR, >0 such that x(a, T(a)y) is C*for |a| <4, |jy|| <R,.
Rename xz(a, T'(a)n) as z(a, n) and let j(a, ) = |éa'/on’|. Then j(a, ) €CY, j(a, 0) =det T(a),
i(a, n)==0 for ||a]| <3, ||| < R,. Hence z(a, ) is 1 —1 on ||| <R,, provided |a| <§. Observe
that for these values of a, 7, 8[¢,(a), ¢:(z(a, 7))]1=|n|.

For |a| <§,r> R,, B(¢,(a), r) is described in the % coordinates by the Euclidean ball
B(r)={??|||??|| <7}, and in the z coordinates by z(a, B(r)), xz(a, B(r)) denoting for given «
the image of B(r) under the mapping = =2x(a, ). Since z(a, 0) =a, we may choose 0< R, <R,
so that |z(a, 7)|| <} for |a| <§, ||7]| <R. Then y(a, 1, n)=2(x(a, 7), n) is C? for |a| <},
itzll; )l < R,. For p=4¢,(a), g=¢,(x(a, 7)), we have

v(p, q, r)=f Vdet G(z) dx, la] <&, ||z]l, r < R,. (2.18)
y(a,x, B(r)~z(a, B(r))

We express the above integral in the 5 coordinates. By Lemma 2.3, 35 >0 such that
x=x(a, ) has a unique solution n =z~(a, z) satisfying ||| < R,, provided |a| <&, ||z —al| <4,
xYa, z) being a C? function for these values of @, 7. Since y(a, 0, 0) =a, we may choose
O0<Ry<R, so that |y(a,7,9)—al<dé if |a|<§ |z|l, ||#]| <Rs. Hence z(a,z,7)=
zYa, y(a, T, n)) is C? and |2(a, 7,%)| <RB,, |&'/on'(a,,n)| =0 for |a| <8, |||, |In]| <Rs.
Since y(a, 7, 0)=y(a, 0, ) = z(a,”) and z-Y(a, z(a, n)) =7 whenever |a| <}, |z||, |[7]l <R,
we have 2(a, 7, 0) =z({a, 0, n) =n.

For |a| <3, ||7||, r < Rs, we write

y(a, T, B(r)) —z(a, B(r)) =2(a, 2(a, T, B(r))) —2(a, B(r)) =x(a, z(a, T, B(r))— B(r)).
(2.19)

By the change of variables formula, (2.18) becomes
wp.an= | Hemdnlal <t el r<r, (2.20
where k(a, ) =Vdet G(z(a, 7)) - {i(a, )| and where 2* =z(a, v, B(r)) — B(r). Observe that
k(a, 0) = Vdet G(a)- |det T(a)- | =1.

Let Z(r, n)=7+n and Z*=Z(v, B(r))— B(r). Then

v(P, 1) = L‘ dn. (2.21)

17 — 772903 Acra mathematica 138. Imprimé le 30 Juin 1977
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Let U(a, n) =k(a, 7)—1. la, n) is C for |a| <3}, ||n|| <R,. (2.20), (2.21) give

”(P, q, 7) - ”e(P, 9 7’) = [fz' k(a’ 17) d’?" J;‘ k(a': 77) dﬂ] + J;‘ l(a” 77) d”’ =Il + I2’ (222)

where p=¢,(a), g =¢,(x(a, 7)) and |a| <}, ||7||, r<R,/2.

We estimate I,, I,. We first establish the bound (2.28) for the Euclidean volume of
the symmetric difference of 2(a, 7, B(r)) — B(r), Z(z, B(r)) — B(r).

Applying the mean value theorem to z(a, 7, ) —2z!(a, 0, ), we get

4 o
2a, T, n)=n'+ 1"+ El [gz—x, (@,0,7,m)— 6}] o, 1<i<d, (2.23)

where 0<60,, ..., 0,<1.
Now z(a,7,0)=1 = &'/or/(a, 1, 0)=4}, 1<i,j<d. Since z(a, 7,7) is a C? function,
we conclude from (2.23) that 30 <R, < R,4/2, 0 <(, such that
Illl @ = Cll=ll) < lzta, 7, ) =7|| <l A + Cullel)), el <L lzll. Imll < Bs  (2:24)
The right inequality of 2.24) implies
z(a, 7, B(r))<Z(7, B(r')) |e|<1,|t]|,r <R, (2.25)

where ' =(1+C,||z|))r.
We conclude from the left inequality of (2.24) and Lemma 2.4 that

Z(z, B(r"))<z(a, 1, B(r) |a|<L1,|t|,r <R, (2.26)
where " =Max (0, [1 —Cy||z]|}r).
Let UAV denote the symmetric difference of the sets U, V. (2.25), (2.26) give
z(a, T, B(r))AZ (v, B(r))< Z(z, B(r'))—Z(z, B(r")). (2.27)
The Euclidean volume of Z(z, B(r')) —Z (v, B(r")) =w(r') — (*")*) < C,||z||r* where
C,=2dw,C,(1+C, R,)*L. Hence
velz(a, T, B()AZ (t, Br)] < Cyfe||r* |a| <L, |||, r <R, (2.28)
where v, denotes Euclidean volume.
With the aid of (2.28), we readily estimate I,. Let U, V, W be d-dimensional measur-
able sets and f(x) integrable on UUV. Since U~ W[V -W]=[U-V]-W<cU-V,

we obtain

| [ ferde- f feydz| = | fa) e~ f fa) da
U-w V—-w U-W-(V~-W) V- W-[U-W)

<] ol

(2.29)
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l(a, 0)=0 and l(a, n)) is C* for |a| <}, |n| <R,. Hence 3 C3<0 such that
e m)| < Colfl el <1, |inll < B (2.30)

Since ||2(a, 7, 9|, [|Z(z, p)|| <R, for |a| <1, ||z||, |ln]] < R, we conclude from (2.28)-
(2.30) that
[ 1] < Cy(Cs Ry + D)z, |a| <1, |lz||, » < R,. (2.31)

Lemma 2.2 and (2.30) imply
| 2] < Cawpn(zll +n)lizllr " ol <1, 7]l r < R, (2.32)
Let 0, =C,+CyC4 Ry+ 3C,w,_,. We conclude from (2.22), (2.31), (2.32) that
|o(p, 4, 1) —0.(p, ¢, )| S Cyl|z||r* = Cyr®d(p. q) |a|<1,|7||<2r<R,,  (2.33)

where p = ¢,(a), ¢ = $:(z(a, 7)).

Rename C,, R,/2 as C;, R;. (2.33) can also be established for each coordinate patch
(¢4, J), 1 <t <s, replacing M, R; by M, R;. Since ¢,(I), ..., ¢,(I) cover X, we have proven
(2.17) with the choice ¢ =Max (C}, ..., C)), R=Min (E,, .., R). B

§3. A probability estimate for the classical occupancy problem

We derive in this section the following estimate, of some independent interest, which
will be used in the proof of inequality (1.2).

THEOREM 3.1. Let N balls be thrown independently at n urns labelled, 1, ..., n. Assume
that for every throw the probability that the ball fall into the ith urn=p, where p,+... +p, < 1.
The probability that all urns contain balls <I; (1 —(1 —p)").

Proof. We say that ¢ is hit if the ith urn contains a ball. Then
n
P(i+1,...,n are hit)= £[0P(i+ 1 is hit|1,...,¢ are hit). 13.1)
We prove
P(i+1is hit|1, ..., ¢ are hit) <P@E+1is hit) =1—(1-p,,)", 1<i<n-1 (3.2)
(3.1) and (3.2) imply the theorem. We rewrite (3.2) in the equivalent form

P(i+1 is not hit|1, ..., 7 are hit) > P(i +1 is not hit), 1<i<n-—1 (3.3)
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For any two events A4, B of positive probability, we have P(4|B)>P(A) <
P(AB)>P(A)P(B) < P(B|A)>P(B), so that (3.3) becomes

P, ..., 1 are hit|i+l is not hit) = P(1, ..., 7 are hit), 1<i<n-—1 (3.4)

Let P(i, N; py, ..., p,) =probability that urns 1, ..., 4, 1 <¢<n, are hit in N idependent
throws, given that on any throw the jth urn is hit with probability p,, 1 <j<n. We may
revrite (3.4) as

P, N;q4..;qn1) ZPE, N; Py, oy D), 1<i<0-1 (3.5)

where gy, ..., ¢,_; are the numbers p,/(1 = py11), .., P/ (E = P11a)s Prsa/ (1 =P11a)s oo Puf(1 = Py 1)
(3.5) is proven as follows. Let 7, = probability that precisely j of the N thrown balls fall

into the (¢+1)th urn. Then

N
P, N; Dy ey Pp)= EOJZ,P(i, N—jqi ooy qu-1), 1<i<n—1. (3.6)
Since P(i, N; ¢y, ..., q,) clearly increases with N, we conclude from (3.6) that

N
P, N;pyy s D)< S PG Ny oo r@n-1) = PG, NGy oo gu), 1<i<n—1. (3.7)
i=0

thus proving Theorem 3.1. W

§4. Proof of inequality (1.1)

Let wyri=1/e, n(r)=[(1/a)(log (1/a))*], 0<r<r,, where a=w,r*. Since a<l/e, we
have (1/a)(log (1jx))* e and n(r) > 2. Choose S=S,, to be a set consisting of n(r) points of
X satisfying the requirements of Theorem 2.1, denote these points as p,, ..., p,. Let N, =
number of open balls of radius » which need to be thrown to cover Sm times. For each
positive integer N, the event [N,,>N] means that some point p, has not been covered
m times in the first IV throws. Since p,€ B(g, r) iff ¢€ B(p,, r), we conclude that the pro-
bability that p, be covered precisely j times in first N throws=({)al(l1 — «,)"~’, where
ot;=v(py, r). Hence the probability that p, be covered <m times in first N throws=

o (Y ed(1 - o)V, and

P(N”">B i%()a,l atN}<z"mzl( “i

i=1 j=0

e i, (4.1)

According to Theorem 2.3, we may choose 0 <r,<r,, >0 so that

o, —a] <O V2 4,<20 forl<i<n, r<n, 4.2)
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It follows that if Ne>14, r<r,, then

P(N;p, > N)< 2™ len(Na™ e *Nexp (Cy(N ) aV'?). 4.3)
Let

1 1 1
=~ {log -+ - - >0. .
N oc(logoc (@+m l)logloga—!—x), x>0 (4.4)
We have P(N;,>N)=P(N,,>[N]). For a=lje, 220, [NJa>Na—a>e—1. We may
therefore insert [N] into (4.3) and obtain

P(N;,>N)< 2™ 1e®p(Na)" le~*N exp (Cy(No) a''?)

1 1 m-1
log— -+ (d+m— l)loglog;t-kx
< 2™ e Texp (C) (Na) at'?) ] « (4.5)
log =
for 20, r<r,.
Choose 0 <rg<r, so that

exp (C,(Nx)o'?) < 2¢7%, for r<r, (4.5)

Then
1 1 m-1

log;-&- (d+m—1) loglog&+x

P(N,,>N)<(2"e¥)e ¥ -——~ - S
log —
g -

<@2met)(d+m+ )" e TP Cge Y, 220, r<ry, (4.7)

where C, = 2"e? sup {(d+m+x)™ 'e 7},
0<z<0
Now
1 1/d 1/d
7~ x ~ (w,:i) T as r>0
log - log -

It follows that we may choose 0<r,<r,, so0 that p=r—Cyn-1¢>0 for r<r,, C, being
the constant appearing in Theorem 2.1. Let a =w; 7%, f =w,0°% In view of Theorem 2.1, if the
balls of radius g cover Sm times, then the balls of radius r cover Xm times. Hence N,, < N,y

and

P(N,,>N)<P(Nyn>N) (4.8)
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Let lo)=(1/a)(log (1/a) +(d+m—1)log log (1/a)) and define y by the relation
N= l(a)+z= Up) +%¢y=ﬂ(l(a) — o))+ g:v. (4.9)

We express § in the terms of , and y in terms of » and z. We have

B=w (r——%—)dsw 4 0(—Td——)=a(l+0(——l—-)) as r—0 (4.10)
A’ alld ¢ log 1/r log 1/r ) )

We conclude from (4.10) by straightforward computations that

)

1 1 1
] logﬁ=10g&+0(log-_l/;‘) (4.11)

1 1 1
log log B~ log log = + O(E;m) ,

which in turn yields

UB) = Uo) + 0(},), 412)
so that
1
y=oay+04445gﬂ»)x a8 r—0. (4.13)

We may therefore choose 0 <ry;<r,, Cy>0 so that
y>g—0m (4.14)

provided r <r;. If £>>2C,, then y >0 and we conclude from (4.7), (4.8), (4.14) that
P(N,,> N)<Cye V< Cyete 8 (4.15)

for x> 2C,, r<r;.
For 0 <2<20,, P(N,, > N)<1<e%**® 1t follows that

P(N,,>N)<C,e ™, 20, r<r,, (4.16)

where C,=e“'* Max (1, C,). Renaming Cy, r; as C, r;, we obtain (1.1). 1
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§5. Proof of inequality (1.2)

Our derivation will be based on the lower bound (5.1) for P(N,,,> N). As mentioned
in the introduction the measure space C, can be identified with X so that Q can be identified
with X x X x ... x X x ... The probability measure on (, denoted by dw, is then the product
dp xdp x...xdp x ..., where dp is the Riemannian volume measure on X. The points of

Q are denoted by .

THEOREM 5.1. Let u{w) = volume of the set of points of X not covered m times in the
first N throws. Then
P(N,p, > N) > E¥u)| E(u?) (5.1)
E(u), E(u?) denoting respectively the expectation of y and u2
Proof. We reproduce the proof found in [9]. Let
bo) = {l, if X fails to be covered m times in first ¥ throws

0, otherwise

Observe that u(w)=pu(w)d(w). For if ¢(w)=1, then this equation becomes u{w)=
Mw), and if ¢(w) =0, then y(w) =0 so that the equation becomes 0 =0. Applying Schwarz’s
inequality, we get E%*(u)< E(u? E(¢$). But E(p)=probability that X fails to be covered
m times in first N throws =P(N,,, > N), thus proving (5.1).

We derive next expressions for E(u), E(u?).

THEOREM 5.2.

m-1 N
=5 (}) [ o= (5.2)

Proof. Let p€ X, w€(Q) and define

1, if p is not covered m times in first N throws

¥p, w)= {

0, otherwise

Then u(w) = { x $(p, @)dp and, by Fubini’s theorem,
Ew=ffﬂnmw@- (5.3)
xJa
We have however
f (P, w)dw = P(p is not covered m times in first N throws)
“ m-1 N
= 420 (i)(v(p,r))‘(l —o(p, )V (5.4)

Substitution of (5.4) into (5.3) yields (5.2).
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THEOREM 5.3 Let v(p,q,7)=o[B(g,r)— B(p, r)],w(p,»q, r)=v[B(p,7) N B(q,r)]. Then

N o
B(u)= Osi,ém—lmm f.[m, st ((p, 7)) (v(g, 1)) (1 —v(p,7) — (g, )" 'dqdp

N!
+ 2. ! ff (v(p,¢,;7) (v(g, p, 7)) (w(p,q.7))*
k) a(p, )<2r

0<t+k, J+hgm~1 i!j! k!(N —1— 7 -

x (L —v(p,r)—v(g,7) +w(p,q,n)" 7 *dgdp (5.5)

the indices <, , k tn the second sum being = 0.
Proof. ,u2(w)=f f é(p, w) $(q, w)dpdg so that, by Fubini’s Theorem
XJX

E?)= L fx fn (2, w) $(q, w) dwdpdy. (5.6)

Now

f $(p, w)${g, w)dw =P (Both p and g are not covered m times in first N throws).
Q
(5.7)

The above probability can be computed as follows. Suppose that of the first NV balls
thrown on X, 7 of the centers be in B(g, ) — B(p, r}, jin B(p, r)— B(q, r}, kin B(p, r) N Blg,r)
Then both p and ¢ are not covered m times in first N throws iff i +k&, j+k<m—1. It
follows that

N!
J;)‘ﬁ(p’ w)‘ﬁ(% w)dw: 0<l+k_]z+k<m—l 1‘ ?! k‘(N _'I:—‘? _ k)! (v(p’ q’ r))‘ (U(Qap» T))’

x (w(p,q,n)* (1 — v(p,r) —v(g,r) + wip,q,r))" 77~ (5.8)

Observe that for d(p, ¢) >2r, v(p, g, 7)=v{g, r), w(p, ¢, 7)=0. Thus in this case, the

sum in (5.8) simplifies to

Nt
2(p.7) (0(g, ) (1 = 0(p, r) = vig, /) * 7.

0<i.l§m—l l'?‘!(N—'l:—?' (5‘9)

Substituting (5.8), (6.9) into (5.6), we get (5.5). W
We designate respectively the two sums appearing in the right side of (5.5) as >, >,,
so that E(u?) =2+, In the sequel, ¢ denotes a’generic positive constant depending

only on m.
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THEOREM 5.4 (i) &> 0 such that

0 |

Si<E¥u), for r<e, Na> (6.10)

H

(i) 3¢ >0, C >0 such that
0 m—d N
Zzsﬁ(Noc) X(l—v(p,r)) dp, for r<e, Nazl. (5.11)

Proof. (i) Squaring both sides of (5.2), we get

N\ (N
) ( 7-) fx fx ((p, 7)) (v(g, ")y (1 —v(p,7)" " (1 —v(g, )" 'dpdy.

E*u)= (
o<t f<m-1\ 1

(5.12)

We prove {(5.10) by showing that each term of X, < corresponding term of E?(u).

This inequality follows from
N! N\ (N—i N\ (N
T g < 1
w3 (7 )= () () (519)

(1 - v(p’ 7‘) -v(qr 7'))N_‘_’< (1 - U(par))N_l(l —’I)(q, r))N—’ for P,QEX: 0<r< £,

and

1
Na> o O0<ijsm—1. (5.14)

(6.13) is obvious and we prove (5.14). Let v(p, r) =a+z, v(q, r)=a+x. Taking log-
arithms, (5.14) becomes

N [log (1 —a—z)+log (1 —a—y)—log (1 —2a—z—y)]
+{(E+5)log (1 —2a—z—y)—ilog(l—a—x)—jlog(1>a—y)]=0 (5.15)

According to Theorem 2.3, IR>0, C'>0, such that |z|, |y| <Ca'+V/? for all p,g€X
and r < R. Using the Taylor expansion for log (1 —z), we obtain

2
log (l—a—2) = —a—z— % +0(c2*19) as a0 (5.16)

with similar expressions for log (1 —a—y), log (1 —2a¢—xz—y). It follows that the first
bracketed term of (5.15)=a?(1+0(«'?%)), and the second bracketed term =0O(x). Hence
(5.15) may be rewritten as

Nl +0(a¥4)) +0(1) =0 (5.17)
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{(6.17) clearly holds if »<g, Na>1/e, provided e—0 is sufficiently small. Hence (5.14)
holds and we have proven (5.10).

(ii)) We shall estimate

I(I’, ’I‘) = J:i(p o<er (v(p’ 9 7’))i (”(%P, r))j (w(p7 9 r))k(l - v(p: 7‘) - ”(P, 9, "'))N_i_jikdq

(5.18)
for small r, uniformly in p and in the indices ¢, §, k.
It follows from Lemma 2.2 and Theorems 2.3, 2.4 that 3r,>0 such that
v(p,r)<2a, r<r, and p arbitrary (5.19)
14 1(p, q) < v(p,q,7) < 2wq_, 7 0(D,q), r<r, O(p,q)<2r. (5.20)

2"”

Using (5.19), (5.20), and w(p, q, r) <v(g, ), we obtain

1

,rd N
I(p,ry<Crt? ""’"’*”f [8(p, 91" [l—v(p,r) 2,“1 -5(p,q)] dg, (5.21)
&8(p, )<2r

r<r; and p arbitrary.
An examination of the proof of Theorem 2.3 shows that 30 <r, <r, such that the follow-

ing holds;

(i) For each p€X, a local normal coordinate 7 may be chosen at p valid for |jn|| <r,

(ii) Let the element of volume dg=k(p,7)dn, ||ln|| <r,, where 7 is the chosen local

normal coordinate at p. k(p, ») is uniformly bounded for p€ X, ||n|| <r,.

Hence the integral appearing in (5.21) is

cof il -vtmn= S al) ©.22
Wrli<2r

provided r <r,/2.
Let g,0,, ...,0,_, be polar coordinates in the 7-space (¢ =||5|| and the 6,’s are res-
pectively the radial and angular coordinates). The integral of (5.22) becomes

,rd 1 N
ff t+f+d— 1(1 —v(p,r)— Wa- ¢li+l ) dodo (5.23)
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where S is the unit d-dimensional sphere p=1 and do is the area element on S. Let

B gy 11
b= - 9a+1

0. (5.21)~(5.23) yield

1-v

I(p,r)<0ak_d“f0 Il —p — )V dt, r<;—2 (5.24)

and p arbitrary where v =v(p,r). Letting = (1 — )4, we get

1
I(p, T) < Oak—d+1(1 _ ,U)NJ‘ 1i+7+d—1(1 _ A)Ndl (525)

0
The integral of (5.25) is recognized to be the beta function B(i+j-+d, N+1)=
(g4 +d—1)INV(i+j+d+ N). Hence
I(p, r) < Co*+9+Y (1 —v)¥/N**4 r<r,/2 and p arbitrary. (5.26)
Substituting (5.26) into X,, we get

¢

N0<i+k.i tksm—1

25< (Nay=ert f (1~v(p,r)"dp, r<r,. (5.27)
X

Let Na>1. Since k<m—1, we have (Na)*~2+1<(Na)™ % We conclude from (5.27)

that

Se< g oy [ (1=otpndp (5.28)

for r <r,/2, Na>1, thus proving (5.11) with the choice e=r,/2. W

We can now provide the

Proof of inequality (1.2) Let r, =Min (1, £). Theorems 5.1, 5.4 imply

P(N,,>N)> o B ) < Na>;. (5.29)
E*(u)+ —(Na)"""’f (1 —v(p,r))Vdp !
N x
go that
C -d N
TV(Na)m x(l—v(P,f)) dp 1
P(N,M<N)< Ez([t) s T<Tl, Na> ;‘; (530)
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From Theorems 2.3, 5.2, we conclude that 3 0 <7, <r; such that

E(u) > C(Nay™! f (1 —v(p, 7))V dp, r<r,, Na>;1—. (5.31)
X 2
Hence
c 1
PN, <N)< , r<ry, Na>—. (5.32)
N(Nayt+m-2 f (1-o(p, 7)) dp &
X

We remark that (5.32) has been derived under the assumption that N is an integer.
Since P(N,,<N)=P(N,,<[N]) and N=>[N]/2 for N=>1, it is readily seen that (5.32)
remains true for all N >1, provided we replace 7, by r,/2 and change the constant C.

Let N=(1/a){log {1/} +{d +m—1) log log (1/a) +x), £<0. Choose 0 <rz<r,/2 so that
a<l/e for r<r;. We consider first the case N >1/(2x) log (1/&) (N >¢/2 so that (5.32) is
applicable). Using the inequality 1—-z>e ° %, 0<z<}, and Theorem 2.3, we choose
0 <rg<r4/2 so that

fx(l —v(p,)Vdp=te M, r<r, (5.33)

(5.32), (5.33) yield

OeaN

P(N,.<N)< W < 28tm 107, (5.34)

Suppose next that N <(1/(2x)) log (1/x). P(N,,<N)=0 for N <0, in which case (1.2)
is obviously true. We therefore assume N >0 < x> —log (1/a)—(d +m —1) log log (1/a).
Let n(r)=[(C,/2r)"] where C,;>0 is the constant appearing in Theorem 2.2. Choose
0<rs<r, so that n=n(r)>1 for r<r;. According to Theorem 2.2, there exist » points
Py -, Pn 80 that the distance between any pair of these points >C,nV% Since
r<C,2n~'%, we conclude that any open ball of radius r can cover at most one of the p,’s.
Let N, = number of throws necessary to cover the p,’s. Since N,,, > N, we have P(N,,, <N) <
P(N,<N). P(N,<N) can be estimated by Theorem 3.1 (just change the terminology,
replacing the phrase ‘“ball falling into an urn” by “ball covering a point”). We obtain

n

P(N,,<N)<P(N,<N)< [[(1-(1-v)")< exp( - f (1- v,)") (5.35)
i=1

t=1

where v, =v(p,, 1).
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Using the inequality 1 —z=>e °~*, 0<2<}, and Theorem 2.3, we choose 0 <rg<r; 80
that

2 ¢
SA—v)> ;e"“”, 727 (5.36)

—

Hence

P(\N,,<N)< exp(—ge’“"'), r>7,. (5.37)

For N <(1/(2a)) log (1/x), —(Cla)e™*¥ < — Ca~V2, —Co=12< —log (1) —{d +m —1) x
log log (1/&) < for r sufficiently small. We conclude from (5.37) that 30 <7; <rg such that

P(N,,<N)<e?, provided N <(1/(2«))log (1/a) and r<r, (5.38)

Renaming r, as r,, (5.34) and (5.38) yield (1.2). W

§6. Proof of Theorem (1.2)

Theorem 1.2 follows directly from the inequalities {1.1), (1.2). We have
1 1 1
P(N,m)=&(log;+(d+m—l)loglog&+E(X",,)). (6.1)

We must show that E(X,,)=0(1) as r— 0. Let F,,(x) = P(X,,, <x). Then E(| X,,,|) =
®o|2|dF pm(x). For R> 0, we have

JIR |z|dF (z)= — JR zd(1 - P, (x))= —R(1-F,(R})+ fﬂ (1 - F,(x))dx (6.2)
o 0 o

By (1.1), 1 — F,.(x) < Ce *® for 0 <r<r;, x> 0. Letting R— oo in (6.2), we conclude that
0 oC o0
f || dF (z) = f (1= F(x))de< CJ e Bdx=8C, O0<r<r,. (6.3)
0 0 0
Thus [¥]x|dF,,(x) is uniformly bounded for 0 <r<r,. A similar argument shows that
[°w|2}dF () is uniformly bounded for 0 <r <r,. It follows that E(X,,)=0(1) as r—>0.

We can also employ (1.1), (1.2) to prove the following generalization of Steutel’s
asymptotic formula for E(N,,), in case X is the circle.
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THEOREM 6.2. Let X be the circle of unit circumference. Then
1 1 1
E(N,,,,)=&(logo—t+mloglogo—‘+ym+0(l)) as r—0, (6.4)

where y, =y —log (m —1)!, y being Euler’s constant

Proof. We must prove that lim,_ o E(X,,,) =lim,o [®0 2 dfm(x) = y,,. As shown in [6],
lim,o F,,(x) =exp (— e */(m —1)}). Since 1—F,,(x)<Ce ™8, >0, r<r, we conclude

from (6.3) and the Dominated convergence theorem that

0 (=] s o] 1
lim f xdF,, (x)=1lim f [1=F, (x)]de= f [l — exp (— —_— e")] dx
=0 J o =0 Jo 0 (m - 1)'

0 1 .
= fo xd(exp(— (_'mT:—l_)_' e )) . (65)

A similar result holds for lim,,o |_«, 80 that lim,o [%ux dF,,(z)= [Ccaxd(exp(—e %/
(m —1)1)). Letting t = (¢”%)/(m— 1)!, we obtain

o A\ Y O 1
f.w"d(‘”‘"("<m—1)!e ))Wm—l)!f_m“ e""(‘(mﬂl)!e )d”

o0 o0
= —log(m—1)! J e tdt— f (logt)e tdt. (6.6)
0 0

0

We have f

0

e"'dt=1,f (logt)e tdt= —T"(1)= —9y[1].
0

Hence lim,,0 E(X,,) =y — log (m — 1)!

Finally, we obtain the analogs of Theorems 1.1, 1.2 for C,, the family of open balls
of given volume v. In view of Theorem 2.3, we may choose r, < R(R is the number occuring
in Theorem 2.3) so that v(p, ) = w,r® for p€X, 0 <r<ry. Let vy=3w,r{. Thus for 0 <v =y,
and arbitrary p, 3B(p, r) of volume v. Hence C, is well defined for 0 <v<w,. The balls
of C, are in 11 correspondence with their centers. The probability measure P assigned
to C, is the volume measure on X via this correspondence. The random variables N,
are relabeled as N, and we define X, by N,,,=(1/v)(log (1/v) +(d +m —1) log log (1/v) +
X,m).- We have

THEOREM 6.3. For each m >0, 3v, >0 and C >0, v; and C depending only on m, such that
PX,2x)<Ce ™ 220, vw<o,. (6.7)

PX,,<xz)<Ce x<0, v<u,. (6.8)
wm
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THEOREM 6.4. Let E(N,,) be the expectation of N,,. Then
1 1 1
EN,,) = (Iog; +{d+m—1)log Iog; + 0(1)) as v—>0 (6.9)

Proof. Theorem 6.4 is derived from (6.7), (6.8) in the same way that Theorem 1.2 is
derived from (1.1), (1.2), so that we need only prove Theorem 6.3. Let E(p, v), p€X and
v<v,, be the open ball of volume v centered at p. For given p, the function v=uv(p, r} is
continuous and strictly increasing for 0<r<r, with v(p, 0)=0, v(p, ry) = v, It follows
that the inverse function r=r(p, v) is continuous and strictly increasing for 0 <v<y,,
with 7(p, 0)=0, 7(p, vy) <rq. Define b(v)=Inf .. r(p, v), Cv)=sup, r(p, v), fv)=w ",
y(v) =wyc?, 0<v <0,

According to Theorem 2.3 3C >0 such that

[v—w [r(p, v)]¢| < Cv V%, peX, v<u, (6.10)
In (6.9) we may replace w.[r(p, v)]* both by S(v) and y(v). Hence
Bv) =v+0@*V?), p)=v+0w* ") as v—0. (6.11)

Now B(p, b(»)) < B(p, v) < B(p, ¢(v)), v<v, Hence N,,<N,,<N,,, where b=>b(v),
c¢=c(v), so that

P(Nvm>N)<P(me>N)’ P(Nvm<N)<P(Ncm<N)' (612)

Let N = (1/v){log (1/v)+(d +m—1} log log (1/v) +2)
= (1/8)(log (1/B)+(d +m—1) log log (1/8) +y)
= (1/y)(log (1/y)+(d +m —1) log log (1/y) +2)

It follows from (6.11) and an analysis similar to the one leading to formula (4.13) that
y= O(v”d logq—t) +(1+0@"))z, z= O(v”" logi) +(1+ 0@ ). (6.13)

Hence 30 <v, <y, such that f(v), y(v)<r for v<wv(r, is the number appearing in
Theorem 1.1) and

(6.14)
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We conclude from (1.1), (1.2), (6.12), (6.14) that 3C > 0 such that

PN, >N)<Ce ™8, x>0, vw<uy,

P(N,,<N)<Ce® <0, v<w (6.15)

(6.15) is identical with (6.6)—(6.7). W
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