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In his classical work on automorphic functions Poincaré introduced the distinction
between Fuchsian groups and the more general class of Kleinian groups. The Fuchsian
case proved to be much more tractable, and soon grew to an impressive theory with
applications in several branches of mathematics. In contrast, the study of Kleinian
groups progressed slowly and still presents major unsolved problems. A recent surge of
interest occurred when it was found that the theory of quasiconformal mappings has
important bearing on the subject.

The writer proved (Ahlfors [1]), with minor restrictions that were subsequently
removed by Greenberg [7] and Bers [5], that the orbit space of a finitely generated Kleinian
group, when completed, is a finite union of compact Riemann surfaces. This result is the
starting point of newer developments.

An important step was taken by Bers who, in several papers [3, 4, 5], emphasized the
use of differentials of arbitrary order ¢=>2. This served to eliminate the deficiencies of the
original approach, which, motivated by the connection with quasiconformal mappings,
worked exclusively with quadratic differentials.

This paper continues the research of Bers, especially as developed in [4]. The reader
may wish to consult Ahlfors [2] for notations, which differ from those of Bers, and for an
assembly of elementary facts. The present paper is, however, essentially selfcontained.

The paper of Bers, at least indirectly, and my own, very directly, owe much to Eichler
[6]. I would be remiss if I did not acknowledge my debt acerued by rereading his paper.
I have also profited greatly from Weil [8].

(}) This research was partially supported by the Air Force Office of Scientific Research under
Contract AF49(638)-1951.
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1. Differentials

1.1. In this paper I" denotes a finitely generated Kleinian group. By definition, a
Kleinian group is a group of fractional linear transformations of the extended complex
plane whose set of limit points is a nowhere dense perfect set. It is important to notice
that we are excluding the elementary groups, which are the ones with at most two limit
points.

The complement of the limit point set is the set of discontinuity, to be denoted by
Q=Q(I'"). As already mentioned, the orbit space S=8(I')=Q/I" is known to be a finite
union of Riemann surfaces S;, each obtained from a compact surface S; by removing at
most a finite number of points. We shall also use the notation §=3 §,.

The inverse image of 8, under the projection map Q—Q/I' will be denoted by Q,, its
components by ;. The projection defines each Q,; as a branched covering of §; with
ramification numbers r{p,) >1 at the projections of elliptic fixed points. We set r(p,) = oo

when p, €S, —S, and refer to these points as infinite branch points or cusps.

1.2. A meromorphic function ¢ on € is called a differential of order ¢ with respect to
I'if (i) p(Az) A'(2)? =¢(z) for all A€T, (ii) the projection of ¢ can be extended to a rational
differential on S. More precisely, ¢ is the projection of ¢ on 8 if $(Z)dZ?=p(2)dz? becomes
an identity when Z is replaced by the local coordinate of the projection of z. It follows from
(i) that ¢ is invariantly defined, and (ii) requires that ¢ can be extended to § with no singu-
larities other than poles.

The linear space formed by all differentials of order ¢ will be denoted by D?= DYI").
There is an obvious direct sum decomposition D?=3 D{ where ¢ € D{ vanishes identically

outside of ();; usually, we identify such a ¢ with its restriction to Q,.

- 1.3. At unramified points the degrees (orders) of ¢ and ¢ are equal. For a point with
finite ramification number r=r(p,)>1 we may assume that the projection is given by
Z=z'. If ¢ and ¢ have degrees v and 7 respectively, one obtains r#+g(r —1)=v. It follows
that ¢ is regular if and only if $>=7,= —[g(1 —1/r)]; here [x] is the largest integer <z. For
this reason, it is natural to define the reduced degree of @ as the number # —#,. For instance,
we would say that ¢ has a simple pole if the reduced degree is —1. We note that #,=0
when ¢=1 or 0.

A cusp corresponds to a certain subgroup of parabolic transformations with generator
BEeT'. For the present purpose I' can be replaced by any conjugate group, and it is there-
fore no restriction to assume that Bz=z-+1. In these circumstances ; contains a half

2miz

plane Im z>const. (for a proof see Ahlfors [1]), and we may choose Z =e*™* as local vari-

able. The relation between ¢ and ¢ is given by (279)?¢(Z)Z? =¢(z), and ¢ has period 1.
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The regularity of ¢ is expressed by the condition ¢(z)=0(|z| %) as Im z— + co. For
g >0 this will be satisfied whenever 7 =deg ¢ >1—gq, whereas for ¢<0 the condition be-
comes 7> —¢. Accordingly, we set #;=1-—¢q if ¢>0, ;= —gq if ¢<<0. Observe that 7, is
again 0 for g=1 and ¢=0. It may also be noted that #, is always the limit of —[¢(1 —1/r)]
as r—> oo, The reduced degree of ¢ is again defined as 5 — 7.

The Fourier development of a regular ¢ begins with a positive power of Z if ¢>0,
but when ¢ <0 there may be a constant term. Whether ¢ is regular or not, the constant
term plays a different role from the others. To bring out this distinction we shall say that
a differential @ is parabolic if, at each cusp, the constant term of the Fourier development

is missing. For differentials in Df only the cusps on &, are relevant,

1.4. Let « be a divisor on S. We shall say that ¢ € D?is a multiple of « if, at every point,
the reduced degree of ¢ is at least equal to the coefficient of «. The linear space of multiples
of « is denoted by D). In particular, the space of everywhere regular differentials, also
known as cusp forms, is denoted by D?0). The meaning of the notations Df(«x), D{(0) is
obvious.

The Riemann-Roch theorem leads to a relation between dim Df(x) and dim
D}~ %(—a). If g, is the genus of S, this relation reads

dim Df(«) = dim D} ~%(— ) — 2 Fo(p) + (2~ 1) (g, — 1) —deg a. (D

DeS;

Because I' has more than two limit points the ramification numbers have to satisfy the
condition
2,2+ 2 (1-1/r(p)) >0, @)

peES;

which expresses the fact that the Poincaré area of S; is positive. It is an easy and well-
known consequence that Df(0) =0 whenever ¢ <0.

From now on we assume that ¢ >2. If we apply (1) with « =0 we obtain

dim Df(0) = — 2 #,(p) +(2g¢— 1) (g;— 1), (3)

peES;
and it follows that (1) can be written in the convenient form

dim D{(«t) = dim D}~ — &) + dim D(0) — deg . @)

2. Cohomology and Eichler integrals

2.1. We let A €I act on the space of functions f:Q — C according to the rule (f-4)(z) =

f(Az) A'(2)*~. Since f- AB=(f- A)- B this defines a representation of I in the space of linear
automorphisms of Q°.
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In particular, I' acts on the space V of polynomials of degree at most 2¢ —2, and it
leaves V invariant. There is thus a canonical representation of I' in the space of linear
autom orphisms of €241,

A cocycle on I is a mapping h: 'V such that h(4 B)=h(A4)- B +k(B). 1t is a coboundary
if there exists a v€ V with A(4)=v-4 —v for all 4€T". The cocycles modulo coboundaries
form the first cohomology group HY(T', V). We shall simplify the notation to H(I'), and we

remind the reader that it depends on the integer ¢ >2.

2.2, A meromorphic function f on Q; will be called an Eichler intlegra.l on Q, if
(i) ow-1feD}
(ii) f-A—feVforall A€T.

Here o means differentiation with respect to z. It is a fundamental fact that 0%¢-1(f- 4) =
[(8%2-1)- A)A'(2)?. 1t is therefore a consequence of (i) that f- A —f is a polynomial of degree
at most 2¢ —2 in each component of Q,. Condition (ii) states that this polynomial does not
change from component to component.

The space of all Eichler integrals on Q; will be denoted by E,= E (I"). We shall also need
to consider various subspaces. An Eichler integral f will be called parabolic if 6*¢-1f is para-
bolic (see 1.3), and the parabolic subspace is denoted by PE,. An integral is said to be of
the first kind, and we write f€ E,,, if 02¢-1f€ D(0). Finally, E,, will be the space of trivial
Eichler integrals, characterized by 8297'f=0. A trivial integral is represented by a poly-
nomial on each component €2,,, but these polynomials are not arbitrary, for they are still

subject to condition (ii).

2.2. The polynomials f-4 —f are the periods of f, and we write f-A —f=pd,f. It is
readily verified that the mapping 4—>pd,f is a cocycle. The periods determine a canonical
homomorphism E,—H(I") which will be referred to as the period homomorphism. We
denote it by pd; thus pd f is the cohomology class of the periods of f, and pd E, is the image
of K, under the period mapping.

The periods of parabolic Eichler integrals have a special property. We have seen that
a cusp determines a parabolic transformation B€T", unique up to conjugation. A cocycle
is said to be parabolic at the cusp corresponding to B if A(B)=v-B—wv for some v€V.
To make the definition consistent we must show that this property is preserved under con-
jugation.

Quite generally, let us replace I"' by I'V = UT'U~! where U is an arbitrary linear trans-
formation, not necessarily in I'. For a cocycle & on I" we define A” on T'V by AW(UAU) =
h{A4)- U-1. We check first that A7 is a cocycle. One obtains, indeed, AW(UAU-1UBU) =
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h(A)- BU+h(B)- Ut=hpY(UAU)- UBU + B (U BU-Y). Next, if h(B)=v+ B—v we find
RW(UBUYY=v-BU1—v-Ul=(w-UY)-UBU1—»- U1, and the invariance of the para-
bolicity condition is proved. The same computation shows that kU is a coboundary if %
is a coboundary. We have thus defined a canonical isomorphism between H(I") and H(I'Y).

We may now say that a cocycle is parabolic on Q, if it satsfies the parabolicity condition
for all cusps on S,. Since coboundaries are automatically parabolic we may speak of coho-

mology classes being parabolic on S, and the space of such cohomology classes will be
denoted by P,H(T).

LemMwma 1. The period of a parabolic integral is parabolic.

Proof. We claim, more precisely, that f€PE; implies pd f€P,H(I"). Our preliminary
considerations have shown that we may take the transformation B that corresponds to a
given cusp to be of the form Bz=z-+1. Let Q,; be the component that contains an upper
half plane. In that half plane ¢ —829-1f has a convergent development p = c,,¢*"'™* with
¢y =0. It follows by iterated integration inside the half plane that f is itself a periodic
function plus a polynomial v of degree < 2g—2. Hence the period of fis v(z+1) —v(z) =
v+ B—v, and the parabolicity condition is fulfilled.

3. Summary of results

3.1. Because I' is finitely generated the cohomology group H(I') has finite dimen-
gion. In fact, if there are N generators it is easy to see that dim H(I') cannot exceed
(N —1) (2¢ —1). It is natural to ask to what extent the cohomology classes are the periods of
Eichler integrals belonging to £, and its subspaces. In other words, we are interested in in-
formation that describes the images pd E,, pd PE,, pd E,,, pd E,. The main result is con-

tained in two theorems.
TreorEM 1. dim (pd PE,/pd E;) =dim Dj(0).
THEOREM 2. pd B,=H(T') and pd PE,=P,;H(I").

The second theorem asserts that the period homomorphisms E,—~H(I') and PHE,—~
P,H(T') are surjective. In other words, every cohomology is a period of an Eichler integral
on ,, and every parabolic cohomology comes from a parabolic integral. The first theorem,
perhaps even more informative, lets us recognize, in terms of a known quantity associated
with S, the size of the contribution from essentially different parabolic integrals of the

second kind.

3.2. We shall write d;=dim D{(0), and we recall that this dimension is given by

formula (1). In order to analyze the theorems we shall also introduce the dimensions
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p;=dim (pd E,/pd PE)), e;=dim (pd E,/pd E,), s;=dim pd E,,. We shall also denote the
number of cusps by n,.

The theorems express a balance
pit+d+e+s;=dim H(T) (6)

between the various dimensions. The value of the information depends on the extent to
which we can characterize the numbers involved in other ways.

The strongest result is the characterization of d, through Theorem 1. As for p;, Theorem 2
shows that p,=dim H(T")/P,H("). The parabolicity introduces one linear condition for
each cusp, and we deduce that p,<n, The fact that D} 9(0)=0 shows that the period
homomorphism, restricted to E,;, has kernel V. It follows that ¢;=dim (E,/E ), and we
may interpret e; as the number of essentially different integrals of the first kind. The
mapping 02-1: K, -~ D{(0) has kernel E,, proving that e¢,<d; Finally, s, indicates the
number of ways in which 0 on one of the components ,; can be extended to a trivial
integral. It is zero when Q, is connected.

In a general way, if S; has low genus and ramification, the number s, must be large.
There seems to be no intuitive interpretation of s; beyond saying that s; is large when the

components €}, are strongly permuted by I

3.3. Let I be any set of the subscripts 7. We shall let Q; be the union of the corre-
sponding Q. An Eichler integral on ), will be defined as one that has the same periods on
all Q, with i€ 1. The notations E,, PE,, E,, E,, and P,H(I') are selfexplanatory. We are
going to show that Theorem 1 can be generalized to this situation.

TaeorEM 3. dim (pd PE,/pd E;,) =dim D{(0).

Here, naturally, dim D} (0)=d,;=>,¢;d;. There is also a counterpart of Theorem 2.
TuEOREM 4. pd E,= H(T") and pd PE,=P;H(I").

This happens to be a trivial consequence of Theorem 2, for it suffices to apply that
theorem separately to each Q,. It becomes important, nevertheless, when used in combina-

tion with Theorem 3. In analogy with (5) we obtain, with obvious notations,
pr+d;+er+s,=dim H(T). (6)

For instance, we conclude at once that dim D 0)=> d,<dim H(T'), a theorem due to
Bers [4].
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Combining (5) and (6) yields
Pitd;t+e+s,=p+dter+s, (7)

a piece of information that no longer involves cohomology. Consider the special case where
€2, is connected, so that s, =0, and take I to be the set of all indices. Since p; < p, one obtains

d;+e;<d;+e;<2d,. This contains Bers’ second theorem, d; <2d,, from the same paper.

4. Subgroups and restrictions

4.1. Recall that we are denoting the components of Q, by Q,;. Let T";; be the subgroup
of I that leaves Q,; invariant. For fixed ¢, the different Q,, are in one to one correspondence
with the right cosets of I',. If Q.= BQ,,, then I'y,=BI';; B-!, and I';, =T, if and only if
B is in the normalizer of I';;.

LeMwma 2. T'y; ¢s finitely generated, and Q;; is a component of Q(T';). In particular,

T';; is @ Kleinian group.

Proof. We remove the elliptic fixed points from Q;; and denote the punctured region
by QJ, its projection by Sy. In familiar manner, QY is a smooth covering surface of S}
determined by a normal subgroup N of the fundamental group 7,(S) and I';; is iso-
morphic to the quotient group 7,(8?)/N. Since 7,(S}) is finitely generated, so is the quotient
group, and consequently I';;, We conclude that S(I";;) can be completed to a finite union
S(T';,) of compact Riemann surfaces; this would be true evenif I'; ;were an elementary group.

Every orbit of I' in Q; contains a unique orbit of I';; in Q,,. This determines an injective
conformal mapping of 8, into 8(T';;), and hence into S(T';;). As p€S, approaches a cusp,
so does its image, for the parabolic transformation B determined by the cusp on §; belongs
to I';; and defines a cusp on S(I';;) with the same local coordinate system. We conclude
that the mapping extends to a continuous and open map from S; to S(T';;). The image must
be a full component, and it follows that the component of Q(I";;) which contains Q,; cannot
contain points not in ;. The components coincide and since €2;, has more than two
boundary points, I';; is Kleinian.

In another terminology, I';; is of the first kind in Q,;.

4.2. A cocycle on I' can be restricted to a cocycle on I';;, and the restriction of a co-
boundary is a coboundary. We can therefore speak of the restriction |I';; of any k€ H(T'),
and of the space H(I")|T';; as a subspace of H(T'},).

It is clear what we mean by an Eichler integral with respect to I';;, considered on
€;;. An integral with respect to I' defines, by restriction, an integral on Q,;, but it is not
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sure that an integral on €;; can be extended to an integral on ;. The following simple

lemma is therefore important.

Leuma 3. If an Eichler integral on Q,; has the period k|T';; for some h€ H(I"), then it
can be extended to an Eichler integral on Q, with period h.

Proof. If f is the given integral on );; we define its extension f by setting f=f-A4-1 —
R(A~") on AQ;;. This definition is independent of the choice of 4 from the right coset of
I';; to which it belongs, for if 4Q;,=BQ),;, then B4€I";; and f- B-14 —f=h(B1A4) on
Q,;, hence f- B1—~f- A-'=h(B14)- A-1=h(B)+h(4)- A1 =h(B1) —h(A) on AQ;;.

To show that f is an Eichler integral we compute the period pd,f on AQ,; for an arbi-
trary B€D. For 2€A4Q,, f(Bz)=(f-A'B)(Bz)—h(A-'B-1)(Bz) and hence fB=
]‘-AA—1 —k(A'B-1)- B=f- A~ —h(A-') +h(B). Thus pdyf=h(B), independently of 4, and
we conclude that € E,.

CoROLLARY. The image pd E, consists of all h€ H(I") with h|T";;=0, and
H(T)/pd E;y=HD)|T,,.

This is the special case of the lemma where =0 on Q,,.

5. The cohomology group H()

5.1. We return to the punctured surface S} and its fundamental group 7,(S7) considered
in Section 4.1. We assume that the fundamental group is formed with respect to an initial
point p,, and we choose simple loops ¢, from p, around the branch points p, of finite order
7. Let N’ be the smallest normal subgroup of 7;(S7) that contains the powers ci#, and set
71, =7,(87)/N’. Clearly, N’ is a subgroup of N, the group determined by Q,; as a covering
of 87, and it determines a surface ;§i which may be viewed as a covering of Q,;. Although
7; can be realized as a Fuchsian group, we shall actually have no need for this concrete
realization.

Choose z,€Q;; with projection p,. A closed curve ¢ from p, lifts to a curve ¢’ on Q;;
that leads from 2, to a point Az,, where 4 is a uniquely determined element o(c) €T;;.
Since o(c) is the identity when ¢ € N’, this construction defines a surjective homomorphism
o :m;—~I'

We define the action of zz; on functions in Q;; by f-¢=f-6(c). The cohomology group
defined by this action is denoted by H(x,;), and the subgroup of parabolic elements by
PH(r).
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Levma 4. dim PH(n;)=2d; and dim H(zw;)=2d;+n,.

We recall that d; =dim Df(0) and that =, is the number of cusps on ;. Proofs are given
in Eichler [6] and Weil [8]. Eichler treats a less general and Weil a more general case.
In the interest of completeness we shall reproduce Weil’s proof with appropriate modifica-

tions.

5.2. Proof of Lemma 4. We represent sz, through generators a,, b,, ¢, subject to the rela-
tions w=a,b,a;'6:" ... a,b,a;'b; %, ... ¢c,=1 and cf*=1 for the loops that correspond to
finite branch points. We have to determine the number of linearly independent cocycles
and parabolic cocycles on the free group that satisty A(w)=0 and A(c*) =0.

The latter condition can be written as h(c,)-(c*'+...+¢+1) =0 in readily under-
standable notation. Let V) be the space of all €V that satisfy v-(c/*~*+...+1)=0. For
the purpose of finding the dimension of V, we may assume that o(c,) is the mapping
z—wz with w™*=1. Then 2™ (cF 1+ ... +1)=(@* P10 4 @m0 1)z and this
fails to be zero only if 7, divides m+1—gq. In the interval 0<m<2¢—2 this happens
2((g —1)/ry] +1 times. We conclude that

dim Vy=2¢ —1-2[(¢—1)/r] =1 = —=2[(1 —q) (1 - 1/r)].

Simple estimates show that [¢g(1—1/r)]+[(1 —¢)(1 —1/r)]=0. On comparison with the
definition of #, in Section 1.3 it follows that dim V, = —27,(p,)-
We notice further that V,,=V (¢, —1). Indeed, if v=u-c, —u one verifies that

ol 1+ +1)=0,
and if this condition is fulfilled we choose
w=v-(cF 20752+ (1, —2) e+ 1 — 1)
and obtain u-¢,—u= —(r,— 1) v.

When 7,=co we let V, be the space of polynomials that satisfy the parabolicity
condition v =u-¢, —u, u€V; in other words, V=V -(c,—1) by definition. In order to find
dim ¥, we may take o(c,) to be the transformation z—z+1. Since u(z-+1)=u(z) if and
only if % is constant we see that dim V), —=2q —2, and this is equal to —27,(p;).

5.3. Following Weil [8] we introduce notations RB,=1 and

Ri=a,bya' bt .. a;b;0; 1 bt
Ry+k:Rgcl e Cp

@;=R;_1b;j' R;j*

5,=R,a ' R,

G=Ryirer Byl (1<j<g, 1<k<n).
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It is easy to check that @,, b,, ¢, are generators of ;. Moreover, the condition k(w) =0 can

be written in the form
g g n
2 M) B (1=a,)+ 3 hib) b7 B (B, — 1)+ 3, hlae) By =0. (8)

We regard the left-hand side of (8) as a mapping F: V2 x V, x...x V,—~ V. Our task is to
find the dimension of the nullspace of F.

It will be proved below that F is surjective, and also that the number of linearly
independent coboundaries is 2¢ —1. From this it follows that the nullspace of F has di-
mension 2g(2g — 1) —23#(p) — (2¢ — 1), and that the dimension of PH(r,} is 2(9 —1) (29 —1) —
2 > #y(p)=2d,, by comparison with (3). To find the dimension of H(x,) we merely replace
Vi by V whenever r, = co. The dimension increases by one for each change, in agreement

with the statement of Lemma 4.

5.4. We shall now show that F is surjective. Suppose that this is not so. Then there
exists a nonzero linear functional v’ on ¥V that vanishes on all the subspaces V-(a;—1),
V-(6,-1) and V-(c,—1) R}, =V-R;}(é,—1)=V-(§—1). If v' annihilates v-(a —1) and
v-(b—1) for all w€EV, it also annihilates v-(ab—1)=v-a-(b—1)+v-(a—1). Since {g;, b;, &}
is a system of generators it follows that v’ annihilates v- (@a—1)forall vEV, a€m,.

Assume first that there is a loxodromic o(a), @ € z; we may take it to be z—~wz where
o is not a root of unity. Since 2™ a=w™1~%" we have 2" (@ —1)=0 only for m=g—1.
Therefore, v" must be a multiple of the linear functional that maps » on its middle coeffi-
cient. It follows that v-n —v has middle coefficient zero for all v€ V and all b € ;. We write
a(b) in the form (az +f)/(yz+6) and apply the result to »=2%¢-2 and v=1. In this way we
obtain o8 =y =0, and this is true only when o(b) is a multiple of z or 1/z. It follows that a
pair of points (in our case 0 and oo) is left invariant by all transformations in I';;, But then
I';, is an elementary group, and this possibility has been ruled out by Lemma 1.

Consider next the case of a parabolic o(a); we take it to be z—~z+1. It is clear that
9(z+1) —v(z) has zero first coefficient, while the others are arbitrary. Therefore v’ takes
v into its first coefficient, and we conclude that v-b—v has first coefficient zero for all
v€EV, b€m, We apply this to v =22-2 and v =1. With the same notation as above we obtain
o?2=1, 9=0. Hence o(b) is a euclidean motion. But a discrete group of euclidean motions
is elementary, and we have again reached a contradiction.

There cannot be only elliptic transformations o(a), for in that case I';; would be a finite
group, and consequently elementary.

To complete the proof of the lemma we must still show that there are exactly 2¢—1

linearly independent coboundaries, and this will be so if v-a —v=0 for all @ €x; implies
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v=0. Suppose that v satisfies this condition. If there is a loxodromic o(a), normalized as
above, the same computation as before shows that v must be a multiple of 29-1. However,
with the same notation as before, 2%-1-(b—1) =0 gives (ez + )% - (yz +0)?1 =291 which is
true only if ey =£6=0. This means that the pair 0 and oo remains invariant, and we have
the same contradiction as before. Similarly, if there is a parabolic o(a), chosen as before,
the condition v(z+ 1) =v(z) shows that v is constant, and 1- (b —1) =0 leads to (yz+§)*-2=1,
hence y =0, §2¢-2=1. Again, ¢(b) would be a euclidean motion, and the contradiction is

reached. (This part of the proof can be found in Bers [4].)

6. Integrals of the second kind

6.1. The integrals of the second kind are of course the elements of E,/E,,. We are
presently preparing to prove Theorem 1.

For typographical reasons we write d instead of d;. Let ¢y, ..., ¢, be a basis of D{(0).
The Wronskian W =det ¢, k=1, ...,d, v=0, ...,d —1 is not identically zero. We choose
L€y, With‘W(Co) + 0 (a non-Weierstrass point). With this choice there exists a new basis,
which we continue to denote by ¢, ..., ¢;, with the property that

@ilz) z(z_é-o)k_1 +0(|Z—Col )

Lemma 5. Every f€EPE, has a unique decomposition f=f,+f,, where f, has zero periods
and f, is regular in Q; as well as over the cusps, except for poles of at most order d at points
equivalent to (.

Proof. Let oy and « be the one point divisors determined by the projections of (,
and some other point £ €4),;. It is clear that Df(d«,) reduces to zero, for a linear combina-
tion of the ¢, cannot vanish to the order d at {, without being identically zero. For even
stronger reason Df(ma+day)=0 for any integer m>0. It follows by use of (4) that
dim D}~ 9(—ma—do,) =m. For this reason there exists a differential of order 1 —¢ that is
regular except for precisely the singularity (z—{)™™ at { and a pole of at most order d
at {,. If f is regular over the cusps, it suffices to subtract from f a linear combination
of such differentials to end up with the desired decomposition f=f,+f,.

In modified form the same method serves to reduce the singularities over the cusps.
We refer for notations to the proof of Lemma 1 (Section 2.2). By assumption ¢ =02*-1f has
2nikz

a development > ¢ e

f itself has a development f= @,e*"*? +v(z), v€ V. The reduced degree of the term ¢™** in

with ¢, =0 and only a finite number of negative k. It follows that
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the development of a differential of order 1 —gq is k — (¢ —1). Evidently, our method permits
us to eliminate all terms with negative reduced degree. In other words, there exists an
fo€D' such that fi=f—f,=>722, 1 b +u(z). It follows that 62¢-!f, contains only
terms e*™*¢ with k>¢—1, so that f, is regular over the cusp. This completes the existence
part of our proof.

To prove uniqueness we observe that if f,+f, =0, then f, is a differential of order 1 —gq,
and f,p, is a first order differential. The sum of the residues must vanish, and since the
only possible residue is at £, it follows that f, is polefree, and hence equal to zero.

The above proof is in essence due to Eichler [6]. It was necessary to repeat it because

of the different circumstances.

CoRrROLLARY. An Eichler integral which actually has a pole of order less than or equal to
d at £, and no other singularities, cannot have the same periods as an integral of the first kind.

This is just another formulation of the uniqueness.

6.2. Proof of Theorem 1. We wish to show that dim (pd PE,/pd E,)=d. The preceding
lemma makes it clear that the dimension is at most d, and the theorem will be proved if
we can exhibit an f; with a pole of exactly order k for any k<d.

We do this by explicit construction. It is no restriction to assume that o is an ordinary
point for I' (neither a limit point nor an elliptic fixed point). Under these circumstances the
Poincaré series

91(2 0) =AEZP(Z—AC)“1A'(C)“ (9
converges and represents a meromorphic function of z on all of Q. For a fixed BEI' a

simple computation yields
91(Bz, 0) B'(2)' "¢~ gy(2, ) =AEZP[(B' (40)/B'(2)* "t =1](2— AD) ' A({)".

Because B'(z) is of the form (yz+4)~2, the bracketed expression is a polynomial in z of
degree 2¢ —1 which is divisible by z—Af. We conclude that pdgg,(z, {) is a polynomial
of degree 2q —2, the same in all components of Q,, and even in all components of (). Hence
91(z, {) satisfies the basic requirement for an Eichler integral, and one verifies without
difficulty that it is regular over the cusps. Its only singularity is a simple pole at {.

To obtain integrals with poles of higher order it suffices to form derivatives with
respect to [. We set g,(z, {) =0 ""gy(z, £)/o¢* " and ¢,(2) =gi(z, {,). It is clear that g, is an
Eichler integral with a pole of order k. Theorem 1 is proved.

For later use we record the following observations :
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(A) The functions gy, k=1, ..., d;, have restrictions g,| Q€ E, and g,|Q,€E;, for j+1.
All these restrictions have the same periods, and no integral in E;, has the same periods as a

linear combination of the g,.

6.3. We have already used the notation H(I'}|I";;. An element of H(I')|T";; determines
a cohomology class on 7;, namely by setting A(c) =h(o(c)). This correspondence is obviously
injective, and instead of introducing a new notation we shall simply regard H(I')|T';; as
a subspace of H(z,). In the same way P,H(I")|I";; is a subspace of PH(z;), and the restrictions
of pd PE,; and pd E can be regarded as lying in PH(z,).

LeMMA 6. There exists a homomorphism v :pd PE,—~PH(sw;) with kernel pd E,; whose
range is contained in P, H(T')|T';; and has intersection {0} with pd E4|T;,.

Proof. An element h€pd PE, is, by definition, the cohomology class determined by the
periods of some fEPE, We use Lemma 5 to write f=f,+f,. There exists a unique linear
combination g of the g, with the same singularity as f;. We define y by y(h)=pd g|T";;.

It is clear that f€ K, gives f, =f and g =0, y(h) =0. Conversely, y(h) =0 implies g =0,
fLEE,, and h=pd f,. Hence the kernel is pd E;, as asserted. Finally, the corollary to
Lemma 5 shows that y(h)€pd E |I';; implies g =0, y(h) =0.

CoroLLARY. The range of v has dimension d,.

This is a direct consequence of Lemma 6 together with Theorem 1.

7. Integrals of the first kind

7.1. Since 929 transforms Eichler integrals into differentials of order ¢ it is natural
to try to reverse the process and pass from differenvials to integrals through repeated
integrations. The difficulty is that this construction may lead to multiple-valued functions,
and even if we obtain a single-valued integral on ();;, say, it is not certain that it can be
extended to an Eichler integral on Q,. What we can do, however, is to map D{(0) into
PH(m,).

Lemma 7. There is a canonical injection 8 : D{(0)~PH (s ;) such that 5(D(0)) n H(I)|T';

cpd E,|I';;. Moreover, the inverse image of H(T)|I';; is contained in ¢2-1E,.

Proof. Given ¢ € D{(0) we define &, on z; by

hy(c) = f( _1),(2— O (L) de. (10)
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We recall that {c™1)’ is the lift of ¢~!, beginning at z,. It is clear that hy(c)€V and that it
depends only on the homotopy class of c.

To prove that & is a cocycle we observe that (b-1a~1)’, is (b~)’ followed by B-Y{a~')
where B=qg(b). Hence,

h'p(“b)=(f _ +f, - )(2—5)2"_2<P(C)d5-
@Yy B Ya "ty

The first integral is A,(b), and a simple calculation shows that the second is Ag(a)- B. Thus
hy(ab) =h(a) b+ k(D).

We need to show, moreover, that k, is parabolic. Let b correspond to a loop around a
cusp. Then B=g¢(b) is a parabolic transformation, and as usual we may assume that
Bz=2z+1. We can choose the path b in such a way that

2o+iM 2o—1+IM 20—-1+iM
mo ([ [ [T et a

with large M. Because @ is regular over the cusp it tends to zero as Im {—>oco, and hence
the middle integral tends to zero as M -> co. The convergence of the two other integrals is
also assured, and we see at once that k,(b) has the form v(z +1) —v(2), v€V.

Suppose now that 4 is a coboundary, k,(c)=v-o(c) —v for all c€ ;. Then, first of all,
hy(c) =0 when ¢(c) is the identity, and therefore

f¢(2)=fz(z-4)“‘2¢(f§)d5 (11)

is independent of the path in Q,,. One verifies by computation that f,-a(c) —f,=h,(c) =
v-o{c) —~v. Hence f,—v is invariant, and it follows that f,=v and ¢ =8*¢-1f=0. We have
proved that the mapping which takes @ into the cohomology class of A is injective.

To complete the proof of Lemma 7, assume that 6(¢) € H(I')|T';, which means that
h,(c) =h(a(c)) for some cocycle h on I'. It follows as above that (11) is independent of the
path, so that f, is again well defined. Moreover, its periods in (2;; are given by A, and by
assumption 4 has an extension to all of I'. We conclude by Lemma 3 that f, can be extended
to an Eichler integral on €2;. Since f, is regular, so is the extension. We have shown that
o(p)€pd E4|T,,. Also, =221 €0*-1E,,. The proof is complete.

7.2. The following observation is a direct consequence of the preceding lemmas.
LeMMmA 8. The ranges of y and 6 span all of PH(x)).

Since both ranges have dimension d, and PH(n,) has dimension 2d; (Lemma 4) this is

equivalent to saying that the intersection of the ranges is zero. Suppose that §(g) =y (pd f)
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with @ € D{(0), fEPE,. Since y(pd f)€P,H(T)|T';;< H(F)|T; it follows by Lemma 7 that
o(@)€pd E,|T';;, and by Lemma 6 that é(p)=0.

7.3. Proof of Theorem 2 (second part). Given hEP,H(I") we consider its restriction
k|T';; as an element of PH(n,). According to Lemma 8 it has a representation R =
y(hy) +d(p) with k,€pd PE, and @€ D{(0). Since k|I';; and y(h,) are in H(T')|T,,, so is
(). It follows by Lemma 7 that d(p) €Epd E; |T';,. Hence h|T,;€pd E,|T';;, and Lemma 3
shows that h€pd PE,. The opposite inclusion, pd PE,< P, H(T') has already been proved
(Lemma 1).

7.4. In order to prove the first part of Theorem 2 it is necessary to take into account
differentials with simple poles at the cusps. We shall denote by y, the cusp divisor with
coefficient —1 at each cusp of §;. Accordingly, Df(y,) will be the space of differentials with
at most simple poles over the cusps. We shall write E,(y;) for the space of Eichler integrals
f with 82411 € Di(y,).

We need stronger versions of Lemmas 6-8.
Lewmma 6". y(pd PE;)Npd E(y,)|T";;=0.

Proof. We must show that g, as defined in the proof of Lemma 6, cannot have the same
periods as f€ E(y;). If this were so (g —f) g, would be a first order differential, and the sum
of the residues would have to vanish. The conclusion g =0 will follow if we can show that
for has zero residues at the cusps.

As usual we assume that the cusp corresponds to Bz=z+1, and we use Z =¢*"* as
local variable. The development of ¢2¢-1f in powers of Z contains no negative powers,
but the constant term may be present. Repeated integration shows that f itself can be
developed in positive powers of Z plus a polynomial in 2. Since fg, and g, are both periodic,
so is f, and the polynomial reduces to a constant. The development of ¢, begins with a
positive power, and the same is consequently true of fp,. Hence fg, is regular over the cusp,
and the residue is zero.

LemmA 7'. The homomorphism d can be extended to an injection §': Di(y,)~H(T)|T';;<
H(m;) such that &'(Df(y:)) N HI)|T;,cpd B (x)|T .

Proof. We can still define &, by (10). It is a cocycle, but no longer parabolic. If % is a
coboundary, k,(c) =v-@(c) —v, it follows as before that f,(z), defined by (11), is independent
of the path, and that f, —v is invariant. If the cusp is chosen as before, ({) remains bounded
as Im {— 4- co. Therefore f,—v grows like a polynomial in z, but because the function is

periodic only the constant term can be different from zero. This means that f, —v is regular
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over the cusp when regarded as a differential of order 1 —¢, and we conclude that f,=v.

The rest of the proof is exactly as before.
LEmMMA 8'. The ranges of y and &’ span all of H(r,).
As previously, this follows from Lemmas 6" and 7' together with the fact that
dim (pd PE,)=d;, dim &'(D{{y;))=d;+n; and dim H(w;)=2d,+n,.

The first part of Theorem 2 can now be proved by repeating the reasoning in Section

7.2 almost word by word.

8. Proof of Theorem 3

8.1. We recall that Q, is a finite union of sets Q,, €. The space PE, consists of func-
tions f on Q, whose restrictions /¥ =f|Q, for 1€ I belong to PE; and have the same periods.

Our first observation is that Lemma 5 generalizes to f€PE,. For that purpose we
must first choose non-Weierstrass points (§ €Q,;. The individual decompositions f® =
f& 4+ combine to a decomposition f=f, +f, where f, belongs to PE; and is regular except
for poles of order <d; at the points .{’. We know moreover that pd f=pd f, belongs to
pd E,; if and only if f, is polefree. Counting the possible singularities we deduce at once
that dim (pd B,/pd E;) <21 d;=d,.

To prove the opposite inequality we need only consider the functions g, introduced in
Section 6.2. For identification purposes the functions with pole at (§’ will now be denoted
by g%, 1<k<d, They are defined in (,, and our remark (A) shows that they belong to
PE,. Their total number is d,, and the periods pd g’ are linearly independent modulo
pd PE;,. Indeed, suppose that >, ¢, pd g¥ =pd f with fEPE,,. By restriction to Q, we
find that D¢y pd ¢ =pd f with fEPE,;, and according to (A) this is possible only when
¢ =0. The theorem is proved.

It has already been remarked that Theorem 4 requires no proof.

Remark. When this paper was already written I was informed by Dr. Irwin Kra that he
too has investigated H(I') in its relationship to the differentials and Eichler integrals on an
invariant part of Q. Because he uses the methods of Bers where I use those of Eichler there
seems to be no direct overlap between his work and mine. It is likely, however, that the two
points of view will eventually complement each other and lead to a fuller understanding of the
whole circle of ideas.
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