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In  his classical work on automorphic functions Poincard introduced the distinction 

between Fuchsian groups and the more general class of Kleinian groups. The Fuchsian 

case proved to be much more tractable, and soon grew to an impressive theory with 

applications in several branches of mathematics.  In  contrast, the s tudy of Kleinian 

groups progressed slowly and still presents major unsolved problems. A recent surge of 

interest occurred when it was found tha t  the theory of quasiconformal mappings has 

important  bearing on the subject. 

The writer proved (Ahlfors [1]), with minor restrictions that  were subsequently 

removed by  Greenberg [7] and Bers [5], that  the orbit space of a finitely generated Kleinian 

group, when completed, is a finite union of compact Riemann surfaces. This result is the 

starting point of newer developments. 

An important  step was taken by  Bers who, in several papers [3, 4, 5], emphasized the 

use of differentials of arbi t rary order q >~ 2. This served to eliminate the deficiencies of the 

original approach, which, motivated by  the connection with quasiconformal mappings, 

worked exclusively with quadratic differentials. 

This paper continues the research of Bers, especially as developed in [4]. The reader 

may  wish to consult Ahlfors [2] for notations, which differ from those of Bers, and for an 

assembly of elementary facts. The present paper  is, however, essentially selfcontained. 

The paper of Bers, at  least indirectly, and my  own, very directly, owe much to Eichler 

[6]. I would be remiss if I did not acknowledge my  debt  accrued by  rereading his paper. 

I have also profited greatly from Weil [8]. 

(1) This research was partially supported by the Air Force Office of Scientific Research under 
Contract AF49(638)-1951. 
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1. Differentials 

1.1. In  this paper F denotes a finitely generated Kleinian group. By definition, a 

Kleinian group is a group of fractional linear transformations of the extended complex 

plane whose set of limit points is a nowhere dense perfect set. I t  is important  to notice 

tha t  we are excluding the elementary groups, which are the ones with at  most two limit 

points. 

The complement of the limit point set is the set of discontinuity, to be denoted by 

= ~ ( F ) .  As already mentioned, the orbit space S = S ( F ) = ~ / F  is known to be a finite 

union of Riemann surfaces S~, each obtained from a compact surface ~q~ by  removing at  

most a finite number  of points. We shall also use the notation ~ = ~ ~q~. 

The inverse image of S~ under the projection map ~ / F  will be denoted by ~i ,  its 

components by ~ j .  The projection defines each ~t j  as a branched covering of St with 

ramification numbers r(pk) > 1 at  the projections of elliptic fixed points. We set r(pk) = 

when Pk E~qt-St and refer to these points as infinite branch points or cusps. 

1.2. A meromorphic function 99 on ~ is called a differential of order q with respect to 

I ~ if (i) 99(Az)A'(z) q =99(z) for all A EF, (ii) the projection of 99 can be extended to a rational 

differential on S. More precisely, ~b is the projection of 99 on S if ~ ( Z ) d Z  q =99(z)dz q becomes 

an identity when Z is replaced by  the local coordinate of the projection of z. I t  follows from 

(i) tha t  ~b is invariantly defined, and (ii) requires that  ~b can be extended to S with no singu- 

larities other than  poles. 

The linear space formed by all differentials of order q will be denoted by  D q = Dq(F). 

There is an obvious direct sum decomposition D q = ~ D~ where 99 E D~ vanishes identically 

outside of ~t; usually, we identify such a 99 with its restriction to ~t .  

�9 1.3. At unramified points the degrees (orders) of 99 and ~ are equal. For a point with 

finite ramification number r=r (pk )>1  we may  assume that  the projection is given by  

Z =z  ~. I f  99 and ~b have degrees v and ~ respectively, one obtains r ~ + q ( r -  1)=v. I t  follows 

that  99 is regular if and only if v>~v0= - [ q ( 1 -  I/r)]; here Ix] is the largest integer ~<x. For 

this reason, it is natural  to define the reduced degree of 99 as the number  ~ - ~  0. For instance, 

we would say tha t  99 has a simple pole if the reduced degree is - 1. We note that  ~0 = 0  

when q = 1 or 0. 

A cusp corresponds to a certain subgroup of parabolic transformations with generator 

BEF.  For the present purpose 1 ~ can be replaced by  any  conjugate group, and it is there- 

fore no restriction to assume that  B z = z + l .  In  these circumstances ~ contains a half 

plane I m  z > const. (for a proof see Ahlfors [1]), and we may choose Z =e  ~tz as local vari- 

able. The relation between 99 and ~b is given by  (27~i)q~(z)z q =99(•), and 99 has period 1. 
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The regular i ty of ~v is expressed by  the condition q~(z)=O(Iz1-2q) as I m  z-+ + c r  For  

q > 0 this will be satisfied whenever ~ = d e g  r 1> 1 -  q, whereas for q ~ 0 the condition be- 

comes ~ > - q .  Accordingly, we set ~ 0 = 1 - q  if q > 0 ,  ~0 = - q  if q < 0 .  Observe tha t  v0 is 

again 0 for q = 1 and q =0 .  I t  m a y  also be noted tha t  v0 is always the limit of - [q (1  - l / r ) ]  

as r ~  cr The reduced degree of ~v is again defined as ~-vo .  

The Fourier  development  of a regular ~ begins with a positive power of Z if q > 0, 

bu t  when q ~< 0 there m a y  be a constant  term. Whether  ~v is regular or not,  the constant  

te rm plays a different role f rom the others. To bring out  this distinction we shall say tha t  

a differential ~v is parabolic if, at  each cusp, the constant  te rm of the Fourier  development  

is missing. For  differentials in D~ only the cusps on ~q~ are relevant,  

1.4. Let  ~ be a divisor on S. We shall say  tha t  q E D q is a multiple of ~ if, a t  every  point,  

the reduced degree of q is at  least equal to the coefficient of g. The linear space of multiples 

of ~ is denoted by  Dq(zO. In  particular, the space of everywhere regular differentials, also 

known as cusp forms, is denoted by  Dq(O). The meaning of the notat ions D~(a), D~(0) is 

obvious. 

The R i c m a n n - R o c h  theorem leads to a relation between dim D~(~) and  dim 

D~ -q (-zr If  gt is the genus of ~q~ this relation reads 

dim D~(~) = dim D~-q( - ~) - ~ ~0 (P) + (2 q - 1)(g~- 1) - deg ~. (1) 
PeS l  

Because F has more than  two limit points the ramification numbers  have to satisfy the 

condition 
2 q ~ -  2 + ~ (1 - 1/r(p)) > 0, (2) 

which expresses the fact  tha t  the Poincard area of 8~ is positive. I t  is an  easy and  well- 

known consequence tha t  D~(0)= 0 whenever q < 0. 

F rom now on we assume tha t  q/> 2. I f  we apply  (1) with ~ = 0  we obtain  

dim D~(0) = - ~ ~0(P)+ ( 2 q -  1)(g~- 1), (3) 
Pr 

and it follows tha t  (1) can be wri t ten in the convenient  form 

dim D~(~r = dim D~-q( - ~) + dim D~(0) - deg :r (4) 

2. Cohomology and Eiehler integrals 

2.1. We let A EF act  on the space of f u n c t i o n s / : ~  ~ (3 according to the  rule ([.A)(z) = 

/(Az) A'(z) 1-q. Since / .  A B  = (/. A) .  B this defines a representat ion of F in the space of linear 

automorphisms of ~c .  
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In  particular, F acts on the space V of polynomials of degree at most 2 q - 2 ,  and it 

leaves V invariant. There is thus a canonical representation of I ~ in the space of linear 

autom orphisms of lYq-L 

A cocycle on F is a mapping h :F-+ V such tha t  h(A B) = h(A). B + h(B). I t  is a coboundary 

if there exists a v E V with h(A)= v. A -  v for all A E F. The cocycles modulo coboundaries 

form the first cohomology group H~(F, V). We shall simplify the notation to H(F), and we 

remind the reader tha t  it depends on the integer q ~> 2. 

2.2. A meromorphic function / on f~i will be called an Eichler integral on f~ if 

(i) ~2q--1 l E Diq 

(ii) / . A - / E  V for all A EF. 

Here ~ means differentiation with respect to z. I t  is a fundamental  fact that  ~ q - l ( / . A ) =  

[(~2q-1). A] A'(z) q. I t  is therefore a consequence of (i) t h a t / - A - / i s  a polynomial of degree 

at  most 2 q - 2  in each component of ~ .  Condition (ii) states tha t  this polynomial does not 

change from component to component. 

The space of all Eichler integrals on ~ will be denoted by  E~ = E~(F). We shall also need 

to consider various subspaces. An Eichler integral / will be called parabolic if ~2q-1/is para- 

bolic (see 1.3), and the parabolic subspace is denoted by  PEt. An integral is said to be o/ 

the first kind, and we write /E E~I, if ~2q-1/E D~(0). Finally, El0 will be the space of trivial 

Eichler integrals, characterized by  ~q-1 /=0 .  A trivial integral is represented by  a poly- 

nomial on each component ~ j ,  but  these polynomials are not arbitrary,  for they are still 

subject to condition (ii). 

2.2. The polynomials / ' A - /  are the periods of /, and we write / .A-- /=pdA/ .  I t  is 

readily verified that  the mapping A-+ViA/is  a cocycle. The periods determine a canonical 

homomorphism E~-+H(F) which will be referred to as the period homomorphism. We 

denote it by pd; thus pd / is the cohomology class of the periods of / ,  and pd E~ is the image 

of E i under the period mapping. 

The periods of parabolic Eichler integrals have a special property.  We have seen that  

a cusp determines a parabolic transformation B E F, unique up to conjugation. A cocycle 

is said to be parabolic at the cusp corresponding to B if h(B)=v. B - v  for some v E V. 

To make the definition consistent we must  show that  this property is preserved under con- 

jugation. 

Quite generally, let us replace F by  F U= UF U -1 where U is an arbi trary linear trans- 

formation, not necessarily in F. For a cocycle h on F we define h v on F u by  htr(UAU -1) 

h(A). U -1. We check first that  h u is a cocycle. One obtains, indeed, htr(UAU-1UBU -1) = 
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h(A).  B U  -l  +h(B) .  U - I = h v ( U A  U-l) �9 U B U  -1 +hV(UBU-1).  Next, if h(B) =v .  B - v  we find 

hV( U B  U -x) = v. B U -1 - v. U -1 = (v. U-i) �9 U B  U -1 - v. U -1, and the invariance of the para- 

bolicity condition is proved. The same computation shows that  h v is a coboundary if h 

is a coboundary. We have thus defined a canonical isomorphism between H(F) and H(Fv). 

We may  now say that  a cocycle isparabolic on ~ , i f  it satsfies the parabolicity condition 

for all cusps on ~q,. Since coboundaries are automatically parabolic we may  speak of coho- 

mology classes being parabolic on ~q~, and the space of such cohomology classes will be 

denoted by P ,H(F) .  

L~,MMA 1. The period of a parabolic integral is parabolic. 

Proo/. We claim, more precisely, t h a t / E P E ,  implies p d / E P i H ( F ) .  Our preliminary 

considerations have shown that  we may take the transformation B that  corresponds to a 

given cusp to be of the form Bz =z + 1. Let ~ , j  be the component that  contains an upper  

half plane. In  that  half plane qJ = ~ 2 q - 1 / h a s  a convergent development ~ = ~ c m e 27t t m z with 

c o =0.  I t  follows by iterated integration inside the half plane that  / is itself a periodic 

function plus a polynomial v of degree ~< 2 q - 2 .  Hence the period of / i s  v(z+ 1 ) - v ( z ) =  

v. B - v ,  and the parabolicity condition is fulfilled. 

3. Summary of results 

3.1. Because F is finitely generated the cohomology group H(F) has finite dimen- 

sion. In  fact, if there are N generators it is easy to see tha t  dim H(F) cannot exceed 

(N - 1) (2q - 1). I t  is natural  to ask to what extent the cohomology classes are the periods of 

Eichler integrals belonging to E i and its subspaces. In  other words, we are interested in in- 

formation tha t  describes the images pd E~, pd PE~, pd E~I, pd E~0. The main result is con- 

tained in two theorems. 

THEOREM 1. dim (pd PE~/pd E~I ) =d im D~(0). 

T H ~ O R ~  2. pd E~ = H(F )  and p d P E ~ = P ~ H ( F ) .  

The second theorem asserts that  the period homomorphisms E~-+H(F) and P E ~  

P~H(F) are surjective. In  other words, every cohomology is a period of an Eichler integral 

on ~2~, and every parabolic cohomology comes from a parabolic integral. The first theorem, 

perhaps even more informative, lets us recognize, in terms of a known quant i ty  associated 

with ~q~, the size of the contribution from essentially different parabolic integrals of the 

second kind. 

3.2. We shall write d~=dim D~(0), and we recall that  this dimension is given by 

formula (1). In  order to analyze the theorems we shall also introduce the dimensions 
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p t = d i m  (pd Et/pd PE~), et=dim (pd Eu/pd Et0), s~=dim pd Ei0. We shall also denote the 

number of cusps by hi. 

The theorems express a balance 

p~ + d~ + e~ + st = dim H(F) (5) 

between the various dimensions. The value of the information depends on the extent to 

which we can characterize the numbers involved in other ways. 

The strongest result is the characterization of dt through Theorem 1. As forpt, Theorem 2 

shows that  p~ =dim H(F)/PtH(F). The parabolicity introduces one linear condition for 

each cusp, and we deduce that  p,<-..n t. The fact that  D~-q(0)=0 shows that  the period 

homomorphism, restricted to Etl , has kernel V. I t  follows that  e~ = dim (Etl/Eto), and we 

may interpret e t as the number of essentially different integrals of the first kind. The 

m a p p i n g  ~2q-I:Eil--~D~(O ) has kernel Et0, proving that  ei<-..dt. Finally, st indicates the 

number of ways in which 0 on one of the components ~tj  can be extended to a trivial 

integral. I t  is zero when ~ is connected. 

In  a general way, if S t has low genus and ramification, the number s~ must be large. 

There seems to be no intuitive interpretation of s i beyond saying that  s~ is large when the 

components ~ j  are strongly permuted by F. 

3.3. Let I be any set of the subscripts i. We shall let ~ be the union of the corre- 

sponding ~ .  An Eichler integral on ~ will be defined as one that has the same periods on 

all ~ t  with iEI. The notations EI, PEI, En, Elo and PIH(F)  are selfexplanatory. We are 

going to show that  Theorem 1 can be generalized to this situation. 

THV. ORE M 3. dim (pd PEJpd E l l  ) = dim Dy (0). 

Here, naturally, dim D~ (0)= d I = ~ ~ i d~. There is also a counterpart of Theorem 2. 

THEOREM 4. pd E~= H(F) and pd PEj=PIH(F). 

This happens to be a trivial consequence of Theorem 2, for it suffices to apply that 

theorem separately to each ~t. I t  becomes important, nevertheless, when used in combina- 

tion with Theorem 3. In  analogy with (5) we obtain, with obvious notations, 

pz+d1+e1+sl = dim H(F). (6) 

For instance, we conclude at once that dim Dq(0)=~ dt<dimH(F), a theorem due to 

Bers [4]. 
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Combining (5) and (6) yields 

p~-t-d~ § e~ + s~ = p~ + di + e1+ sl, (7) 

a piece of information that  no longer involves cohomology. Consider the special case where 

~ is connected, so that  s~ = 0, and take I to be the set of all indices. Since p~ ~<pi one obtains 

dl § e~ ~ d~ § e~ ~< 2d~. This contains Bers' second theorem, d~ ~ 2d~, from the same paper. 

4. Subgroups and restrictions 

4.1. Recall that  we are denoting the components of ~ by ~s .  Let  F~j be the subgroup 

of F that  leaves ~tj  invariant. For fixed i, the different ~ k  are in one to one correspondence 

with the right cosets of F~j. If ~ k = B ~ j ,  then F~k=BF~jB-1, and F~k=F~j if and only ff 

B is in the normalizer of F~j. 

LWMMA 2. F~j is /initely generated, and ~fj is a component o] ~(F~j). In  particular, 

I'~j is a Kleinian group. 

Proo/. We remove the elliptic fixed points from ~ t  and denote the punctured region 

by ~0,  its projection by S ~ In familiar manner, ~7 is a smooth covering surface of S o 

determined by a normal subgroup 2Y of the fundamental group ~1(S~) and F~j is iso- 

morphic to the quotient group 7q(S~ o Since ze~(St) is finitely generated, so is the quotient 

group, and consequently F~j. We conclude that  S(F~j) can be completed to a finite union 

S(F~j) of compact Riemann surfaces; this would be true even if F~j were an elementary group. 

Every orbit of F in ~ contains a unique orbit of Fij in ~is- This determines an injective 

conformal mapping of S~ into S(F~j), and hence into ~q(F~j). As p ES~ approaches a cusp, 

so does its image, for the parabolic transformation B determined by the cusp on S~ belongs 

to F~j and defines a cusp on ~q(F~j) with the same local coordinate system. We conclude 

that  the mapping extends to a continuous and open map from ~q~ to ~q(F~i). The image must 

be a full component, and it follows that  the component of ~(F~r which contains ~ r  cannot 

contain points not in ~ .  The components coincide and since ~ i  has more than two 

boundary points, F~j is Kleinian. 

In another terminology, F~r is of the first kind in ~ i .  

4.2. A cocycle on F can be restricted to a eocycle on F~t, and the restriction of a co- 

boundary is a coboundary. We can therefore speak of the restriction h[F~r of any h E H(F), 

and of the space H(F) [ F~r as a subspace of H(F~). 

I t  is clear what we mean by  an Eichler integral with respect to F~i, considered on 

~r  An integral with respect to F defines, by restriction, an integral on ~ ,  but it is not 
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sure that  an integral on ~ r  can be extended to an integral on ~ .  The following simple 

lemma is therefore important.  

L~MMA 3. I /  an Eichler integral on ~, j  has the period h[F,j /or some hEH(F),  then it 

can be extended to an Eichler integral on ~ with period h. 

Proo/. I f  / is the given integral on ~ , j  we define its extension [ by  setting f = / . A  - 1 -  

h(A -1) on A~is. This definition is independent of the choice of A from the right coset of 

Fij to which it belongs, for if A ~ i j = B ~  w then B-1AEF,j  a n d / . B - 1 A - / = h ( B - 1 A )  on 

~t~, hence / - B  -1 - / . A  -1 =h(B-1A).A -1 =h(B  -1) +h(A) .A -1 =h(B -1) - h ( A  -1) on A ~  w 

To show tha t  f is an Eichler integral we compute the period pdB[ on A~i j  for an arbi- 

t ra ry  BEF.  For zEA~ij ,  [(Bz)=(/ 'A-1B-1)(Bz)-h(A-1B-a)(Bz)  and hence ] . B =  

/ . A - X - h ( A - a B - 1 ) . B = / . A - I - h ( A - 1 ) + h ( B ) .  Thus pd~/=h(B),  independently of A, and 

we conclude tha t  f~E~. 

COgOLLARY. The image pd E~o consists o/all hfiH(P) with h [ F ~ = 0 ,  and 

U(F)/pd E~o = U(P) [ F w 

This is the special case of the lemma where 1 =0  on ~ .  

5. The cohomology group H(Tcl) 

5.1. We return to the punctured surface S~i and its fundamental  group ~1(S ~ considered 

in Section 4.1. We assume that  the fundamental  group is formed with respect to an initial 

point P0, and we choose simple loops ck from P0 around the branch points p~ of finite order 

r k. Let  N '  be the smallest normal subgroup of zel(S~ ) tha t  contains the powers c~i, and set 

7~ t =~rx(S~ '. Clearly, N '  is a subgroup of N, the group determined by  ~i j  as a covering 

of S ~ and it determines a surface H i which may  be viewed as a covering of ~ j .  Although 

zt i can be realized as a Fuchsian group, we shall actually have no need for this concrete 

realization. 

Choose z0E~tj with projection P0. A closed curve c from P0 lifts to a curve c' on ~i j  

that  leads from z 0 to a point Azo, where A is a uniquely determined element a(c)EF~j. 

Since (r(c) is the identity when c E N' ,  this construction defines a surjective homomorphism 

We define the action of z~ on functions in ~ j  b y / . c = / . a ( c ) .  The cohomology group 

defined by  this action is denoted by  H(zt~), and the subgroup of parabolic elements by  

P H (7~,). 
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LEMMA 4. d im P H ( ~ )  = 2d~ and dim H ( ~ )  = 2d~ + n~. 

We recal l  t h a t  d t = d im D~(0) and  t h a t  n i is the  n u m b e r  of cusps on S i. Proofs  a re  g iven  

in Eichler  [6] and  Wei l  [8]. Eichler  t r ea t s  a less genera l  a n d  Weil  a more  general  case. 

I n  the  in teres t  of completeness  we shall  r ep roduce  Wei l ' s  proof  wi th  a p p r o p r i a t e  modif ica-  

t ions.  

5.2. Proo] o] Lemma 4. W e  represen t  7e~ th rough  genera tors  aJ, bj, ck subjec t  to  the  rela- 

t ions w=alb la~ lb~  1 ... a~bga~lb~Icl ... c n = l  and  c~k=l  for the  loops t h a t  cor respond to 

f ini te  b ranch  points .  W e  have  to  de te rmine  the  n u m b e r  of l inear ly  i ndependen t  cocycles 

a n d  parabo l ic  cocycles on the  free group t h a t  sa t i s fy  h(w) = 0  and  h(c~)=0 .  

The l a t t e r  condi t ion  can be wr i t t en  as h(ck)'(c~k--l+... + c k + l  ) = 0  in r ead i ly  under-  

s t andab le  nota t ion .  Le t  Vk be the  space of all  v E V t h a t  sa t i s fy  v . (c~k- l+. . .  + 1 ) = 0 .  F o r  

the  purpose  of f inding the  d imension  of Vk we m a y  assume t h a t  (~(ck) is the  mapp ing  

z -~oz  with  wr~ = 1. Then  m r~-i Z "(C k § 2 4 7  m+l q §  m, a n d  this  

fails  to  be zero on ly  if rk d ivides  m § 1 - q .  I n  the  in te rva l  0 ~<m ~<2q-2  this  happens  

2 [ ( q -  1)/rk] + 1 t imes.  We conclude t h a t  

d im V~ = 2 q -  1 - 2 [ ( q -  1)/rz] - 1 = - 2 [ ( 1  - q )  (1 - 1/rk)]. 

S imple  es t imates  show t h a t  [q(1 - l / r ) ]  + [(1 - q )  (1 - l / r ) ]  =0 .  On compar ison  wi th  the  

def in i t ion  of ~0 in Sect ion 1.3 i t  follows t h a t  d im Vk= --2~0(pk). 

W e  not ice  fu r the r  t h a t  V k = V" (c k -  1). Indeed ,  if v = u .  c k - u  one verifies t h a t  

V(C~ k - i  § ... § 1) =0 ,  

and  if this  condi t ion  is fulfil led we choose 

(c'k--~ ~- 2c~k--2 §  + (rk-- 2)ck + r k -  1) U ~ V " "~k 

and  ob t a in  u" ck - u = - (rk - 1) v. 

W h e n  r k = c ~  we let  Vk be the  space of po lynomia l s  t h a t  sa t i s fy  the  pa rabo l i c i t y  

condi t ion  v = u.  ck - u, u E V; in o ther  words,  Vk = V- (ck - 1) b y  defini t ion.  I n  order  to  f ind 

d im Vk we m a y  t ake  a(ck) to  be the  t r ans fo rma t ion  z-->z+l.  Since u ( z §  if and  

on ly  if u is cons tan t  we see t h a t  d im Vk = 2 q - - 2 ,  and  this  is equal  to  - 2~0(pk ). 

5.3. Fol lowing Well  [8] we in t roduce  no ta t ions  R 0 = 1 and  

Rj = a 1 b 1 a l  1 b~l . . .  aj bj ay 1 bj 1 

R g + k  = R g  Cl . . .  (3 k 

5I= Ri_ib)-I R] -1 
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I t  is easy  to check t h a t  5j, bs, 5k are  genera tors  of ~ .  Moreover,  the  condi t ion  h(w) =0  can 

be wr i t t en  in the  form 

h(aj )a f lR;~(1  - d j ) + j ~  h(b~)b]-IR]-l(~j - 1 ) +  h(c~) R ; l k  = 0 .  (8) 
J ~ l  k = l  

We rega rd  the  l e f t -hand  side of (8) as a m a p p i n g  F :  V ~g • V 1 • ... • V~-~ V. Our  t a s k  is to  

f ind the  d imension  of the  nul lspace of F .  

I t  will be p roved  below t h a t  F is sur ject ive ,  a n d  also t h a t  the  n u m b e r  of l inear ly  

independen t  coboundar ies  is 2 q - 1 .  F r o m  this  i t  follows t h a t  the  nnl l space  of F has  di- 

mens ion  2g(2q - 1) - 2 ~ 0 ( p )  - (2q - 1), and  t h a t  the  d imens ion  of PH(xe~) is 2(g - 1) (2q - 1) - 

2 ~ ~0(P) =2d~, b y  compar ison  wi th  (3). To f ind  the  d imension  of H(~i)  we mere ly  rep lace  

Vk b y  V whenever  r k = ~ .  The  d imens ion  increases b y  one for each change, in ag reemen t  

wi th  the  s t a t e m e n t  of L e m m a  4. 

5.4. We  shall  now show t h a t  F is sur ject ive .  Suppose  t h a t  th is  is no t  so. Then  the re  

exists  a nonzero l inear  func t iona l  v' on V t h a t  vanishes  on all  the  subspaces  V . ( S j - 1 ) ,  

V . ( b j - 1 )  and  V . ( c ~ - l )  R ~ l k = V -  -1 - Rg+~(c~- l )  = V . ( g k - 1 ) .  I f  v' annih i la tes  v . ( a - 1 )  a n d  

v. (b - 1) for all  v E V, i t  also annih i la tes  v. (ab - 1) = v. a .  (b - l )  + v- (a - 1). Since {S j, $~, 5k} 

is a sys tem of genera tors  i t  follows t h a t  v' annih i la tes  v . ( a -  1) for al l  v E V, a E ~ .  

Assume first  t h a t  there  is a loxodromic  a(a), a E ~i; we m a y  t ake  i t  to be z~a) z  where  

eo is no t  a roo t  of uni ty .  Since zm'a=eom+l-qz m we have  z m . ( a - 1 ) = 0  on ly  for  m = q - 1 .  

Therefore,  v' mus t  be a mul t ip le  of the  l inear  funct ional  t h a t  maps  v on i ts  middle  coeffi- 

cient.  I t  follows t h a t  v . n -  v has middle  coefficient zero for al l  v E V and  al l  b E ~e~. W e  wri te  

a(b) in the  form (~z +fl)/(~z +5)  and  a p p l y  the  resul t  to  v =z  ~q-~ and  v = 1. I n  th is  w a y  we 

ob ta in  aft =~(~ =0 ,  and  this is t rue  only  when a(b) is a mul t ip le  of z or 1/z. I t  follows t h a t  a 

pa i r  of poin ts  (in our  case 0 and  ~ ) is lef t  i nva r i an t  b y  all  t r ans fo rmat ions  in F u. B u t  t hen  

F~j is an  e l emen ta ry  group,  and  this  poss ib i l i ty  has  been ru led  ou t  b y  L e m m a  1. 

Consider nex t  the  case of a parabo l ic  a(a); we t ake  i t  to  be z-~z + 1. I t  is clear  t h a t  

v ( z + l ) - v ( z )  has  zero first  coefficient,  while the  o thers  are  a rb i t r a ry .  Therefore  v' t akes  

v in to  i ts  f irst  coefficient,  a n d  we conclude t h a t  v. b - v  has  f irst  coefficient zero for al l  

v E V, b E ~ .  W e  a p p l y  this  to v =z  2q-2 and  v = 1. W i t h  the  same no ta t i on  as above  we ob t a in  

a2q-2 = 1, ~ =0 .  Hence  a(b) is a eucl idean mot ion.  Bu t  a discrete  group of eucl idean mot ions  

is e lementary ,  a n d  we have  aga in  reached  a cont radic t ion .  

There  cannot  be on ly  el l ipt ic t r ans fo rmat ions  a(a), for in t h a t  case F~j would  be a f ini te  

group,  a n d  consequent ly  e lementa ry .  

To comple te  the  proof  of the  l emma  we mus t  stil l  show t h a t  there  are  e xa c t l y  2 q - 1  

l inear ly  independen t  coboundar ies ,  and  this  will be so if v . a - v = O  for al l  aEg~ implies  
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v = 0 .  Suppose tha t  v satisfies this condition. I f  there is a loxodromic a(a), normalized as 

above, the same computa t ion  as before shows tha t  v mus t  be a multiple of z q-1. However ,  

with the same nota t ion  as before, z q-1. ( b -  1) = 0  gives (az _~)q-- i  . (~Z JV(~) q-1 =Z q-1 which is 

t rue only if a7 =fib =0 .  This means tha t  the pair  0 and  co remains invariant ,  and we have 

the same contradict ion as before. Similarly, if there is a parabolic a(a), chosen as before, 

the condition v(z + 1) = v(z) shows tha t  v is constant ,  and  1- (b - 1) = 0 leads to (Tz + (~)2q-2 = 1, 

hence 7 = 0 ,  6~q-2 =1 .  Again, a(b) would be a euclidean motion,  and  the contradict ion is 

reached. (This par t  of the proof can be found in Bers [4].) 

6. Integrals of the second kind 

6.1. The integrals of the second kind are of course the elements of EdEn1. We are 

present ly preparing to prove Theorem 1. 

For  typographical  reasons we write d instead of dv Let  ~01 ... . .  qa be a basis of D~(0). 

The Wronskian W =  det ~(~), k =  1 .. . . .  d, v = 0  ... . .  d - 1  is not  identically zero. We choose 

~0 E ~2~j with W(~0)# 0 (a non-Weierstrass point). Wi th  this choice there exists a new basis, 

which we continue to denote by  ~01, ..., ~0d, with the proper ty  tha t  

~ ( ~ )  = (z - ~o) ~- ~ + o (  [ z - ~o [ ). 

L E ~ M A 5. Every /EPE~ has a unique decomposition /= /o  + ]1, where/o has zero periods 

and ]1 is regular in ~ t  as well as over the cusps, except/or poles o / a t  most order d at points 

equivalent to ~o. 

Proo/. Let  ~0 and  ~ be the one point  divisors determined by  the projections of ~o 

and some other  point  ~ E~,j .  I t  is clear t ha t  D~(dao) reduces to zero, for a linear combina- 

t ion of the q~k cannot  vanish to the order d at  $0 without  being identically zero. For  even 

stronger reason D~(mo:+do~o)=O for any  integer m>~0. I t  follows b y  use of ( 4 ) t h a t  

dim n l - q ( - m ~ - d ~ o )  =m.  For  this reason there exists a differential of order 1 - q  tha t  is 

regular except for precisely the singularity ( z - ~ )  -m at  ~ and  a pole of at  most  order d 

at  ~0- I f  / is regular over the cusps, it suffices to subtract  f rom / a linear combinat ion 

of such differentials to end up with the desired d e c o m p o s i t i o n / = / 0  +/1. 

I n  modified form the same method  serves to reduce the singularities over the cusps. 

We refer for notat ions to the proof of Lemma 1 (Section 2.2). B y  assumption ~0 =~2q- -1 /has  

a development  ~ cke ~€ with c o = 0  and  only a finite number  of negative k. I t  follows tha t  

/ itself has a development  / = ~  age ~m~z +v(z), v E V. The reduced degree of the term e 2mkz in 
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the development of a differential of order 1 - q  is k -  ( q -  1). Evidently, our method permits 

us to eliminate all terms with negative reduced degree. In  other words, there exists an 

/oED 1-q such that / l = / - - / o = ~ = q _ l b k e ~ Z + v ( z ) .  I t  follows that ~q-1/1 contains only 

terms e 2~k~ with k >~ q -  1, so tha t /1  is regular over the cusp. This completes the existence 

part of our proof. 

To prove uniqueness we observe that if f0 +/1 = 0, then/1 is a differential of order 1 - q, 

and/1~vk is a first order differential. The sum of the residues must vanish, and since the 

only possible residue is at ~0 it follows that  ]1 is polefree, and hence equal to zero. 

The above proof is in essence due to Eichler [6]. I t  was necessary to repeat it because 

of the different circumstances. 

COROLLARY. An Eichler integral which actually has a pole o/order less than or equal to 

d at ~o, and no other singularities, cannot have the same periods as an integral o/the first kind. 

This is just another formulation of the uniqueness. 

6.2. Proo] o/Theorem 1. We wish to show that dim (pd P E J p d  En) =d. The preceding 

lemma makes it clear that  the dimension is at most d, and the theorem will be proved if 

we can exhibit an/1 with a pole of exactly order k for any k ~< d. 

We do this by explicit construction. I t  is no restriction to assume that ~ is an ordinary 

point for F (neither a limit point nor an elliptic fixed point). Under these circumstances the 

Poincar6 series 
gl(z, ~) = ~ ( z -  A~)-IA'(~) q (9) 

AeF 

converges and represents a meromorphic function of z on all of ~. For a fixed B E F a 

simple computation yields 

g l  ( .Bz,  ~) B ' ( z )  1 -q  - gl(z,  ~) = ~ [(B' (A~) /B ' ( z )  ~- ~ - 1] (z - A ~ ) - I A ' ( ~ ) q .  
AeF 

Because B'(z) is of the form @z+(~) -2, the bracketed expression is a polynomial in z of 

degree 2 q - 1  which is divisible by z - A ~ .  We conclude that pdBgl(z, ~) is a polynomial 

of degree 2 q - 2 ,  the same in all components of ~ ,  and even in all components of ~. Hence 

gl(z, ~) satisfies the basic requirement for an Eichler integral, and one verifies without 

difficulty that it is regular over the cusps. Its only singularity is a simple pole at $. 

To obtain integrals with poles of higher order it suffices to form derivatives with 

respect to ~. We set gk(z, ~) =ak-lgl(z, ~)/~k-1 and gk(z) =gk(z, $0). I t  is clear that  gk is an 

Eichler integral with a pole of order k. Theorem 1 is proved. 

For later use we record the following observations : 
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(A) The/unctions g~, k = l ..... d i, have restrictions g~ [ ~ , e E , and g~[~eE~/or j * i. 

All these restrictions have the same periods, and no integral in E~I has the same periods as a 

linear combination o/the g~. 

6.3. We have already used the notation H(F) IF ,. An element of H(F) IF~j determines 

a cohomology class on ~ ,  namely by setting h(c) = h((r(c)). This correspondence is obviously 

injective, and instead of introducing a new notation we shall simply regard H(F) IF~ as 

a subspace of H(~) .  In the same wayP~H(F) [ F~ is a subspace of PH(ze~), and the restrictions 

of pd PE~ and pd E a can be regarded as lying in PH(z~). 

LEMMA 6. There exists a homomorphism y:pdPEi~PH(z l~)  with kernel pd E~I whose 

range is contained in P,H(F)] r,j and has intersection {0} with pd E~I [ I~j. 

Proo/. An element h Epd PEi  is, by definition, the cohomology class determined by the 

periods of some/EPE~.  We use Lemma 5 to w r i t e /= /o + /x .  There exists a unique linear 

combination g of the gk with the same singularity as/1. We define 7 by ~(h) = p d  g[ F~j. 

I t  is clear that  /E E~I gives ]1 = / a n d  g =0, y(h)=0. Conversely, 7(h)=0 implies g =0, 

/xEE~I, and h=pd /1 .  Hence the kernel is pd E~ 1, as asserted. Finally, the corollary to 

Lemma 5 shows that  7(h)Epd E~llF~j implies g =0, 7(h)=0.  

COROLLARY. The range o /7  has dimension d~. 

This is a direct consequence of Lemma 6 together with Theorem 1. 

7. Integrals of  the first kind 

7.1. Since ~2q-1 transforms Eichler integrals into differentials of order q it is natural 

to t ry  to reverse the process and pass from differentials to integrals through repeated 

integrations. The difficulty is that  this construction may lead to multiple-valued functions, 

and even if we obtain a single-valued integral on ~s ,  say, it is not certain that  it can be 

extended to an Eichler integral on ~i. What  we can do, however, is to map D~(0) into 

PH(ze~). 

LEMI~A 7. There is a canonical injection (5 : D~(O)--->PH(ze~) such that (5(D~(0)) N H(F) I F~s 

c p d  E~IlF~j. Moreover, the inverse image of H(F)IF~j is contained in ~2q-lE~x. 

Proo/. Given ~0 E D~(0) we define hr on ze~ by 

h~(c) = f (c_b ( z -  ~)2q-2 q~(~) d~. (10) 
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We recall that  (c-l) ' is the lift of c -x, beginning at  z 0. I t  is clear tha t  h~(c) E V and tha t  it 

depends only on the homotopy class of c. 

To prove that  h is a coeycle we observe that  (b-la-1) ', is (b-i) ' followed by  B - l ( a - 1 )  ' 

where B=a(b) .  Hence, 

+ C) 2 q-2(p(C) dC. h (ab) = (f(o_,,, ( :-  

The first integral is hr and a simple calculation shows that  the second is he(a). B. Thus 

h~(ab ) = hz(a) . b + hr b ). 

We need to show, moreover, tha t  he is parabolic. Let b correspond to a loop around a 

cusp. Then B=a(b)  is a parabolic transformation, and as usual we may  assume that  

Bz = z + 1. We can choose the pa th  b in such a way that  

i h~(b) j z0+tM - -  J z0-1 / (Z-- C)2q-2~(C) dC 

with large M. Because fp is regular over the cusp it tends to zero as I m  ~-~ oo, and hence 

the middle integral tends to zero as M-~ co. The convergence of the two other integrals is 

also assured, and we see at once that  he(b) has the form v(z + 1) -v ( z ) ,  v fi V. 

Suppose now that  h is a coboundary, h ~ ( c ) = v . a ( c ) - v  for all c Egg. Then, first of all, 

hr = 0  when a(c) is the identity, and therefore 

/~(z) = ( z -  ~)~q-21p(~)de (11) 
0 

is independent of the pa th  in ~u .  One verifies by  computation that / r162 = 

v . a ( c ) - v .  H e n c e / r  is invariant, and it follows t h a t / r  =v  and 9p =~:q-1/=0. We have 

proved that  the mapping which takes/P into the cohomology class of h is injective. 

To complete the proof of Lemma 7, assume that  6(!p ) fiH(F) IF u, which means tha t  

h~(c) =h(a(c)) for some cocycle h on F. I t  follows as above that  (11) is independent of the 

path, so t h a t / r  is again well defined. Moreover, its periods in ~ u  are given by  h, and by  

assumptibn h has an extension to all of F. We conclude by  Lemma 3 tha t /~  can be extended 

to an Eichler integral on ~i.  Since/r is regular, so is the extension. We have shown that  

6(/P) Epd E~I]F~j. Also, ~p =~2q-1/r The proof is complete. 

7.2. The following observation is a direct consequence of the preceding lemmas. 

L]~M~IA 8. The ranges o /~  and 6 span all o/ PH(~i) .  

Since both ranges have dimension d~ and P H ( ~ )  has dimension 2d~ (Lemma 4) this is 

equivalent to saying that  the intersection of the ranges is zero. Suppose tha t  6(Ip) = 7  (pd/)  
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with ~0 ~ D~(0), ] ~PE~. Since ~,(pd ]) ~P,H(F)[Fgi ~ H(F)[Fg~ it follows by Lemma 7 that  

6(~) epd  E~I[Fg~, and by  Lemma 6 that  ~(~0)=0. 

7.3. Proo/ o/ Theorem 2 (second part). Given hEP~H(F) we consider its restriction 

hlFij  as an element of PH(~i). According to Lemma 8 it has a representation hlF~j= 

~(hl)+(~(~ ) with h lepdPEg  and ~ D ~ ( 0 ) .  Since h lF~  and y(h~) are in H(F)IF~,  so is 

~(~). I t  follows by Lemma 7 that  (~(~)epd Egl l r~ .  Hence h lF~ e pd E,~ I F~, and Lemma 3 

shows that  h~pd  PEg. The opposite inclusion, pd PEgcPgH(F)  has already been proved 

(Lemma 1). 

7.4. In  order to prove the first part  of Theorem 2 it is necessary to take into account 

differentials with simple poles at  the cusps. We shall denote by  Z~ the cusp divisor with 

coefficient - 1 at  each cusp of S~. Accordingly, D~(X~ ) will be the space of differentials with 

at  most simple poles over the cusps. We shall write E~(Z~) for the space of Eiehler integrals 

/ with ~2q-1/E D~(Zg ). 

We need stronger versions of Lemmas 6-8. 

LEMMA 6'. 7(pd PEg) N pd Eg(Z~) [Fg j =0.  

Proo/. We must show that  g, as defined in the proof of Lemma 6, cannot have the same 

periods as ] E Eg(zi). If  this were so ( g -  ])~0 k would be a first order differential, and the sum 

of the residues would have to vanish. The conclusion g = 0 will follow if we can show that  

[~k has zero residues at  the cusps. 

As usual we assume that  the cusp corresponds to B z = z §  and we use Z = e  2~z as 

local variable. The development of ~q-1] in powers of Z contains no negative powers, 

but  the constant term may  be present. Repeated integration shows tha t  / itself can be 

developed in positive powers of Z plus a polynomial in z. Since/~k and ~0 k are both periodic, 

so i s / ,  and the polynomial reduces to a constant. The development of ~0 k begins with a 

positive power, and the same is consequently true of ]q0 k. Hence/~k is regular over the cusp, 

and the residue is zero. 

LEMMA 7'. The homomorphism (~ can be extended to an injection 5': D~(zg)--->H ( F) ] F tj c 

H(~g) such that 5'(D~(z~)) N H ( P ) ] F ~ j c p d  Eg(X~)]F,j. 

Proo/. We can still define hr by (10). I t  is a eocycle, but  no longer parabolic. I f  h is a 

coboundary, h~(c) =v.cf(c) - v ,  it follows as before that/r defined by  (11), is independent 

of the path, and tha t /~  - v  is invariant. If  the cusp is chosen as before, ~($) remains bounded 

as I m  ~ + oo. T h e r e f o r e / r  grows like a polynomial in z, but  because the function is 

periodic only the constant term can be different from zero. This means t h a t / ~ - v  is regular 
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over the cusp when regarded as a differential of order 1 - q ,  and we conclude tha t  ~ = v. 

The rest of the proof is exactly as before. 

LEMMA 8 ~. The ranges o/~ and ~' span all o/H(~).  

As previously, this follows from Lemmas 6' and 7' together with the fact that  

dim (pd PEi)  =d~, dim 6'(D~(xi)) =d~+nt and dim H(z~) =2d~+n~. 

The first par t  of Theorem 2 can now be proved by repeating the reasoning in Section 

7.2 almost word by  word. 

8 .  P r o o f  o f  T h e o r e m  3 

8.1. We recall that  ~x is a finite union of sets ~ ,  i E I .  The space PE~ consists of func- 

tions / on ~ i  whose restrictions/(o = / 1 ~  t for i E I belong to PEi and have the same periods. 

Our first observation is that  Lemma 5 generalizes to /EPE I. For that  purpose we 

must  first choose non-Weierstrass points ~ ) E ~ t .  The individual decompositions / a ) =  

/~o +/(lo combine to a decomposition / =/0 +/1 where/1 belongs to PE z and is regular except 

for poles of order ~<dt at the points ~) .  We know moreover that  p d / = p d / 1  belongs to 

pd E a if and only i f /1 is polefree. Counting the possible singularities we deduce a t  once 

tha t  dim (pd E1/pd E ~ I ) < ~  d~ =d~. 

To prove the opposite inequality we need only consider the functions gk introduced in 

Section 6.2. For identification purposes the functions with pole at $(0 ~ will now be denoted 

by  g(~), 1 ~</c~<dt. They are defined in ~i ,  and our remark (A) shows that  they belong to 

PE t. Their total  number  is d~, and the periods pd g~) are linearly independent modulo 

pd PE;r Indeed, suppose that  ~'~.k c~ pd g~) = p d  / with /EPE~r By restriction to ~ we 

find that  ~kc~k pd g ~ ) = p d / w i t h / E P E i l ,  and according to (A) this is possible only when 

ci~=0. The theorem is proved. 

I t  has already been remarked that  Theorem 4 requires no proof. 

Remark. When this paper was already written I was informed by Dr. Irwin Kra that  he 
too has investigated H(F) in its relationship to the differentials and Eiehler integrals on an 
invariant part of ~. Because he uses the methods of Bers where I use those of Eichler there 
seems to be no direct overlap between his work and mine. I t  is likely, however, that  the two 
points of view will eventually complement each other and lead to a fuller understanding of the 
whole circle of ideas. 
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